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Universality of ultrasonic 
attenuation coefficient 
of amorphous systems at low 
temperatures
Pragya Shukla

The competition between unretarded dispersion interactions between molecules prevailing at 
medium range order length scales and their phonon induced coupling at larger scales leads to 
appearance of nano-scale sub structures in amorphous systems. The complexity of intermolecular 
interactions gives rise to randomization of their operators. Based on a random matrix modelling of the 
Hamiltonian and its linear response to an external strain field, we show that the ultrasonic attenuation 
coefficient can be expressed as a ratio of two crucial length-scales related to molecular dynamics. A 
nearly constant value of the ratio for a wide range of materials then provides a theoretical explanation 
of the experimentally observed qualitative universality of the ultrasonic attenuation coefficient at low 
temperatures.

Experiments on thermal conductivity and acoustic attenuation in past have revealed an striking physical property 
of amorphous systems at low temperatures i.e. the universality of the internal friction Q−1 , defined in terms of the 
ratio of wavelength � of the elastic wave to its mean free path l and a standard measure of the ultrasonic attenu-
ation in the medium1. For T = 0.1 → 10K , Q−1(ω;T) is found to be nearly independent of temperature T as 
well as measuring frequency ω . The magnitude of Q−1 not only lies within about a factor of 20 for all glasses but 
is also very small (around ∼ 10−4 ), indicating long (short) mean free paths at small (large) phonon frequencies.

Previous attempts to explain this behaviour were based on an assumed existence of the defects modeled as 
tunnelling two level systems (TTLS)2. Although successful in explaining many glass anomalies, the original 
TTLS model3–6 suffered many drawbacks7–9 (besides experimental lack of evidence supporting their existence 
in most glasses). This encouraged attempts for improvements of the model by incorporating a phonon-TTLS 
interaction10, presence of TLS alongwith quasi-harmonic oscillators11 as well as considerations of several new 
theories; (extensive research on this topic during previous decades renders it impossible to list all but a few lead-
ing to new theoretical developments e.g.3–6,8,9,11–22).

In context of the acoustic attenuation, an important direction was taken in a recent theory of coupled generic 
blocks with a phonon-mediated interaction of type 1/r3 with r as the separation between blocks9,23. A renor-
malisation approach used in Ref.23 rendered the information regarding the behavior of a single generic block 
unnecessary and provided useful insights regarding the universality at macroscopic scales. Although the theory 
was later on applied successfully to explain another glass-universality, namely, Meissner–Berret ratio24, it has still 
left many questions unanswered e.g. how the block type structure appears, what is the effect of the intra-block 
forces over the inter-block ones, whether the universality is an emergent phenomenon occurring only at large 
scales or it also occurs at microscopic scales i.e. for a single block; (for example, the study23 does not provide 
any information about the attenuation coefficient for a basic block). An answer to these questions is pertinent 
to understand the physical origin of universalities which motivates the present work.

Based on the nature of chemical bonding, the physics of solids is expected to vary at microscopic length scales. 
Contrary to other low temperature properties, however the ratio �/l is found to be universal not only for glasses 
(with only few exceptions in some thin films) but for a huge class of materials different from them at large length 
scales e.g. disordered crystals, poly-crystals, some quasi crystals etc1. Furthermore the irradiation experiments 
on crystalline silicon for a wide range of radiation doses indicate the sound properties of the irradiated samples 
similar to glasses. Another universality not confined only to glasses but applicable to many liquids too is that of 
excess vibrational density of states which can not be explained based on the phonon contributions only25. These 
universalities therefore seem to originate from more fundamental considerations, shared by both amorphous as 
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well as disordered crystalline materials, with lack of long-range order not the cause of the low-energy excitations, 
and applicable not only for macroscopic sizes but also at microscopic scales (e.g. see26,27 also in this context). This 
motivated us in Ref.28 to consider the intermolecular interactions, more specifically Vanderwaals (VW) forces 
among the molecules within a block as the basis for the behavior; it is important to emphasise here that VW 
forces among molecules are always present in all condensed phases and therefore are the natural candidates to 
decipher the experimentally observed universality.

Our primary focus in the present work is to seek the physical origin of the weak attenuation of the sound 
waves in amorphous systems. For this purpose, it is necessary to first identify the local structures which respond 
to an external strain field by collective vibrations of molecules. But phonons in a perfect harmonic dielectric 
crystal are free of interactions, leading to a sound wave travel unattenuated. To understand long mean free paths 
in glasses at low frequencies, this intuitively suggest to seek for ordered structure, at least locally, and repeated 
almost periodically. The structure related to medium range order (MRO) in glasses seem to be playing the rel-
evant role. (Note the glasses also have short range order but that is governed by covalent bonds which are quite 
rigid to undergo deformation by a weak strain field. Further the role of the molecular clusters or structural corre-
lations was proposed in past too e.g. in Refs.25,29–31) but it was not very well-defined32). As discussed in Ref.33, the 
size of the basic block indeed turns out to be that of the length scale associated with medium range order (Note 
the peculiarity of role played by MRO in context of acoustic modes was mentioned in Ref.32,34 too; the study34 
indicated that the continuum approximation for the medium, necessary for Debye formulation, breaks down 
for acoustic modes with wavelength less than MRO). The combination of many such blocks can then provide 
required periodicity and their long-range interaction result in attenuation only at long length scales. Our theory 
of coupled blocks is therefore based on two main types of interactions, dominant at different spatial scales; a 
competition between them governs the block-size and also gives rise to an inter-connected block structure, with 
phonon mediated coupling of their stress fields. This in turn leads to formulation of the attenuation in terms of 
the stress–stress correlations among basic blocks and their density of the states. As discussed later, both of them 
can be expressed in terms of the molecular properties which finally leads to a constant, system-independent 
average value of Q−1.

The paper is organized as follows. The theory of an amorphous system of macroscopic size as a collection of 
sub-structures coupled with each other via an inverse-cube phonon mediated interaction is discussed in detail 
in Refs.23,24; this is briefly reviewed in “Super block: phonon mediated coupling of basic blocks” section, with 
macroscopic solid referred as the super block and the sub-structures referred as the basic blocks. Note the pre-
sent work differs from Refs.23,24 in context of the basic blocks details; the latter appear, in our theory, as a result 
of VW interactions among molecules prevailing at nano-scales28. The theory is used in “Ultrasonic attenuation 
coefficient: relation with stress matrix” section to relate the �Q−1� of the super block to the stress-stress correla-
tions of the basic blocks, their bulk density of states ρe and volume �b ; here 〈 〉 refers to the ensemble as well 
as spectral average. ρe depends on a parameter b, referred as “bulk spectral parameter” and derived in Ref.28 in 
terms of the molecular parameters. This along with �b leads to dependence of Q−1 on the length-ratio R0/Rv 
with R0 as the linear size of the basic block and Rv as the distance between two nearest neighbor molecules 
mutually interacting by unretarded dispersion forces. A theoretical analysis of the ratio R0/Rv has indicated 
it to be a system-independent constant for amorphous systems (supported by data based on 18 glasses)33. In 
“Qualitative universality of Q−1

a ” section, we express �Q−1� in terms of R0/Rv and thereby theoretically prove its 
quantitative universality. It can however be calculated directly from the molecular properties too; as discussed in 
“Comparison with experimental data” section, a good agreement of the results so obtained for 18 non-metallic 
glasses with experimental values not only lends credence to our theory of blocks but also provides an indirect 
route to reconfirm the universality of the ratio Rv/R0 . Note the 18 glasses chosen for comparison here are same 
as those used in Ref.35. A discussion of physical insights provided by our approach, brief comparison with other 
theories and approximations are outlined in “Discussion” section. We conclude in “Conclusion” section with a 
summary of our main ideas and results.

Super block: phonon mediated coupling of basic blocks
The order at atomic dimensions in an amorphous solid is system dependent; it is sensitive to the nature of chemi-
cal bonding. The intuition suggests the universal properties to originate from the interactions which appear at 
length scales at which the solid manifests no system-dependence. It is therefore relevant to seek and identify the 
sub-units in the super block structure which give rise to such interactions. For this purpose, let us first express 
the Hamiltonian H of the amorphous solid of volume � as the sum over intra-molecular interactions as well as 
inter-molecular ones

with hk as the Hamiltonian of the kth molecule at position rk and U as an inter-molecular interaction with arbi-
trary range r0 . Assuming that all the relevant many body states are “localized”, in the sense that the probability 
density for finding a given molecule “k” is “concentrated” (as defined by its mean square radius) in a region of 
finite radius l around some point rk , it is possible to define a 3D lattice (grid of points) Rα with spacing d ≫ r0 
such that the molecule “k” is associated with that lattice point Rα which is closest to Rk . The association is fixed, 
is insensitive to the dynamics and corresponds to representation of the solid by 3-dimensional blocks of linear 
size R0 , with their centers at lattice points Rα . The Hamiltonian H can then be reorganised as a sum over basic 
block Hamiltonians and the interactions between molecules on different blocks

(1)H =
∑

k

hk(rk)+
1

2

∑

k,l

U(|rk − rl|),
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where H(s) is the Hamiltonian of a basic block labeled “ s ”, basically sum over the molecular interactions within 
the block: H(s) =

∑

k∈s hk(rk)+ 1
2

∑

k,l∈s U(|rk − rl|) . As mentioned below, the molecules interactions appear-
ing in 2nd term in Eq. (2) rearrange themselves collectively and results in emergence of coupled stress fields 
of the blocks. The number g and volume �b of these blocks can be determined by analysing the competition 
between inter-molecular forces with emerging forces i.e phonon mediated coupling: g = �/�b with �b ∼ R3

0 . 
The statistical behavior of the Hamiltonian H is discussed in detail in Ref.28.

To analyze the ultrasonic attenuation in glasses, we first need to analyze the response of H to an external 
strain field.

Perturbed Hamiltonian of a basic block.  In presence of an external strain field, the molecules in a glass 
block are displaced from their equilibrium position and their interactions with those in surrounding blocks give 
rise to a stress field distributed over the block. Let u(r) be the displacement, relative to some arbitrary reference 
frame, of the matter at point r , the elastic strain tensor can then be defined as

with subscripts α,β referring to the tensor-components.
This gives rise to stress in the block which can in general have both elastic as well as inelastic components. 

The perturbed Hamiltonian Hpt of the basic block, labeled “s” can then be written as a sum over elastic and 
inelastic contributions

Each of these parts can further be expanded as a Taylor’ series around unperturbed block Hamiltonian Hx in 
terms of strain eαβ in long wavelength limit (where the subscript “x” refers to the elastic (“x = ph ”) and inelastic 
parts (“x = nph ”) respectively):

with Ŵ(s)
αβ;x(r) as the stress tensor; as clear from above Ŵ(s)

αβ;x(r) =
∂H

(s)
pt,x

∂eαβ
 . Here the retaintion of terms in the Taylor 

series expansion only up to first order in eαβ assumes the small strength of the strain field perturbation relatively 
to the unperturbed block Hamiltonian.

While a quantitative measure of the exact strength of the strain filed e.g. its weakness is not really needed 
for our analysis and is therefore beyond the purview of the present work, qualitatively the validity of Eq. (5) 
refers to a strength which permits (i) the treament of the block response to the external strain field within linear 
response theory (discussed in “Non-phonon linear response function” and in detail in Ref.23). We note the latter 
theory is used extensively for the mathematical formulation in this work, (ii) ignoring the rotation of the block 
etc under strain field, (iii) replacement of the distributed stress field within the block of volume �b by an average 
field, acting from the centre of mass of the block: 

∫

�b
dr Ŵ(s)

αβ(r) = Ŵ
(s)
αβ (based on the assumption of the isotropy 

and the small block-size).
The perturbed Hamiltonian of the basic block can then be approximated as

with e(s)αβ(t) referring to the phonon strain field eαβ(r, t) at the s-th block.

Super block Hamiltonian.  The super block consists of g basic blocks, perturbed by mutual interaction. To 
proceed further, it is useful to separate its Hamiltonian H into phononic and non-phonon contributions (referred 
by subscripts “ ph ” and “ nph ” respectively): H = Hph +Hnph

9. The contribution of elastic part Hph to the ultra-
sonic attenuation in glass super block at temperatures T < 1K is negligible. We therefore need to consider the 
contribution from the inelastic part Hnph only; to reduce notational complexity, henceforth, the subscripts “ nph ” 
will be suppressed and the notations H ,H(s)

pt ,Ŵ
(s) etc will be used for Hnph,H

(s)
pt;nph,Ŵ

(s)
nph respectively.

As the strain tensor eαβ contains a contribution from the phonon field, the exchange of virtual phonons will 
give rise to an effective (“RKKY”-type) coupling between the stress tensors of any two block-pairs. Let Ŵ(s)

γ δ(r) 
be the stress tensor at point r of the basic block ”s”. The interaction Vst between the blocks “s” and “t ” can be 
given as23

with ρm as the mass-density and ca , as the longitudinal ( al ) or transverse ( a ≡ t ) sound velocity in the super 
block. Here the subscripts αβγ δ refer to the tensor components and the symbol 

∑

te refers to a sum over all tensor 

(2)H =
∑

s

H
(s) + 1

2

∑

s,t

∑

k∈s,l∈t
U(|rk − rl|),

(3)eαβ(r, t) =
1

2

(

∂uα

∂xβ
+ ∂uβ

∂xα

)

,

(4)H
(s)
pt = H

(s)
pt,ph +H

(s)
pt,nph.

(5)H
(s)
pt,x(t) = H

(s)
x +

∫

dr eαβ(r, t) Ŵ
(s)
αβ;x(r)+ O(e2αβ),

(6)H
(s)
pt;x = H

(s)
x +

∑

αβ

e
(s)
αβ Ŵ

(s)
αβ;x ,

(7)Vst =
1

4πρmc
2
t

∫

s
dr

∫

t
dr′

∑

te

κ
(st)
αβγ δ

| r − r′ |3 . Ŵ
(s)
αβ(r)⊗ Ŵ

(t)
γ δ (r

′),
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components: 
∑

te ≡
∑

αβγ δ . The directional dependence of the interaction is represented by κ(st)αβγ δ = κ(st)(θ ,φ) ; 
it is assumed to depend only on the relative orientation ( θ ,φ ) of the block-pairs and is independent from their 
relative separation24:

where ν2 =
(

1− c2t
c2l

)

 and n = n1 î + n2 ĵ + n3k̂ is the unit vector along the direction of position vector r − r′ . 
Again assuming the isotropy and the small block-size, the interaction between various points of the block-pairs 
can be replaced by the average interaction between their centers Rs and Rt . The phonon mediate coupling between 
the blocks can then be approximated as23,24

Due to the above emerging interactions at large length scales, the super block Hamiltonian in Eq. (2) is not just 
a sum over basic block Hamiltonians but also includes their phonon mediated coupling.

Equation (9) describes an emerging interaction at large length scales. The Hamiltonian of the super block in 
Eq. (2) can now be rearranged as a sum over those of the basic blocks as well as their phonon mediated coupling. 
In absence of external strain field, the non-phonon part of H can be rewritten as

with H0 as a sum over non-phonon part of the unperturbed basic block Hamiltonians, H0 =
∑g

s=1 H(s) , and, V 
as the net pair-wise interaction among blocks: V =

∑

s,t;s �=t Vst where 
∑

s,t implies the sum over all basic blocks. 
The presence of a weak external strain field perturbs the basic blocks and thereby H. The non-phonon part of 
the perturbed Hamiltonian Hpt can be written as23,24

where the 2nd equality follows by assuming the same strain operator for all blocks e(s)αβ ≈ eαβ and writing 
Ŵαβ =

∑g
s=1 Ŵ

(s)
αβ . (Note, as discussed in Ref.24, the total Hamiltonian for the super block contains two additional 

terms besides V (see Eq. (2.21) in Ref.24) but their ensemble averaged contribution is negligible. Alternatively it 
can also be absorbed by redefining stress operators).

Ultrasonic attenuation coefficient: relation with stress matrix
In general, a wave propagating through a natural medium undergoes attenuation of its intensity with distance 
due to spreading, scattering as well absorption. For example, the change of amplitude in case of an attenuat-
ing plane wave can be expressed as �(x) = �(0) e−αx with �(x) as the amplitude at position x and α as the 
“attenuation coefficient”. The latter in general is a function of frequency ω , wave speed and quality factor of the 
medium and its measurement leads to the mean free path l of the wave l = α−1 . For comparison of experiments 
on different materials, it is useful to a define the dimensionless ultrasonic attenuation coefficient Q−1

a (ω) for a 
wave of frequency ν and wavelength �1,24:

with ca as the speed of acoustic wave in the longitudinal (with a ≡ l ) or transverse direction ( a ≡ t ). Here we 
note that the above definition is different from the one given in Ref.1 by a constant: Q−1

a,pohl = π Q−1
a  . Further the 

quality factor of the medium corresponds to inverse of Q−1
a  ; with former often defined as the “inverse internal 

friction”, this in turn leads to Q−1
a  often referred as “intrenal friction” too.

Consider the attenuation of acoustic waves in a glass super block with its Hamiltonian H given by Eq. (11). 
Assuming the coupling between phonon and non-phonon degrees of freedom a weak perturbation on the phonon 
dynamics, Q−1

a (ω) can be expressed as24

with ρm as the mass-density of the material. Here χl,t(ω) , referred as the longitudinal or transverse response 
function, are the measures of the linear response of the basic blocks to external strain field and can be defined 
as follows; (see23 for a detailed discussion).

Non‑phonon linear response function.  Consider the linear response of a basic block, labeled as “ s ”, to 
an external strain field eij(r, t) = eij exp[i(q.r − ωt)] with eij real but infinitesimal. The perturbed Hamiltonian 
is given by Eq. (6) with corresponding stress-field given as Ŵ(s)

ij (r, t) = Ŵ̂
(s)
ij exp[i(q.r − ωt)] where 〈Ŵ(s)

ij 〉 is in 
general complex.

(8)

κ
(st)
ijkl = −

�

δjl − 3njnl
�

δik + ν2
�

−(δijδkl + δikδjl + δilδjk)+

+ 3
�

njnlδik + njnkδil + ninkδjl + ninlδjk + ninjδkl + nknlδij
�

− 15
�

ijkl

ninjnknl



,

(9)Vst =
1

4πρmc
2
t

∑

αβγ δ

κ
(st)
αβγ δ

| Rs − Rt |3
Ŵ
(s)
αβ ⊗ Ŵ

(t)
γ δ .

(10)H = H0 + V ,

(11)Hpt = H +
g

∑

s=1

∑

αβ

e
(s)
αβ Ŵ

(s)
αβ = H +

∑

αβ

eαβ Ŵαβ ,

(12)Q−1
a = 1

2π2

ca

ν
α = 1

2π2

�

l
,

(13)Q−1
a (ω) = (π ρm c2a)

−1 Im χa(ω),
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The complex response function or the susceptibility for a basic block can then be defined as

Here in general the variable q and ω are independent variables. But as our interest is in values of q close to 
ω/cl,t , χ will henceforth be written as a function of ω only23.

The imaginary part of χ(s)(ω) can be written in the representation in which unperturbed basic block Hamil-
tonian H(s) is diagonal (later referred as non-interacting or NI basis). Let |ms� , ms = 1 → N be the many body 
eigenstate of H(s) with energy em , then

with Z as the partition function. Here to simplify presentation, we set � = 1 . Further

with Ŵ(s)
αβ;kl as the matrix element of the stress-tensor in the NI basis: Ŵ(s)

αβ;kl = �ks| Ŵ(s)
αβ |ls�.

Substitution of Eqs. (15) and (16) in Eq. (13) leads to a frequency dependent formulation of Q−1
a  and thereby 

a dispersion of sound velocities (following from the Kramer–Kronig relations). However, as mentioned in “Intro-
duction” section, extensive experimental studies during last few decades have clearly indicated a nearly tempera-
ture as well as frequency independence of the attenuation coefficient for a wide range of amorphous systems at 
low temperatures; these observations are also confirmed by independent measurements of dispersion in sound 
velocities in the medium36. Another rather more puzzling feature revealed by experiments is almost quantitative 
universality of Q−1 ( ≈ 10−4 ) for many amorphous materials); these experimental findings are reviewed in detail 
in Ref.1. As such a small value of attenuation, equivalently long mean free paths of the phonons, in the amorphous 
medium is intuitively not obvious, this has baffled the researchers for last many decades (e.g. see31), has been an 
intense area of research and is also the primary focus of the present work. Hereafter, our present analysis would 
be confined to a frequency averaged ultrasonic attenuation coefficient only. While a detailed understanding of 
the qualitative universality i.e. frequency independence of Q−1 is also desirable, this requires a more detailed 
mathematical analysis of the stress–stress correlations and will be discussed in a subsequent work.

In general χ(m)
αβγ δ depends on the energy level em and fluctuates over the spectrum. It is then useful to define 

the spectral averaged susceptibility over the N-level spectrum of the basic block

where ωc is the bulk spectrum width of the basic block with 〈.〉ω implying a spectral averaging.
Furthermore the fluctuations of Ŵ(s)

αβ;kl as well as those of the energy levels over the ensemble also influence 
χ
(m,s)
αβγ δ(ω) and it is appropriate to consider its ensemble average 〈χ(m,s)

αβγ δ(ω)〉e too. Assuming isotropy, rotationally 
invariance of the basic block (as its linear size L ≫ a with a as the atomic length scale), all 38 components of 
response function can further be expressed in terms of the transverse and longitudinal response24:

where qc = �χ(s)
l �e,ω

�χ(s)
t �e,ω

− 2 along with 〈.〉e implying an ensemble averaging, 〈.〉e,ω an averaging over both ω as well 
as ensemble.

The relations given in Eq. (14) to Eq. (18) are applicable for a basic block of volume ωb . Following similar 
forms of Eqs. (6) and (11), these can be generalized for the susceptibility 〈χa〉supe,ω of a super block. This follows by 
dropping the superscript “s′′ and with replacements �b → � , N → Ng ,ωc → Wc , en → En in Eq. (14) to Eq. 
(18); note here Em refers to a many body energy level of H (defined in Eq. (10).

Relation between Q−1

a
 and stress‑correlations.  For basic block.  Due to disorder beyond atomic 

scales, a typical matrix element of the stress tensor of a basic block fluctuates over the ensemble and can be both 
positive as well as negative. This implies �Ŵ(s)

αβ;kl�e = 0 . Further, at temperature T = 0 , the spectral averaging 
(defined in Eq. (17)) of Eq. (16) followed by an ensemble averaging leads to the stress-stress correlation of the 
basic block

where 〈Im χ
(s)
t 〉e.ω is defined in Eq. (18).

The short-range order of atomic positions in the basic-block along with its small size suggests a homo-
geneous nature of many body interactions. The ensemble averaged matrix elements of Ŵ(s)

αβ , in the NI basis 
i.e. the eigenfunction basis of H(s)

0  , can then be assumed to be of almost same strength. (This is equivalent 

(14)χ
(s)
αβγ δ(q,ω) ≡

1

�b

∂ Ŵ̂
(s)
αβ(q,ω)

∂ eγ δ
.

(15)Im χ
(s)
αβγ δ(ω) =

(1− e−βω)

Z

∑

m

e−βem χ
(m,s)
αβ;γ δ(ω),

(16)χ
(m,s)
αβγ δ(ω) =

π

�b

N
∑

n=1

Ŵ
(s)
αβ;mn Ŵ

(s)
γ δ;nm δ(en − em − ω),

(17)�χ(s)
αβγ δ�ω = 1

Nωc

N
∑

m=1

∫ ωc

0
χ
(m,s)
αβγ δ(ω − em) dω,

(18)�χ(s)
αβγ δ(ω)�e,ω =

(

qc δαβδγ δ + δαγ δβδ + δαδδβγ
)

�χ(s)
t �e,ω ,

(19)
N
∑

m,n=1

�Ŵ(s)
αβ;mn Ŵ

(s)
γ δ;nm�e =

Nωc �b

π

(

qc δαβδγ δ + δαγ δβδ + δαδδβγ
)

�Im χ
(s)
t �e.ω ,
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to say that, due to small size of block, stress can be assumed to be homogeneous i.e. of the same order every-
where in the block. This assumption therefore puts a constraint on our basic-block size). One can then write 
∑

m,n=1�Ŵ
(s)
αβ;mn Ŵ

(s)
γ δ;nm�e = N2 �Ŵ(s)

αβ;mn Ŵ
(s)
γ δ;nm�e . This on substitution in Eq. (19) leads to

Further using Eq. (13) in Eqs. (20) and (21), the correlations can be expressed in terms of the average ultrasonic 
absorption �Q−1

t (ω)�e,ω of the basic block

Equation (23) can be rewritten in terms of the mean-square matrix element ν2 = �
(

Ŵ
(s)
αβ;mn

)2
�e

where γ 2 ≡ N−1 Tr(Ŵ(s)
αβ)

2 = Nν2 is related to the coefficient of the phonon mediated coupling V between two 
basic blocks (which is of the form γ 2

8πρmc2r3
 , see Eq. (9)).

As discussed in Ref.28, the ensemble averaged density of the states which participate in these excitations, has a 
universal form in the bulk of the spectrum: �ρbulk(e)� = Nb

2π

√

2− (be)2 with b later referred as the bulk spectral 
parameter and 〈 〉 as the ensemble average; (note here 〈ρe(e)〉 is normalised to N: 

∫

�ρe(e)� de = N ). This gives 
the bulk spectral width as

As discussed in detail in Ref.28, b can be expressed as

with AH as the Hamaker constant of the material, z as the average number of nearest neighbors of a given mol-
ecule, g0 as the number of molecules in the basic block, η = N − 1 with N  as the number of relevant vibrational 
energy levels in a molecule). Based on the structural stability analysis of the amorphous systems, z is predicted to 
be of the order of 3 (for a three dimensional block)4–6. Further N  corresponds to the number of single molecule 
states participating in dispersion interaction with another molecule. Alternatively, this is the number of dipole 
transitions among vibrational states of a molecule due to dispersion interaction with another one. Usually the 
allowed number of such transitions is 3 ( δm = 0,±1 with m as the quantum number of the state); in any case 
weak nature of the dispersion interaction rules out higher number of such transitions).

For comparisons with TTLS model, it is worth noting that 1
ωc�b

 is of the order of the bulk-density per unit 
volume. This in turn renders �Q−1

a �e,ω given by Eq. (24) analogous to that of TTLS model: �Q−1
a �TTLSe,ω = π γ 2 P

2 ρm c2a
 

with P as the density of states of TTLS per unit volume.

For super block.  Equation (24) corresponds to the average coefficient of attenuation in a basic block. Proceed-
ing exactly as above, the average coefficient for a super block, say �Q−1

a �supe,ω , can also be obtained. The steps are as 
follows. Equation (19) is now replaced by the relation

where Ŵαβ;mn refers to the matrix element of Ŵαβ in the eigenbasis of H (Eq. (10)). But noting that the left side of 
Eq. (27) can be rewritten as �Tr(Ŵαβ;mn)

2� and is therefore basis-invariant, it can be evaluated in the eigenbasis 
of H0 i.e the product basis of single block states referred as |E0n� , n = 1 → Ng . Using

along with �Ŵ(s)
αβ;mnŴ

t)
αβ;mn� = 0 , it is easy to see that

(20)�Ŵ(s)
αα;mn Ŵ

(s)
γ γ ;mn�e =

ωc �b

Nπ

[

qc + δαγ
]

�Im χ
(s)
t (ω)�e,ω ,

(21)�Ŵ(s)
αβ;mn Ŵ

(s)
αβ;mn�e = �Ŵ(s)

αβ;mn Ŵ
(s)
βα;mn�e =

ωc �b

Nπ
�Im χ

(s)
t (ω)�e,ω α �= β .

(22)�Ŵ(s)
αα;mn Ŵ

(s)
γ γ ;mn�e = N−1 ωc ρm c2t �b �Q−1

t (ω)�e,ω δαγ ,

(23)�Ŵ(s)
αβ;mn Ŵ

(s)
αβ;mn�e = �Ŵ(s)

αβ;mn Ŵ
(s)
βα;mn�e = N−1 ωc ρm c2a �b�Q−1

t (ω)�e,ω .

(24)�Q−1
a �e,ω = N ν2

ωc ρm c2a �b
= γ 2

ωc ρm c2a �b
,

(25)ωc =
2
√
2

b
= 2N

π�ρbulk(0)�
.

(26)b ≈ 36

η
√
z g0 AH

y6

(1+ y)6
= 9

4
√
3 AH

(

y

1+ y

)9/2

,

(27)
Ng
∑

m,n=1

�Ŵαβ;mn Ŵγδ;nm�e =
NgWc �

π

(

qc δαβδγ δ + δαγ δβδ + δαδδβγ
)

�Im χt�supe.ω ,

(28)Ŵαβ;mn =
g

∑

s=1

Ŵ
(s)
αβ;mn,
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The above follows because Ŵ(s)
αβ;mn �= 0 only if the product states |E0m� and |E0n� differ only by the contribution 

from the sth basic block. Further this also implies that the relevant spectral averaging for the super block is same 
as that of a basic block i.e Wc = wc . The above, along with the definition �Q−1

a �supe,ω = (π ρm c2a)
−1 �Im χa�supe.ω 

and � = g �b , now leads to

A comparison of the above result with Eq. (24) clearly indicates that

Qualitative universality of Q−1

a

Based on unretarded dispersion interaction between molecules, Eq. (24) relates the ultrasonic attenuation coef-
ficient �Q−1

a � to the bulk spectrum width ωc and thereby bulk spectrum parameter b. Equation (26) expresses b 
in terms of the molecular properties. Further as discussed in Ref.33 in detail, the size t of the basic block can be 
expressed as

Here Rv is the distance of closest separation between two molecules in the material and R0 is a length scale at 
which the strength of dispersion interaction between two molecules (i.e. basic structural units28) is equal to the 
phonon mediated coupling of their stress fields33

with C6 as the dispersion coefficient and γm as the coupling strength of the stress fields of the molecules. Using 
�b = s t3 , the above then gives the volume �b of the basic block in terms of molecular parameters. Further, as 
discussed in Ref.33, the number of molecules in a basic block can be given as

with y = Rv
Rm

 where Rm is the radius of the molecule.
A combination of the above relations then gives �Q−1

a � in terms of the molecular properties. This can be 
derived as follows. A substitution of Eq. (26) in Eq. (24), along with above relations for t,R0 and g0 and s = 4π/3 , 
leads to

where, as discussed in Sect. I of SI files, γ , the coupling strength of basic blocks can be expressed in terms of that 
of molecules i.e γm,

with

Using Eq. (33) to replace C6 in the above equation leads to

Here the 2nd equality is obtained by substitution of t and g0 from Eqs. (32) and (34). Further, as mentioned 
below Eq. (26), η = 2 (with N = 3 as the number of allowed dipole transitions in a molecule) and z as the number 

(29)
Ng
∑

m,n=1

�Ŵαβ;mn Ŵγδ;nm�e = g Ng+1 ν2.

(30)�Q−1
a �supe,ω = N g ν2

ωc ρm c2a �
= γ 2

ωc ρm c2a �b
.

(31)�Q−1
a �supe,ω = �Q−1

a �e,ω .

(32)t2 = R3
0

4 Rv
.

(33)R3
0 =

ρm c2 C6

8γ 2
m

,

(34)g0 =
�b

�eff
≈ 1

(1+ y)3

(

t

Rm

)3

= y3

8 (1+ y)3

(

R0

Rv

)9/2

,

(35)�Q−1
a �e,ω ≈ 64 γ 2

2 s η
√
2zg0 ρm c2 C6

R6
v

t30
,

(36)γ 2 ≈ 4 π g0

K
√
2

γ 2
m,

(37)K2 = 18

(

5− 4
c2t
c2l

)

.

(38)�Q−1
a �e,ω ≈

8 π
√
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s η
√
z K

R6
v

R3
0 t

3
,

(39)= 32 π

s η
√
2z K
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of nearest neighbors of a molecule (those only interacting by VWD). The quantitative information about Rv 
available for a wide range of materials suggests Rv ∼ Rm

37. Taking y = Rv
Rm

∼ 1 leads to, from Eq. (34), g0 ≈ 8 . 
Assuming uniform mass density, this also implies only three nearest neighbor molecules to a given molecule 

within a spherical basic block of radius t =
√

R30
4 Rv

 and therefore z = 3.
Following from Eq. (39), an almost quantitative universality of Q−1 , as experimentally predicted for amor-

phous systems1, is not directly obvious. This however follows by noting that the length scales R0 and Rv are related 
by a constant: R0 = 4Rv33. Further the ratio ctcl  , and therefore K (from Eq. (37)), is known to be almost constant 
for many structural glasses24,35. Substitution of R0Rv = 4 in Eq. (39) along with y ≈ 1 and s = 4π/3 leads to an 
almost material independent value of average internal friction

Previous experiments indicate that clct  varies between 1.5 → 2 , thus changing �Q−1
a �e,ω within 10% only.

Further insight in the above result can be gained by rewriting �Q−1
a �e,ω in terms of g0 , the number of molecules 

in a basic block. Substitution of Eq. (34) in Eq. (39) gives �Q−1
a �e,ω ∝ g

−7/6
0  . Further, using the relation R0 = 4Rv

33, Eq. (34) gives a constant, system-independent number of the molecules within each block: g0 = 64 y3

(1+y)3
 . This 

in turn leads to a material independent value of the average ultrasonic attenuation coefficient �Q−1� . The above 
along with the definition given in Eq. (12) further suggests that the universality is brought about by the phonons 
of wavelength � ∼ g0 l with l as their mean free path.

Taking typical value Rm ∼ 2.5−3.5 Å gives R0 ∼ 10−15 Å which corresponds to the length scale for medium 
range topological order (MRO) ( 10 Å → 30 Å ) (also see Table 3 of Ref.33 for glass specific values of R0 ) . This 
is as expected because VWD interactions are negligible beyond MRO and other interactions start dominating 
beyond this length scale.

Equation (40) is the central result of this paper. As described above, it is based on a balancing of the VW 
forces with phonon induced interactions among molecules at MRO length scales in amorphous systems. The 
universal aspects of this competition, as described above, then result in the qualitative universality of �Q−1

a �e,ω 
which is consistent with experimental observations1. Note, based on the type of the experiment, the observed 
data for a glass often vary from one experiment to another (see for example, the values of tunnelling strengths 
Cl,t in Ref.1,35).

Comparison with experimental data
Equations (39) and (40) both give theoretical formulations for the internal friction in terms of the molecular 
properties. Eq. (40) however is based on an additional prediction R0 = 4Rv , derived and analyzed in Ref.33. This 
motivates us to compare both predictions, namely, Eqs. (39) and (40), with experimental data for 18 glasses given 
by two different studies1 and35.

A comparison of Eq. (40) with experiments requires the information only about cl , ct and is straightforward. 
But Eq. (39) depends on many other material properties and needs to be rewritten as follows. As discussed in 
Ref.33, R0 can be expressed in terms of molecular properties

Substitution of the relation �m = 4
3π R3

m in Eq. (41) gives

Here c, as the speed of sound, and γm , as the phonon mediated coupling constant between molecules, have 
directional dependence: c = cl , ct and γm = γl , γt with subscripts l, t referring to longitudinal and transverse 
direction, respectively. The above along with Eq. (39) gives,

where f (y) = y27/4

(1+y)12
 with η = 2 , z = 3 and the subscript a = l, t . For later reference, note f(y) is almost same 

for y = 1 and y = 1.5 : f (1) = 2.44× 10−4 and f (1.5) = 2.59× 10−4.
As standard TTLS model is a special case of our generic block model, the available information for the 

coupling constants in the former case can be used for the latter (Note TTLS model is based on the presence of 
some two level atoms/molecules (TLS) as defects. The coupling constants of the molecules within a block due to 
molecule–phonon interaction can then be taken same as those of TLS). The TLS coupling constants are related 
to tunnelling strength Ca , defined as

(40)�Q−1
a �e,ω ≈ 2.83× 10−4 ×

(

1.25− c2t
c2l

)−1/2

.

(41)R3
0 =

(1+ y)6 c2 AH M �m

8 π2 γ 2
m Nav

. = (1+ y)6 AH M2 c2

8 π2 N2
av γ

2
m ρm

.

(42)
(

R0

Rv

)3

= 1

y3

(
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)3

= (1+ y)6

y3
M AH

6 π Nav

(

c
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)2

.

(43)�Q−1
a �e,ω = 48 f (y)

η
√
2 z K

(

6 π Nav

M AH

γ 2
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,
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(
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with P as the spectral density of tunnelling states. According to tunnelling model,

As the experimental results are usually given in terms of TTLS parameters Cl ,Ct , we define the analog of Ca 
for our case for comparison

The above along with Eqs. (43) and (44) then gives

Determination of physical parameters.  Both definitions in Eqs. (45) and (46) refer to same physical 
property, i.e., internal friction, thus implying Ba = Ca . From Eq. (47), however, Ba depends on many other 
parameters besides Ca which vary from one glass to another. Although, not obvious a priori how the two can be 
equal, this is indeed necessary if our theoretical prediction in Eq. (47) is consistent with the experimental values 
for �Q−1

a � . To verify the equality, we pursue a detailed quantitative analysis of Bl ,Bt for 18 glass. The required 
values of cl , ct to determine K along with ρm and P are taken from35. The information about Ca,AH and M for the 
purpose is obtained as follows. 

	 (i)	 Cl ,Ct : Using ultrasonic absorption data, the study35 determines Cl ,Ct as adjustable parameters for 18 
glasses; these values are displayed in columns 4 and 10 of Table 1 (referred as Cl,bm and Ct,bm ). The cor-
responding results for Bl,t , derived from Eq. (47), are displayed in columns 3 and 9 of Table 1 (with 
notations defined in Table captions). The Cl ,Ct-values mentioned in Ref.1 for some of the glasses are dif-
ferent from35 (although cl , ct values are same in both studies) which then lead to, from Eq. (44), different 
values for γl , γt . Further note that the study1 considers data from two different experimental approaches, 
namely, acoustic and flexural) and the results for Cl ,Ct values vary from one experiment to another. This 
motivates us to compare Eq. (47) with two sets of data given in Ref.1 too. The Cl ,Ct values from1 are 
displayed in Table 1 in columns 6, 8, 12, 14; the latter along with ρm and P (both given in Table 2) are 
used to obtain corresponding theoretical predictions for Bl ,Bt , given in columns 5, 7, 11, 13.

(45)Ca =
2

π
�Q−1

a,pohl�.

(46)Ba =
2

π
�Q−1

a,pohl� = 2 �Q−1
a �.

(47)Ba =
6 f (y)

η
√
z K

(

6 π Nav

M AH

ρm Ca

P

)7/4

.

Table 1.   Comparison of theoretical and experimental values of internal friction for 18 glasses with M = M1 : 
Here the theoretcial result from Eq. (47) labelled as Ba,xx , with a ≡ l, t are displayed in odd numbered columns 
for M = M1. The 2nd subscript xx refers to the particular experiment used to obtain required parameters in 
Eq. (47): xx ≡ bm, p1, p2 for data from35, xx ≡ p1 for accoustic data from1, xx ≡ p2 for flexural data from1). 
The values used for M1, cl , ct to obtain Ba,xx are given in Table 2, with experimental data for Ca given in 
adjacent even-numbered columns. The last column gives our theoretical prediction from Eq. (40).

Index

Glass

Bl,bm Cl,bm Bl,p1 Cl,p1 Bl,p2 Cl,p2 Bt,bm Ct,bm Bt,p1 Ct,p1 Bt,p2 Ct,p2 Bth

Units ×104 ×104 ×104 ×104 ×104 ×104 ×104 ×104 ×104 ×104 ×104 ×104 ×104

1 a-SiO2 4.50 3.10 4.51 3.00 4.00 2.80 3.81 2.90 4.51 3.00 4.78 3.10 3.11

2 BK7 3.09 2.70 4.38 3.30 3.01

3 As2S3 0.76 1.60 1.64 2.30 0.69 1.40 1.48 2.00 0.96 1.70 2.88

4 LASF7 1.92 1.20 4.81 2.00 1.84 1.16 3.07

5 SF4 2.58 2.20 3.89 2.80 2.97

6 SF59 4.56 2.30 6.38 2.80 2.95

7 V52 2.46 4.00 5.03 6.00 3.46 4.90 4.18 5.40 2.88

8 BALNA 1.82 3.80 2.71 4.80 2.87

9 LAT 2.29 3.80 2.15 3.70 2.96

10 a-Se 0.65 1.20 0.88 2.20 0.82 2.20 1.42 2.90 2.86

11 Se75Ge25 0.90

12 Se60Ge40 1.86 1.83 1.30 0.14 0.30 2.99

13 LiCl:7H2O 3.44 7.20 3.29 7.00 7.67 11.36 6.14 10.0 2.82

14 Zn-Glass 2.09 3.00 2.79 3.60 2.82

15 PMMA 1.55 2.00 4.57 3.70 3.35 3.10 4.90 3.70 7.21 4.80 9.73 5.70 2.82

16 PS 2.44 3.60 11.13 8.30 4.79 5.00 16.52 10.40 9.99 7.80 2.87

17 PC 1.00 1.80 3.51 3.50 3.19 3.30 31.23 12.20 20.16 9.50 2.77

18 ET1000 2.06 2.80 5.96 5.00 Inf 2.52
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	 (ii)	 M: As Eq. (47) depends on M7/4 , a correct estimation of M is important too. Two options available to 
determine M are (i) mass of the basic structural unit which dominates the structure of the glass and 
participates in the dispersion interaction (later referred as vwd unit), or, (ii) the molecular mass of 
the glass (later referred as formula unit); (here, for example for SiO2 glass, SiO2 is the formula unit but 
dominant structural unit can be SiO4 or Si(SiO4)). Clearly, with dispersion interaction as the basis of 
our analysis, it is reasonable to use the 1st option . To analyze the influence however we consider both 
options to calculate Bl ,Bt . The details of dominant structural unit for each glass and its mass, referred 
as M1 , is discussed in Sect. II of SI files. The formula mass, labelled here as M2 , corresponds to weighted 
summation of the molar masses of each constituent of the glass: for the latter consisting of n components 
Xk , k = 1 → n , with their molar mass as mk and weight percentage as pk , M2 =

∑n
k=1 pk mk . The glass 

composition for the 18 glasses is given in Sect. II of SI files and their M1,M2 values are displayed in 
Table 2.

	 (iii)	 AH : for materials in which spectral optical properties are not available, two refractive-index based 
approximation for AH namely, standard Tabor–Winterton approximation (TWA) (appropriate for 
low refractive index materials, n < 1.8 ) and single oscillator approximation (SOA) (for higher indexes 
n > 1.8 ), provide useful estimates38 . The AH for 18 glasses listed in Table 2 are based on these approxi-
mations (with details given in Ref.28).

Quantitative analysis.  As mentioned above, Eq. (40) for �Q−1
a � is based on relation R0 = 4Rv but Eq. (47) 

is based only on Eq. (33); (note Eq. (47) follows from Eq. (43)). The present analysis therefore provides two 
pathways to theoretically determine �Q−1

a � , one based on constant ratio of two short range length scales and 
other on molecular properties. The first pathway requires the information about cl , ct only but the second one 
also requires a prior information about the tunnelling strength Ca . The reported experimental data for the lat-
ter however varies significantly from one experiment to another (as indicated by the data from Refs.1,35 in even 
numbered columns of Tables 1, 3). This in turn leads to different values of Ba (from Eq. (47)); the latter are dis-
played in odd-numbered columns of Tables 1 and 3 (for M1 and M2 respectively). Note, as displayed in Table 2, 
M1 and M2 do not differ significantly for the glass-ceramics and, consequently, the predictions for Ba for the two 
cases are close. However, for single component glasses e.g. SiO2 or where one component dominates (e.g. in 
BK7), Bl ,Bt predictions based on M1 are closer to experimental data (see Table 1). This in turn provides further 
credence to the relevance of VW forces in present context.

The values of Bth = 2�Q−1
a � from Eq. (40), along with corresponding experimental Ca data for each glass, is 

also illustrated in Fig. 1. The similar comparison based on Eq. (47) is displayed in Fig. 2 for M = M1 and Fig. 3 

Table 2.   Physical parameters for 18 glasses. The table lists the available data for the physical parameters 
appearing in Eqs. (39), (43) and (47). The ρ, cl , ct , P data from35 (or1 if not available in Ref.35) is displayed in 
columns 3rd, 4th, 5th and 8th, respectively. The columns 6th and 7th give the γl and the γt values, taken from 
Ref.35 except for few cases; for those marked by a star (*), the values are obtained either from1 or from Cl ,Ct 
values given in Ref.35 along with Eq. (45). Although not used for our analysis, the γ values are included here for 
completeness). The AH values given in columns 9th are taken from Ref.28. The molar mass values, referred as 
M1 for the vwd unit along with its composition is given in columns 10th and 11th and the mass M2 for formula 
unit (same as glass molecular weight) in column 12th respectively.

Index Glass

ρm cl ct γl γt P AH M1

Vwd unit

M2

×103 kg/m3 km/s km/s ev ev 1045/J m3
×10−20 J g/mole g/mole

1 a-SiO2 2.20 5.80 3.80 1.04 0.65 0.8 6.31 120.09 [Si(SiO4] 60.08

2 BK7 2.51 6.20 3.80 0.9 0.65 1.1 7.40 92.81 [SiO4] 65.84

3 As2S3 3.20 2.70 1.46 0.26 0.17 2.0 19.07 32.10 [S] 246.03

4 LASF 5.79 5.64 3.60 1.46 0.92 0.4 12.65 167.95 [LASF] 221.30

5 SF4 4.78 3.78 2.24 0.72 0.48 1.1 8.40 136.17 [Si2O5] 116.78

6 SF59 6.26 3.32 1.92 0.77 0.49 1.0 14.05 92.81 [SiO4] 158.34

7 V52 4.80 4.15 2.25 0.87 0.52 1.7 8.37 167.21 [ZrF4] 182.28

8 BALNA 4.28 4.30 2.30 0.75 0.45 2.1 6.87 167.21 [ZrF4] 140.79

9 LAT 5.25 4.78 2.80 1.13 0.65 1.4 9.16 205.21 [ZrF6] 215.69

10 a-Se 4.30 2.00 1.05 0.25 0.14 2.0 18.23 78.96 [Se] 78.96

11 Se75Ge25 4.35 0.00 1.24 0.15 1.0 22.19 77.38 [Se3Ge1] 77.38

12 Se60Ge40 4.25 2.40* 1.44* 0.16 0.4 23.56 76.43 [Se3Ge1] 76.43

13 LiCl:7H2O 1.20 4.00 2.00* 0.62 0.39 1.4 4.75 131.32 [Li(H2O)Cl3] 168.50

14 Zn-Glass 4.24 4.60 2.30 0.70 0.38 2.2 7.71 103.41 [ZnF2] 103.41

15 PMMA 1.18 3.15 1.57 0.39 0.27 0.6 6.10 102.78 [PMMA] 102.78

16 PS 1.05 2.80 1.50 0.20 0.13 2.8 6.03 27.00 [CH − CH2] 105.15

17 PC 1.20 2.97 1.37* 0.28 0.18 0.9 6.00 77.10 [C6H5] 252.24

18 ET1000 1.20 3.25 0.35 0.22 1.1 4.91 77.10 [C6H5] 77.10
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for M = M2 . A direct comparison of theoretical and experimental data is also displayed in an alternative way in 
Fig. 4 for M1 and in Fig. 5 for M2 . As mentioned above, the results for a glass vary from one experiment to other 
often within a factor of 2 but sometimes more e.g. for polymers (see odd numbered columns of Tables 1 and 3 
and also1). But the deviation of our theoretical prediction from experiments is usually less than a factor of 2.

Further, a comparison of Figs. 2 and 3 (or Figs. 4, 5) indicates that the results for M = M1 are closer to 
experimental data, thus indicating the molecules interacting by VWD interaction as an appropriate choice for 
the present analysis. This is also consistent with our theoretical approach assuming VWD interactions as the 
relevant interaction for length scales less than MRO.

An important point to note here is that the Ba-dependence in Eq. (47) on glass-properties is based only on the 
product M.AH . (This can be seen by substituting R0 = 4Rv in Eq. (41) which then gives the ratio γmc  in terms of 
M.AH and thereby leads to an important result γl

γt
= cl

ct
33). The quantitative universality of �Q−1� therefore seems 

to be a reconfirmation of already known relation between AH and molar volume39.

Table 3.   Comparison of theoretical and experimental values of internal friction for 18 glasses with M = M2 : 
All other details here are same as in Table 1.

Index

Glass

Bl,bm Cl,bm Bl,p1 Cl,p1 Bl,p2 Cl,p2 Bt1,bm Ct,bm Bt,p1 Ct,p1 Bt,p2 Ct,p2 Bth

Units ×104 ×104 ×104 ×104 ×104 ×104 ×104 ×104 ×104 ×104 ×104 ×104 ×104

1 a-SiO2 15.11 3.10 15.17 3.00 13.44 2.80 12.81 2.90 15.17 3.00 16.06 3.10 3.11

2 BK7 5.64 2.70 8.00 3.30 3.01

3 As2S3 0.02 1.60 0.05 2.30 0.02 1.40 0.04 2.00 0.03 1.70 2.88

4 LASF7 1.19 1.20 2.97 2.00 1.14 1.16 3.07

5 SF4 3.37 2.20 5.09 2.80 2.97

6 SF59 1.79 2.30 2.50 2.80 2.95

7 V52 2.11 4.00 4.33 6.00 2.97 4.90 3.60 5.40 2.88

8 BALNA 2.45 3.80 3.67 4.80 2.87

9 LAT 2.10 3.80 1.97 3.70 2.96

10 a-Se 0.65 1.20 0.88 2.20 0.82 2.20 1.42 2.90 2.86

11 Se75Ge25 0.90

12 Se60Ge40 1.86 1.83 1.30 0.14 0.30 2.99

13 LiCl:7H2O 2.22 7.20 2.13 7.00 4.96 11.36 3.97 10.0 2.82

14 Zn-Glass 1.35 3.00 1.80 3.60 2.77

15 PMMA 1.55 2.00 4.57 3.70 3.35 3.10 4.90 3.70 7.21 4.80 9.73 5.70. 2.82

16 PS 0.23 3.60 1.03 8.30 0.44 5.00 1.53 10.40 0.93 7.80 2.87

17 PC 0.13 1.80 0.44 3.50 0.40 3.30 3.92 12.20 2.53 9.50 2.77

18 ET1000 2.06 2.80 5.96 5.00 2.52

Figure 1.   Bth - values for 18 glasses: The figure depicts the theoretically predicted Bth from Eq. (40) and 
corresponding experimentally known tunneling strengths Ca with respect to glass-index (given in 1st column of 
Table 2). The symbol Ca,bm refers to experimental data for tunneling strength from35 and Ca,p1 , Ca,p2 to acoustic 
and flexural data, respectively, from1. The values for Bth are also given in the last column of Tables 1 and 3; note 
these are same for both M1,M2.
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Figure 2.   Ba-values for 18 glasses (with M = M1 ): The figure depicts the theoretically predicted Ba and 
corresponding experimentally known tunneling strengths Ca with respect to glass-index (all listed in Table 1). 
Here Ba,xx refers to Eq. (47) using tunneling parameters from different experiments (with xx = bm referring to 
experimental data from35, xx = p1 to acoustic and xx = p2 to flexural data from1). The symbols Ca,xx refer to 
experimental data from35 and1 accordingly.

Figure 3.   Ba-values for 18 glasses (for M = M2 ): All details are same as in Fig. 2 except that now the results for 
Ba,xx from Eq. (47) correspond to M = M2 . Note although the correspondence with experiments here is not as 
good as for M1 , the deviation however is still within a factor of 10. As reported in Ref.1, the deviation of different 
experimental results lies also within that range.
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Discussion
The definition in Eq. (12), along with an almost constant Q−1

a  , implies a linear relation between the phonon mean 
free path l and its wavelength � : l ∼ 103� . Within TTLS model, this behavior was explained by two different 
mechanisms: the low frequency phonons were postulated to be attenuated mainly by a relaxation of TLS defects 
but high frequency phonons that carry the heat were believed to be resonantly scattered2,37. Later on TLS were 
generalized to soft local atomic potentials (quasi-harmonic oscillators) and their interactions with phonons was 
attributed to be the cause of a constant Q−111. The approach however gave Ca ∼ 1 i.e., a value three orders of 
magnitude too large; this later on led to suggestions that only a small fraction of the quasi-harmonic oscillators 
act as tunneling defects11,40.

Although as discussed in Ref.1, TTLS model shows good agreement for many glasses, the physical nature of 
tunnelling entities its not yet fully understood. Further the resemblance of the low-energy excitations in many 
disordered crystals to those found in amorphous solids strongly suggests their origin not related to long-range 
order in materials. It is therefore necessary to seek alternative theories especially those based on MRO i.e a 
length scale dominated by VW forces, present in all materials. This is indeed the case in our approach based 
only on two scales R0 and Rv , the first of the order of MRO and second that of SRO. Note ideas suggesting a role 
of MRO scales in origin of glass anomalies have appeared in past too e.g.29,25,32,34. However these were based on 
experimentally/ numerically observed existence of structural correlations at these scales and did not explicitly 
consider the role of molecular interactions.

As Eq. (43) indicates, Q−1 depends only on the ratio R0Rv  which in turn is related to g0 , the number of molecules 
within the block. As the molecules interact by VW forces e.g by formation of induced dipoles that decay rapidly 
(i.e r−6 ) with r as the distance between molecules, the dominant contribution comes from the nearest neighbor 
molecules only. Under acoustic perturbation, the molecules go to vibrational excited state by absorbing the energy 
from sound waves which triggers the induced dipole interactions among neighboring molecules. As this number 
can not vary much from one glass to another (assuming three dimensional structure) except for thin films, this 
results in a constant value of Q−1 . This also explains observed deviation in some thin films (see1). As indicated 
in Table 1, the value of Q−1 given by our approach for 18 glasses is in good agreement with experimental data.

Figure 4.   Comparison of Ba-values ( a = l, t ), for 18 glasses from Eq. (47), for M = M1 , with their 
experimentally known tunneling strengths : here the Ba1,xx-values correspond to y-coordinates of the points 
marked on the figure and Ca,xx to their x-coordinates; the details of the labels are same as in Fig. 2. Here the solid 
line is shown only for visual guidance.
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Further physical insight in this consistency can be given as follows. As discussed in detail in Ref.33, R0 is also 
the size of the basic block and can be expressed in terms of molecular parameters. At large � > 2R0 , the basic 
block subunits within a macroscopic glass block respond as an array of periodic structures which in turn ensures 
large mean free paths, thereby reducing the attenuation. For � ≤ 2R0 however the orientational disorder of the 
induced dipoles at MRO scale or less affects the phonon dynamics causing their scattering and thereby localiza-
tion. Thus R0 is a relevant scale for the sound absorption and thereby attenuation in glasses; as discussed in Ref.33, 
our R0 is approximately the same as R of32 (see Table 1 of Ref.32). The 2nd scale Rv appears in the wave-dynamics 
due to its sensitivity to the number of interacting molecules (from Eq. (34)). As the change of phonon dynam-
ics occurs at length scale R0 , the Ioffe-Regel (IR) frequency ωir is therefore expected to correspond to ca/2R0 , 
marking the transition from the well-defined acoustic like excitations to those characteristic of basic block, with 
ca = cl , ct as the sound velocity in the medium33. A comparison of our theoretical prediction ωir = ca/2R0 with 
experimental available boson peak frequencies further indicates their closeness.

At this stage, it is worth reviewing the main assumptions made to arrive at our theoretical predictions: 

	 (i)	 The interactions within the block are assumed to be homogeneous. The assumption was used in “Ultra-
sonic attenuation coefficient: relation with stress matrix” section for the random matrix modelling of the 
Hamiltonian as well as in linear response theory for Q−1 . This puts an upper limit on the allowed block 
size. As discussed in Ref.33, the size of the block turns out to be of the medium range order ∼ 3 nm with 
only 8 molecules within, the assumption of homogeneity can be well satisfied.

		    Any block of bigger size would include both dispersion as well as phonon-coupling among molecules 
and thereby lead to inhomogeneity of the interactions. The theory in principle can still be adapted to 

Figure 5.   Comparison of Ba-values ( a = l, t ), for 18 glasses from Eq. (47), for M = M2 , with their 
experimentally known tunneling strengths : here the Ba1,xx-values correspond to y-coordinates of the points 
marked on the figure and Ca,xx to their x-coordinates; the details of the labels are same as in Fig. 2. Here again 
the solid line is shown only for visual guidance.
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analyze a super block consisting of bigger basic block sizes (as in Ref.23) but it would need many modifi-
cations including the use of sparse random matrices. (Note with a radius R0 , the basic block considered 
here satisfies this condition).

	 (ii)	 The blocks are assumed to be of spherical shapes. This is a natural choice, keeping in view especially of 
the spherical shape of the molecules (although the latter is also an assumption but a standard one). It also 
helps a simpler technical formulation of the derivations. Alternatively, basic blocks of arbitrary shape 
can also be chosen but that is at the cost of technical complexity of intermediate steps of the derivation. 
We believe that although the ratio R0Rm may vary slightly with shape but it will be compensated by the 
structure parameter s, thus leaving theoretical prediction in Eqs. (43) and (47) almost unaffected.

	 (iii)	 The interaction between phonon and non-phonon degrees of freedom are assumed to be weak, allowing 
linear response of the blocks to external perturbation.

		    The phonon mediated perturbation is assumed to access all N levels of the basic block Hamiltonian 
( N = N g = 3g ) within spectral range ωc ∼ 10−18 J (from Eq. (25). Although this gives the mean energy 
level spacing in the spectral bulk as �b ≈ ωc

N  for a basic block is ∼ 10−22 J , the mean level spacing in the 
lower edge of the spectrum however is much smaller and levels can be accessed by thermal perturbation 
at low temperatures T ∼ 1K.

	 (iv)	 The dominant interactions at at MRO length scales of the glasses are non-retarded dispersion forces 
among molecules. This is applicable only to insulator glasses and needs to be replaced for other cases.

	 (v)	 The theoretical results presented here (Figs. 1, 2, 3, 4, Tables 1, 2, 3) are obtained from Eq. (47) with 
y = Rv/Rm ∼ 1 for the molecules interacting by VWD. In general y fluctuates from one glass to another 
with 1 as its average value; the glass-specific values for y should be taken, in principle, for better accuracy. 
However as noted below Eq. (43), f(y) remains almost same for y = 1 and y = 1.5 : f (1) = 2.44× 10−4 
and f (1.5) = 2.59× 10−4 . The fluctuation of y therefore does not seem to have significant effect of our 
results.

	 (vi)	 The Bl ,Bt values given in Table 1 are obtained by approximate AH values used in Eq. (43); we believe the 
results could be improved if exact values of AH are used (see39,38). Further our results given in Table 1 
are based on the Hamaker constant of the molecules interacting in vaccum. The vwd unit is however 
the dominant cation surrounded by other molecules; the interaction between two cations is therefore 
mediated by other molecules. It is natural to query, therefore, how the Ba results will be affected if AH 
values in the relevant medium are considered.

Conclusion
In the end, we summarize with our main ideas and results.

Based on experimental evidence of ordered structure in glasses below MRO ( 10 → 30Å ) and its lack above, 
we describe a macroscopic size glass material as elastically coupled, spherical shape, generic blocks, with homo-
geneous dispersion interaction within each such block. A random matrix modelling of their hamiltonian and 
linear response to an external strain field, then relates the low temperature averaged ultrasonic attenuation 
coefficient for the glass to a ratio of molecular length scales and a ratio of longitudinal and transverse sound 
speeds in the amorphous solid; the theoretical justification supported by numerical evidence for the former and 
experimental one for the latter indicate these ratios to be almost material independent. This in turn reveals the 
qualitative universality of the coefficient which is consistent with experimental observations in the temperature 
regime 1 K → 10K1.

The central result of our work is given by Eqs. (39) and (40) with main assumptions summarised in “Conclu-
sion” section. An important insight revealed by our formulation is the physical significance of the basic block 
size R0 : it is a length scale, typically of the order of MRO length scales in glasses, beyond which �Q−1� attains 
universal value (As discussed in Ref.33, R0 is also the distance between two molecules at which two competing 
forces become equal in strength). Further R0 is also consistent with another assumption made in our study i.e 
regarding the isotropy and homogeneity of the stress filed of the basic block; this follows because almost all 
molecules within a spherical block of radius R0 are subjected to same interaction strength (with 8 molecules 
within a basic block). The omnipresence of dispersion forces indicates the application of our results to other 
disordered materials too.

The analysis presented here takes only dispersion type inter-molecular forces into account and neglects the 
induction forces which restricts, in principle, the application of our results to non-polar molecules. We believe 
however that inclusion of induction forces would only change numerical value of b (given by Eq. (26)) and would 
not affect the derivations given in “Super block: phonon mediated coupling of basic blocks” to “Discussion” 
sections. Similarly a generalization of the present theory by including electronic interactions may explain the 
universality in context of metallic glasses.
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