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Machine learning methods 
to predict presence of residual 
cancer following hysterectomy
Reetam Ganguli1,5, Jordan Franklin2, Xiaotian Yu3, Alice Lin4,5 & Daithi S. Heffernan1,4,5,6*

Surgical management for gynecologic malignancies often involves hysterectomy, often constituting 
the most common gynecologic surgery worldwide. Despite maximal surgical and medical care, 
gynecologic malignancies have a high rate of recurrence following surgery. Current machine learning 
models use advanced pathology data that is often inaccessible within low-resource settings and are 
specific to singular cancer types. There is currently a need for machine learning models to predict 
non-clinically evident residual disease using only clinically available health data. Here we developed 
and tested multiple machine learning models to assess the risk of residual disease post-hysterectomy 
based on clinical and operative parameters. Data from 3656 hysterectomy patients from the 
NSQIP dataset over 14 years were used to develop models with a training set of 2925 patients and 
a validation set of 731 patients. Our models revealed the top postoperative predictors of residual 
disease were the initial presence of gross abdominal disease on the diaphragm, disease located on the 
bowel mesentery, located on the bowel serosa, and disease located within the adjacent pelvis prior to 
resection. There were no statistically significant differences in performances of the top three models. 
Extreme gradient Boosting, Random Forest, and Logistic Regression models had comparable AUC 
ROC (0.90) and accuracy metrics (87–88%). Using these models, physicians can identify gynecologic 
cancer patients post-hysterectomy that may benefit from additional treatment. For patients at high 
risk for disease recurrence despite adequate surgical intervention, machine learning models may lay 
the basis for potential prospective trials with prophylactic/adjuvant therapy for non-clinically evident 
residual disease, particularly in under-resourced settings.

Gynecologic malignancies account for approximately 12% of all new cancer cases and 15% of all female cancer 
 survivors1. Gynecologic malignancies consist primarily of five different anatomic locations: cervical, ovarian, 
uterine, vaginal, and vulvar  cancer2. Cervical, uterine, and ovarian cancers accounted for 5.0%, 5.9%, and 2.8% of 
all worldwide malignancies among women in 2012  respectively3. In the United States, approximately 84,000 new 
cases of gynecologic malignancies are diagnosed resulting in about 2800 deaths  annually4. Standard management 
often consists of surgery (i.e., debulking surgery, hysterectomy, and bilateral salpingo-oophorectomy) with neoad-
juvant  chemotherapy4,5. Hysterectomy is the most common surgical procedure in gynecology  worldwide6. Despite 
surgery, gynecologic patients often have residual disease, defined as remaining cancer cells after  treatment7–9.

The presence of this residual disease can often be due to the local inflammation and trauma from the surgical 
procedure, which causes residual cancer cells to shed into circulation and lead to accelerated micrometastatic 
 growth10,11. This was observed as early as the end of the twentieth century, when studies found that cancer patients 
treated with resection had lower survival rates than cancer patients managed  expectantly12,13. Given how com-
monly surgeries are performed for gynecologic cancer patients, patients with gynecologic cancer are at risk of 
adverse outcomes from surgery, especially with regards to residual  disease14–17. Residual disease in gynecologic 
cancer survivors is common, requiring timely intervention to improve survival  outcomes18–21.

Healthcare providers currently predict risk of residual disease for patients using clinicopathologic and molec-
ular prognostic  factors22–27. However, identifying individuals at risk for residual disease in the status quo is 
difficult and the prognosis for recurrent gynecologic malignancy is  poor28–31. Developing better, more clinically 
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applicable predictive models for risk for residual disease could improve patient outcomes, mainly through identi-
fying patients who could benefit from early intervention and potentially adjuvant  therapy32–35. Existing prognostic 
aids are specimen and procedure based and often are specific to a particular type of  malignancy22,36–39. Further-
more, existing prognostic aids, such as diagnostic radiology may be less accessible in low resource  settings40,41. 
As such, there is a need for an automated, machine learning approach to be used alongside conventional clinical 
data following surgery.

Machine learning (ML) is a field of artificial intelligence in which algorithms develop associations based on 
existing data to develop statistical models with predictive power over a given dependent variable. Machine learn-
ing model development begins with preprocessing data to handle blanks (or NULL values) and organize data 
numerically in a way that models can accept. This is followed by splitting a given dataset into a “training” set, to 
which statistical equations are fit in order to develop the predictive model, and “testing” sets, where the developed 
model’s predictions of the outcome variable are compared against the true values in the “testing” dataset. Machine 
learning models have begun to show considerable promise in  healthcare42–44, including models on the American 
College of Surgeons National Surgical Quality Improvement Program (ACS NSQIP), machine learning models 
to predict mortality among other end-points, and models aimed at predicting residual malignancy following 
 cytoreduction38,45–47. However, there is a lack of studies that have developed machine learning models to predict 
the presence of residual cancer using health data for post operative hysterectomy patients.

We, therefore, aimed to develop and validate a multivariate machine learning model to predict a given patient’s 
risk of having postoperative residual malignancy following hysterectomy using easily accessible clinical and 
laboratory parameters.

Results
Patient characteristics. A total of 3656 patients who underwent a hysterectomy for malignancy were 
extracted from the ACS NSQIP procedure-targeted database over the 14-year period of 2005–2019. For the 
purposes of this study, the training cohort consisted of 2925 patients (constituting 80% of the dataset) and the 
testing cohort consisted of 731 patients (20% of the dataset). A flowchart of the patient selection process based 
on our inclusion criteria is included in Fig. 1.

Study population characteristics. Of the 3656 patients analyzed, 684 (19%) of these patients were iden-
tified to definitively have residual cancer. Only definite “yes” and “no” classifications were used to use the most 
accurate and applicable data to develop the model. A summary table with descriptive statistics for the residual 
disease status for each feature in the cohort was developed (Tables 1, 2, 3).

Model variable importance. 5 machine learning models based on Random Forest, eXtreme Gradient 
Boosting (XGBoost), Logistic Regression (LR), Support Vector Machine (SVM), and K-Nearest Neighbor 
(KNN) algorithms were created. The logistic regression, random forest, and XGBoost models were the 3 high-
est performing models. 35 statistically significant clinical parameters were included within these models. The 
algorithm and methodology we used to obtain our model variable importance plots have been previously cited 
in the  literature48–50. The top postoperative predictors of residual disease factored across the top three models 
were the presence of malignancy located on the diaphragm, disease located on the bowel mesentery, disease 
located on the bowel serosa, and disease located within the adjacent pelvis prior to surgical debridement. Spe-
cifically, within the XGBoost model, the top post-operative predictors of residual disease were the presence of 
malignancy located on the diaphragm, disease located on the bowel mesentery, and disease located on the bowel 
serosa (Fig.  2). A more comprehensive chart of ranked variable importances can be found in Supplemental 
Figs. S1–S3 for the full XGBoost, logistic regression, and random forest models. Supplemental Figure S4 has the 
variables ranked as having little or no importance to the XGBoost model. The variables with the largest odds 
ratios were presence of a bladder fistula (OR 3.05), presence of a urethral fistula (OR 3.04), low cervical cancer 
staging, and presence of gross abdominal disease in the Diaphragm (OR 3.37).

Model performance. The Extreme Gradient Boosting model had an AUC of 0.90 (95% CI 0.87–0.93), with 
an accuracy of 87.3%. The Random Forest model had an AUC of 0.90 (95% CI 0.87–0.93), with an accuracy rate 
of 87.3%. The Logistic Regression model had an AUC of 0.90 (95% CI 0.87–0.93) with an accuracy rate of 87.0%. 
The K-nearest-neighbors model had an AUC of 0.70 (95% CI 0.65–0.76), with an accuracy of 80.8%. The support 
vector machine model had an AUC of 0.59 (95% CI 0.53–0.65), with an accuracy of 80.4% (Table 4).

The XGBoost, Random Forest, and Logistic Regression models all had comparable AUC and accuracy metrics, 
outperforming the SVM and KNN models (Fig. 3). The accuracy rates of these top 3 models outperform the 
current rate of residual disease diagnosis by healthcare providers.

Methods
Data was extracted from the ACS NSQIP procedure-targeted database from the time period of January 2005 
to December 2019. Patients who underwent a hysterectomy for a known malignancy were included within the 
extracted dataset. The ACS NSQIP database is a national surgical registry used to track risk-adjusted outcomes 
after surgical procedures from any medical specialty. Prospective variables are obtained and audited by trained 
clinical reviewers. The American College of Surgeons National Surgical Quality Improvement Program and the 
hospitals participating in the ACS NSQIP are the source of the data used herein; they have not verified and are 
not responsible for the statistical validity of the data analysis or the conclusions derived by the authors.

The inclusion criteria for this experiment were: all hysterectomy patients in the ACS NSQIP procedure 
targeted database, collected between the 2005 and 2019 calendar years, without missing values for any clinical 
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features, and with over 75% of their clinical data present. The exclusion criteria were: any non-hysterectomy 
patient and any hysterectomy patient with over 25% missing values; hysterectomy patients who had any missing 
values for their clinical features were also excluded.

Outcome. The primary outcome was the presence of gross residual disease following a hysterectomy pro-
cedure for malignancy. Within the ACS NSQIP dataset, this variable is either coded as a “No”, “Yes”, or coded 
as “NULL” in cases where it was either not recorded, or not possible to identify. The presence of gross residual 
disease was defined as any portion of the metastatic tumor which remains after surgical procedure, by the ACS 
NSQIP clinical support team.

Patients carrying blank/NULL values for the primary outcome variable column (Gross residual disease) were 
removed, during preprocessing to eliminate any uncertainty/inaccuracy from the training.

The study’s primary aim was to construct comparable models with improved parameters, which would yield 
a risk predictor for residual cancer after a hysterectomy procedure. Each predictor (clinical and laboratory vari-
ables) was studied for their odds ratios within a 95% confidence interval (CI).

Machine learning models. The entire cohort of hysterectomy patients were converted into numeric vari-
ables. Continuous numeric variables were left as is, and binary “yes” or “no” responses were changed to 1’s and 
0’s respectively.

The initial development cohort was 190,488 patients with 44 clinical variables. Any patient with missing data 
pertaining to the presence or absence of gross residual disease were excluded. Columns with over 25% of the data 
missing were also dropped to reduce inaccuracy. No imputations were used in the development or validation 
cohort for the dataset to reduce erroneous bias. This left 4682 patients for further analysis.

Multicollinearity was assessed by creating a heatmap correlation matrix to omit variables with high vari-
ance inflation factors (VIFs) to preserve the integrity of the statistical significance of the input variables for the 

Figure 1.  Flow chart showing the hysterectomy patient cohort selection, model training, and performance 
evaluation processes. A total of 3656 patients were used for model development and were randomly divided 
into an 80% training set (2925 patients) and a 20% testing set (731 patients). k-fold cross-validation and grid 
searching for hyperparameters was conducted in the training set, and model performance was evaluated based 
on area under receiver operating characteristic curves and accuracy rates.
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model. Any variables with a VIF greater than 3 were dropped from the model. Variables were dropped one by 
one, starting with the variables with the highest VIF, after which the list of VIFs for all features included in the 
model were reevaluated to see if they were all under or over 3. If all the variables included in the model did not 
have a VIF under 3, then the next variable with the highest VIF was dropped from the model.

This left 3656 patients for the final analysis. Grid search was performed on the dataset, which was split into 
an 80–20% train-test split, where 80% of the data was used to train a logistic regression model, random forest, 
and extreme gradient boosting model. Within the 80% training set, the outcome variable of gross residual dis-
ease was dropped from the data frame prior to the training split process to avoid skewing predictive potential.

The other 20% was used to test the individual accuracy of each model, respectively. This was done to search for 
the estimator with the optimal hyperparameter values. During the search, fivefold cross validation was performed 
on estimators of different hyperparameter values, and the estimator with the largest mean cross-validated score 
was selected as the optimal model from the grid search. Hyperparameters are properties of a model that can be 
tweaked to control its learning process, at the cost of lengthening execution time, should too many be added. 
In the past decade, studies have shown methods that were developed to rank hyperparameters by importance, 
typically by how much is gained for a metric such as accuracy or AUC, based on multiple datasets. For each 
classification model, hyperparameters were chosen which were highly ranked for that model across multiple 
datasets as indicated in the  literature51,52.

The cohort was split at the patient level such that no training data could appear in the testing set. All vari-
ables were included in the model to optimize the predictive potential without introducing background noise.

To mitigate bias, the data was checked for any high multicollinearity (intercorrelation between any two vari-
ables) to see if there are any features to consider removing that could negatively impact the model’s prediction 
accuracy. Features with high multicollinearity were omitted to minimize bias within the model’s predictions. We 
generated a correlation heatmap and also computed the variance inflation factor for each variable to screen for 
any features which may have introduced bias, and nothing indicated high multicollinearity. We also performed 
cross validation on our models, which reduced bias and variance to prevent the models from overfitting onto 
the data.

Statistical analysis. Descriptive statistical analysis was conducted on the data based on the patient’s pres-
ence of gross residual disease, as recorded in the NSQIP. Initial analysis was done by conducting an independ-
ent, one-way analysis of variance (ANOVA) test of every continuous, numeric variable included in the model, a 
chi-squared test for every categorical variable in the model, and Fisher exact test for binary variables, partitioned 
between patients who did and did not have a diagnosis of gross residual disease.

Table 1.  Clinical history/surgical information summary table. OR odds ratio, CI confidence interval. 
1 Continuous Variable: one-way ANOVA, Binary Variable: Fisher’s Exact Test, Categorical Variable: Chi-
Squared Test.

Characteristic No residual cancer, N = 2972 Residual cancer, N = 684 p-value1 OR 95% Cl

Parity 0.12

0 896 (30%) 196 (29%) – –

1 501 (17%) 101 (15%) 0.91 0.67, 1.22

2 840 (28%) 211 (31%) 1.03 0.80, 1.32

3 436 (15%) 90 (13%) 0.95 0.69, 1.30

4+ 299 (10%) 86 (13%) 1.38 0.99, 1.92

Prior abdominal operations 0.33

No 2176 (73%) 514 (75%) – –

Yes 796 (27%) 170 (25%) 0.85 0.68, 1.06

Prior pelvic operations 0.57

No 1717 (58%) 404 (59%) – –

Yes 1255 (42%) 280 (41%) 0.95 0.78, 1.16

Endometriosis  < 0.001

No 2755 (93%) 666 (97%) – –

Yes 217 (7.3%) 18 (2.6%) 0.58 0.33, 0.97

Endometriosis location  < 0.001

No 2755 (93%) 666 (97%) – –

Yes 217 (7.3%) 18 (2.6%)

Pelvic inflammatory disease 0.40

None 2920 (98%) 677 (99%) – –

Inflammatory 45 (1.5%) 6 (0.9%) 0.75 0.27, 1.77

Tube-ovarian abscess 7 (0.2%) 1 (0.1%) 1.17 0.06, 7.69

Uterine weight (g) 207 ± 13 186 ± 23 0.11 1.00 1.00, 1.00
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The ML models were constructed from the training cohort and assessed on the validation cohort, independ-
ent from model development, by calculating the area under the curve (AUC) of the model’s receiver operating 
characteristic (ROC). The AUC, plotting the odds of a false positive against the odds of a true positive, was used 
due to its threshold independent nature to describe the model’s classification ability. A 95% CI for the models’ 
AUC was obtained through bootstrapping.

All analyses were conducted using the Sklearn version 0.24.1 (https:// scikit- learn. org/ stable/ about. html) 
 package53 in Python (Python Software Foundation)54 and R 4.1.0 (https:// www.R- proje ct. org/)55. Python version 
3.8.8 (https:// www. python. org/ downl oads/ relea se/ python- 388/) was used for analysis.

Discussion
This machine learning cohort study demonstrated the feasibility of applying machine learning models on a large, 
heterogeneous population of hysterectomy patients in order to forecast the presence of gross residual disease 
postoperatively.

In the setting of tumor excision surgeries, there exist 2 possibilities: cases where surgeons definitively have 
been able to identify or rule out the postoperative presence of gross residual disease via visual inspection and/or 
pathology scans and cases where there exists a medical uncertainty as to whether there is any remaining disease 

Table 2.  Cancer related variables summary table. OR odds ratio, CI confidence interval. 1 Continvous Variable: 
one-way ANOVA, Binary Variable: Fisher’s Exact Test, Categorical Variable: Chi-Squared Test.

Characteristic No residual cancer, N = 2972 Residual cancer, N = 684 p-value1 OR 95% Cl

Size of grossly visible tumor 0.016

Less than 1 cm 315 (11%) 97 (14%) – –

1–2 cm 442 (15%) 87 (13%) 0.59 0.41, 0.85

Greeter than 2 cm 2215 (75%) 500 (73%) 0.65 0.49, 0.87

Gross abdominal disease-lymph nodes 0.12

No 2256 (76%) 499 (73%) – –

Yes 716 (24%) 185 (27%) 1.07 0.86, 1.34

Gross abdominal disease-bowel serosa  < 0.001

No 2207 (74%) 292 (43%) – –

Yes 765 (26%) 392 (57%) 1.67 1.36, 2.04

Gross abdominal disease-rowel mesentery  < 0.001

No 1651 (56%) 129 (19%) – –

Yes 1321 (44%) 555 (81%) 1.90 1.49, 2.43

Gross abdominal disease-live  < 0.001

No 2817 (95%) 562 (82%) – –

Yes 155 (5.2%) 122 (18%) 1.56 1.15, 2.10

Gross abdominal disease-spleen  < 0.001

No 2886 (97%) 619 (90%) – –

Yes 86 (12.9%) 65 (9.5%) 1.04 0.71, 1.52

Gross abdominal disease-diaphragm  < 0.001

No 2651 (89%) 360 (53%) – –

Yes 321 (11%) 324 (47%) 3.57 2.88, 4.44

Gross abdominal disease-pelvis  < 0.001

No 1410 (47%) 152 (22%) – –

Yes 1562 (53%) 532 (78%) 1.81 1.46, 2.26

Cervical cancer FIGO stage  < 0.001

0–1B2 164 (5.5%) 3 (0.4%) – –

II–IVB 100 (3.4%) 16 (2.3%) 3.07 0.91, 14.1

Not a cervical cancer case 2708 (91%) 665 (97%) 3.86 1.37, 16.2

Corpus uteri cancer stage  < 0.001

0–II 561 (19%) 19 (2.8%) – –

IIA–IIIC 580 (20%) 142 (21%) 3.88 2.33, 6.81

IV–IVB 29 (1.0%) 14 (2.0%) 6.19 2.60, 14.5

Not a corpus uteri cancer case 1802 (61%) 509 (74%) 2.93 1.74, 5.18

Ovarian cancer stage  < 0.001

I–III 560 (19%) 42 (6.1%) – –

IIIA–IV 1050 (35%) 457 (67%) 2.23 1.56, 3.24

Not an ovarian cancer case 1362 (46%) 185 (27%) 1.68 1.09, 2.62

https://scikit-learn.org/stable/about.html
https://www.R-project.org/
https://www.python.org/downloads/release/python-388/
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Table 3.  Clinical complication outcome variables summary table. OR odds ratio, CI confidence interval. 
1 Continuous Variable: one-way ANOVA, Binary Variable: Fisher’s Exact Test, Categorical Variable: Chi-
Squared Test.

Characteristic No residual cancer, N = 2972 Residual cancer, N = 684 p-value1 OR 95% CI

Intestinal obstruction 0.007

No 2874 (97%) 646 (94%) – –

Yes 98 (3.3%) 38 (5.6%) 0.83 0.50, 1.36

Prolonged postoperative NPO or NGT use < 0.001

No 2769 (93%) 576 (84%) – –

Yes 203 (6.8%) 108 (16%) 1.79 1.29, 2.49

Anastomotic leak 0.68

No 2941 (99%) 675 (99%) – –

Yes 31 (1.0%) 9 (1.3%) 0.47 0.18, 1.13

Ureteral obstruction 0.96

No 2962 (100%) 681 (100%) – –

Yes 10 (0.3%) 3 (0.4%) 0.61 0.12, 2.45

Ureteral fistula  > 0.99

No 2970 (100%) 683 (100%) – –

Yes 2 (< 0.1%) 1 (0.1%) 3.21 0.12, 52.7

Bladder fistula 0.52

No 2969 (100%) 682 (100%) – –

Yes 3 (0.1%) 2 (0.3%) 3.30 0.40, 23.4

Figure 2.  Analysis of the importance of each variable in the XGBoost machine learning model. The histogram 
describes the relative importance of all 35 clinical features in the logistic regression model. The relative 
importance is quantified by assigning a weight between 0 and 100 for each variable.

Table 4.  Comparative chart displaying the accuracy score, area under the receiver operating characteristic 
curve, F1 score, and Matthews Correlation Coefficient (MCC) for each individual machine learning model. A 
95% confidence interval is listed for each metric in parentheses, and a p-value expressing if a metric for each 
model is significantly different from the same metric from all the other models is listed.

Model Accuracy ROC AUC F1 MCC

Logistic regression 88% (85–90%)
p < 0.05

0.89 (0.86–0.92)
p < 0.05

0.74 (0.69–0.78)
p < 0.05

0.50 (0.42–0.58)
p < 0.05

Random forest 88% (86–90%)
p < 0.05

0.88 (0.84–0.91)
p < 0.05

0.72 (0.67–0.77)
p < 0.05

0.52 (0.44–0.60)
p < 0.05

XGBoost 87% (85–90%)
p < 0.05

0.88 (0.85–0.91)
p < 0.05

0.73 (0.69–0.78)
p < 0.05

0.51 (0.42–0.59)
p < 0.05

K-nearest neighbors 81% (80–86%)
p < 0.05

0.72 (0.67–0.76)
p < 0.05

0.53 (0.49–0.58)
p < 0.05

0.19 (0.09–0.28)
p < 0.05

Support vector machine 81% (80–85%)
p < 0.05

0.50 (0.44–0.56)
p < 0.05

0.45 (0.44–0.46)
p < 0.05

0.0 (0.00–0.00)
p < 0.05
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left in the patient. The latter possibility constitutes a serious clinical problem for physicians, who then must 
decide how to proceed with postoperative patient management and weigh the risk between preventing possible 
residual disease with adjuvant chemotherapy, at the cost of harming the patient’s health.

Our dataset was obtained from the ACS NSQIP. Previous studies have described the significance of clinical 
features in the ACS NSQIP to predict surgical outcomes for gynecologic  procedures56. Here, we use machine 
learning models to automate this process. Machine learning models were prioritized over deep learning models 
in our study due to their faster run time, lesser need for computational power, and easy interpretability (like 
through the generation of model variable importance plots which can highlight key clinical features pertinent to 
a given outcome variable) which are all vital for implementation in low resource settings. Deep learning models 
need more computational power, take longer to run, have lower interpretability, and are better suited for more 
complex problems/prediction tasks where an organized data frame is not present.

Our machine learning models were trained on definitively diagnosed cases of residual disease versus no 
residual disease, but can be generalized for cancer patients, particularly those in low resource settings, whose 
residual disease status is unclear, to give direction to the surgeon for the patient’s postoperative clinical manage-
ment. This study can serve as the basis for prospective trials with prophylactic chemotherapy for non-clinically 
evident residual disease.

Predicting residual disease after hysterectomy would improve treatment planning. Given the poor prognosis 
of recurrent gynecological cancers, there is a strong need for tools to identify gynecologic cancer patients at 
risk for residual disease following surgical procedures. Patients at high risk could be monitored more closely or 
moved directly to additional chemotherapy and radiation therapy. Machine learning can be used successfully 
for disease diagnosis and  prediction57.

Previous studies have made an attempt to develop models predicting risk of residual disease following surgery. 
In 2018, Horowitz et al. published a predictive model for microscopic residual disease following complete cytore-
duction in patients with advanced epithelial ovarian cancer. While this study identified many variables predictive 
of residual disease at cytoreduction, the area under the curve of the receiver operating characteristic was 0.73, 
putting into question the predictive ability of the  model38. In a more recent study, Kumar et al. reported computed 
tomography prediction models for residual disease at primary debulking surgery for advanced ovarian cancer. 
The model predicting gross residual disease had the highest predictive value, with its c-index reaching 0.76250.

In our work, we present a machine learning model to establish risk models (LR, KNN, SVM, RF, and XGboost 
models) that combine clinical and operative parameters to identify patients with increased risk of residual disease 
following hysterectomy. The top three performing models: XGBoost, Logistic Regression, and Random Forest 
models all had statistically similar ROC curves and accuracy rates. Our model was trained and validated on 3656 
patients and showed consistent calibration across the database. The cohort was representative of hysterectomy 
patients across the United  States58. Though we had a different end goal, our model was competitive with results 
published in literature for other machine learning-based  studies59–61.

Our study approach had several strengths. Due to the nature of the data collected, such an approach could be 
applied to other cancers following a surgical procedure as well. In 2012, an estimated 8.2 million cancer deaths 
and 14.1 million new cancer cases occurred  worldwide62. Accurately predicting residual disease in different can-
cers could lead to considerable reductions in healthcare costs while also improving long-term survival for cancer 
patients. Additionally, a prognostic approach based on clinical and operative parameters would be accessible to 
low resource settings as well. This analysis could be implemented in other countries that have large healthcare 
databases, such as Japan, without requiring additional data  collection63. Furthermore, we included a detailed 
calibration assessment, which suggests our model would be well calibrated in other databases.

Our proposed approach had important limitations. First, while our model does not impute any values, only 
definitive positives for residual cancer were counted. Patients for whom the residual cancer status was uncertain 
could not be used for the development of the model, as surgeons were not able to definitively stage these patients. 

Figure 3.  Evaluation of the machine learning models’ predictive abilities: receiver operating characteristic 
curves of all models plotted, along with area under the curve for each model listed in the legend.
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This means that the model may be biased towards more clearly defined cases where there is gross residual cancer 
and may not perform as well for patients for whom it is hard to discern the gross residual cancer status. However, 
with clinical validation, model training on increased sample sizes can hopefully lead to application on clinically 
ambiguous patients as well. Furthermore, greater consistency and fewer missing input values would improve the 
model’s discrimination. Second, these machine learning models were trained on the ACS NSQIP database and, 
despite thorough feature selection and hyperparameter optimization, may be fit for the nuances of the NSQIP 
data specifically. To overcome this limitation and to increase generalizability, these models should be tested in 
other oncology settings, with a mixture of diversified data sources to best assess generalizability. Doing so may 
help capture other significant parameters and, using a richer data source, achieve more competitive performance. 
Finally, though we can interpret the model’s decisions and variable splitting to identify patients at higher risk, 
the model only captures correlations in data and not causal pathways.

The only potential safety issue in utilizing AI systems to analyze patient data would theoretically be a breach of 
patient privacy. To avoid this, all features used to develop any models should be fully deidentified. In our research, 
we were able to mitigate this by using solely deidentified data to train our models, so no model can attribute 
given clinical features to the original patient, as that data was never shown to the model. Furthermore, because 
machine learning models are governed by statistical equations, it is impossible to “reverse engineer” machine 
learning models to uncover the original patient data, as the models were built on the entire aggregated patient 
data. To mitigate anyone from potentially trying to use the statistical equations of machine learning models to 
infer aggregate attributes about the original data, firewalls and secure deployment services can be used to ensure 
that it is impossible for anyone to be able to view/analyze the models.

Our machine learning models were trained on definitively diagnosed cases where the presence or absence of 
gross residual disease was known; our models can be extrapolated for the vast majority of non-clinically evident 
cases of gross residual disease, where there is clinical uncertainty to guide adjuvant therapy and/or postoperative 
follow-up. This will be most clinically useful at the end of index operations where surgical teams believe they 
have removed all cancer but have missed residual disease. In these settings, our machine learning models can 
predict the possibility of residual disease and risk stratify patients to alter their postoperative management. Our 
research serves as the basis for prospective studies on patients with non-clinically evident remaining cancer who 
are believed to not have residual disease but have a high risk score on our model.

Our findings suggest that machine learning methods, specifically Logistic Regression, Random Forest, and 
Extreme Gradient Boosting models, have strong classification ability and hold potential for clinical application 
to guide patient management, improve patient outcomes, and modulate treatment regimen, particularly for low 
resource settings with primarily clinical and operative variables available for analysis.

This model can have a dual integration modality depending on the clinical care setting. In developed settings, 
this model can be deployed publicly as a software as a service cloud platform, which healthcare facilities can 
directly integrate into their EHRs for dynamic prediction based on the available EHR data. The model would then 
generate a personalized risk score for the patient’s likelihood of residual disease, prompting healthcare providers 
to initiate sooner follow-up care and initiate adjuvant therapy. In low-resource settings that lack EHRs but have 
a prevalence of mobile devices, this model would be a mobile app, where healthcare providers can manually 
enter in necessary clinical features to receive the risk score output for each patient, indicating further therapy/
closer follow-up.

Conclusion
Existing residual disease prognostic methods are time intensive, require pathology specimens, and often are 
restricted to modelling only one particular type of cancer. Current prognostic aids require expensive tools and 
are largely inaccessible in low resource settings. Our findings can streamline clinical postoperative diagnosis and 
serve as a novel lens to utilize commonly collected operative parameters for the prediction of residual disease 
using machine learning.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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