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Prediction of serine 
phosphorylation sites mapping 
on Schizosaccharomyces Pombe 
by fusing three encoding schemes 
with the random forest classifier
Samme Amena Tasmia1, Md. Kaderi Kibria1, Khanis Farhana Tuly1, Md. Ariful Islam1, 
Mst Shamima Khatun2, Md. Mehedi Hasan3 & Md. Nurul Haque Mollah1*

Serine phosphorylation is one type of protein post-translational modifications (PTMs), which plays 
an essential role in various cellular processes and disease pathogenesis. Numerous methods are used 
for the prediction of phosphorylation sites. However, the traditional wet-lab based experimental 
approaches are time-consuming, laborious, and expensive. In this work, a computational predictor 
was proposed to predict serine phosphorylation sites mapping on Schizosaccharomyces pombe (SP) 
by the fusion of three encoding schemes namely k-spaced amino acid pair composition (CKSAAP), 
binary and amino acid composition (AAC) with the random forest (RF) classifier. So far, the proposed 
method is firstly developed to predict serine phosphorylation sites for SP. Both the training and 
independent test performance scores were used to investigate the success of the proposed RF 
based fusion prediction model compared to others. We also investigated their performances by 
5-fold cross-validation (CV). In all cases, it was observed that the recommended predictor achieves 
the largest scores of true positive rate (TPR), true negative rate (TNR), accuracy (ACC), Mathew 
coefficient of correlation (MCC), Area under the ROC curve (AUC) and pAUC (partial AUC) at false 
positive rate (FPR) = 0.20. Thus, the prediction performance as discussed in this paper indicates that 
the proposed approach may be a beneficial and motivating computational resource for predicting 
serine phosphorylation sites in the case of Fungi. The online interface of the software for the proposed 
prediction model is publicly available at http://​mollah-​bioin​forma​ticsl​ab-​stat.​ru.​ac.​bd/​PredS​PS/.

Various post-translational modifications (PTMs) are associated with almost all biological processes by regulating 
protein functions. However, the unusual states of PTMs are frequently associated with human diseases. Protein 
phosphorylation is a reversible post-translational modification (PTM) of proteins in which an amino acid residue 
is phosphorylated by most commonly serine (S), threonine (T), and tyrosine (Y) in eukaryotes. Approximately 
there are 13,000 phosphorylated sites in human proteins1. Various studies indicate that residues of phospho-serine 
(S), phospho-threonine (T), and phospho-tyrosine (Y) involve signaling transduction and functional control, 
as indicated by various studies2–6. Around 81% of human diseases are associated with phosphorylation7. Both 
cardiovascular disease and type 2 diabetes (T2D) are significantly associated with serine phosphorylation8. In 
microbial phosphorylation, functional functions and molecular mechanisms have recently been introduced to 
understand2,9–13. A single protein can have many phosphorylation sites, and each cell can have thousands of 
them. Some results of phosphorylation gone awry can include cancer, and diabetes10,11. As the importance of 
phosphorylation in the perspective of biological protein systems and direction to basic biomedical drug design 
has increased in recent decades, research on phosphorylation has been developed. Schizosaccharomyces pombe 
(SP) is a species of yeast known as fission yeast. It is considered a model organism in molecular and cell biology 
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and is used in traditional brewing. It is a unicellular eukaryote with rod-shaped cell. The SP has become a notable 
model system to study basic principles of a cell that can be used to understand more complex organisms like 
mammals and in particular humans14,15. The PomBase model organism database (MOD) has fully unlocked the 
power of SP, with many genes orthologous to human genes identified as 70% up to now16,17, including many genes 
involved in human disease17. The SP genes have been linked to fifty human diseases, including cystic fibrosis, 
genetic deafness, diabetes, and cardiovascular diseases18. Cancer-related genes make up the biggest collection 
of human disease-related genes. Among them, 23 genes are involved in DNA damage and repair, checkpoint 
controls, and the cell cycle. The SP’s utility in studying the activities of genes linked to human disease has been 
investigated by different research groups16–18. The SP protein-coding genes that produce products that are com-
parable to proteins produced by 289 genes that are mutated, amplified, or deleted in human disease have been 
discovered. There are around 289 human disease-causing mutant genes that produce proteins similar to some 
proteins of SP genes. A total of 172 SP proteins have similarity with members of this data set of human disease 
proteins. The largest groups of human disease-related genes are those implicated in cancer18. Therefore, serine 
phosphorylation site prediction might be played a vital role to understand the molecular mechanisms of some 
human diseases.

There are several experimental and computational approaches for prediction of protein phosphorylation 
sites. While researchers do not yet know the phosphorylation specificity mechanism, the initial identification 
of modified microbial phosphorylation protein sites is therefore paradigmatic in the current era19,20. To further 
illuminate the mechanism of phosphorylation, prediction of microbial phosphorylation sites is essential. Iden-
tifying the microbial phosphorylation sites in proteins is a requirement because of the possible importance of 
microbial phosphorylation and provides useful evidence in biomedical research. The experimental identification 
of the sites of phosphorylation is important and depends primarily on laborious and costly mass spectrometry 
analysis. Therefore, computational modeling of microbial phosphorylation sites based on protein sequence infor-
mation is highly desired before experimental investigation. While a large number of quantitative studies have 
been performed in higher organisms21–23, microbial cell predictions are still uncommon. To date, the prediction 
of microbial phosphorylation sites24–26 has been proposed by two analytical methods. Hasan et al. created the 
first online ML predictor in 201927 to predict non-specific or general phosphorylation sites in microbes, namely 
MPSite with a random forest (RF) classifier, which predicts phosphorylated serine (pS) and phosphorylated 
threonine (pT) residues on the targeted protein sequences. The proteins in each species are well known to have a 
separate substrate structure for the binding of various protein kinases (PKs). Thus, the prediction precision may 
be enhanced by developing the ML-based predictors in an organism-specific way. The training dataset consist-
ing of 103 phosphorylated serine (pS) and 37 phosphorylated threonine (pT) sites was prepared by Miller et al. 
in 2008 and the first bacterial-specific online NetPhosBac 1.0 predictor was created24 applying artificial neural 
network (ANN). Li et al. considered the same pS and pT dataset from NetPhosBac in 2015, and developed a 
cPhosbac predictor using the support vector machine (SVM) based machine leaning algorithm25. The predic-
tion model cPhosBac showed better performance compare to the NetPhosBac predictor. However, so far, there 
is no any computational method for prediction of serine phosphorylation site mapping on SP in the literature. 
More recently, Tasmia et al. developed an improved lysine succinylation site prediction model for homo sapiens 
by the fusion of three encoding schemes namely k-spaced amino acid pair composition (CKSAAP), binary and 
amino acid composition (AAC) with the random forest (RF) based machine leaning approach28. Therefore, in 
this study, an attempt was made to develop a computational predictor to predict serine phosphorylation sites 
mapping on SP by the fusion of those three encoding schemes (binary, CKSAAP, AAC) with the random forest 
(RF) classifier. In section “Materials and methods”, we have applied the necessary materials and methods for 
the creation of the proposed computational technique. The summary results and their discussions are given in 
sections “Results” and “Discussion”, respectively, and the conclusion of this study is provided in “Discussion”.

Materials and methods
Data sources and descriptions.  The dataset for serine phosphorylated protein sequences mapping on SP, 
was downloaded from the database of Phospho-Sites in Animal and Fungi (dbPAF), which is an updated resource 
for annotating protein phosphorylation sites in prokaryotes (http://​dbpaf.​biocu​ckoo.​org/​downl​oad.​php). The 
dataset was consisted of 860 serine phosphorylated protein sequences with 5633 positive sites and 42,765 nega-
tive sites. The phosphorylated positions were referred to as positive sites as seen in other studies27,29,30, the resting 
serine residues are considered as non-phosphorylated sites (negative sites) in the protein chains.

Data preparation and overview on the development of the proposed prediction model.  To 
prepare the dataset to develop an effective protein PTM site prediction model, it is required to adjust some tun-
ing parameters including CD-HIT cutoff (CHC), protein sequence window size (WS), and positive and negative 
window ratio29,31–35. Different authors used different CHC, WS, and ratios of positive and negative windows 
to build their prediction models. For example, CHC = 30%, WS = 21, and ratio 1:2 were used by Hasan et al.27, 
CHC = 80%, WS = 21 and ratio 1:2 were used by Chen et al.36, CHC = 30%, WS = 56 and ratio 1:2 were used by 
Hasan et al.37, CHC = 40%, WS = 27 and ratio 1:1 were used by Mosharaf et al.34 to improve their predictors. In 
this study, we consider CHC at 30% to remove the redundant sequence from the dataset, since over prediction 
problem arises due to the redundant sequence27,38. After removing the redundant sequences, the reduced dataset 
consisted of 766 serine phosphorylated protein sequences with 4530 positive sites. Then we created the train-
ing dataset by randomly taking 690 (90%) phosphorylated protein sequences with 3925 positive and 33,360 
negative window sites. The rest 76 (10%) phosphorylated protein sequences with 605 positive and 3345 negative 
window sites were considered to create the independent test set. Then we selected WS = 25 by two sample logo 
(TSL) analysis to generate the effective feature variables for both training and independent test datasets. Each 
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window was identified as a 2w + 1 = 25 (w = residue peptide segment) length peptide segment with serine (S) in 
the middle. That is, each window was represented by a 25 (± 12)-residue peptide segment with S in the middle. 
The total number of positive windows (n1 = 3925) and negative windows (n2 = 33,360) were clearly unbalanced 
in the training dataset. It has been demonstrated that the statistical learning techniques become computation-
ally intractable and accuracy suffers significantly due to the imbalanced number of individuals between positive 
and negative groups. Many PTM site prediction studies, including the phosphorylation sites prediction, employ 
a relatively balanced ratio of observations between the positive and negative groups during the training of the 
classifiers (e.g., the ratio of positives versus negatives is controlled at 1: 1 or 1: 2)39–41 to address this issue. In this 
study, the training datasets were built at three ratios of 1:1, 1:2 and 1:3 of positive and negative window samples 
to create a comparatively balanced dataset by randomly taking the negative window samples out of n2 = 33,360 
for each ratio case. The 1:1 ratio based training dataset was created by taking all 3925 positive windows and ran-
domly 3925 negative windows out of n2 = 33,360. The 1:2 ratio based training dataset was constructed by taking 
all 3925 positive samples and randomly 3925 × 2 = 7850 negative samples out of n2 = 33,360. Similarly, the 1:3 
ratio based training dataset was constructed by taking all 3925 positive samples and randomly 3925 × 3 = 11,775 
negative samples out of n2 = 33,360. For each training dataset, we developed the prediction model and examined 
their performance by using 5-fold cross-validation (CV) and the independent test.

We considered three popular encoding schemes (Binary, CKSAAP, and AAC) to translate the protein win-
dow sequence features to numeric features (see section “Data encoding scheme”). Then we used Kruskal–Wallis 
(KW)30 test statistic to select the effective encoder features to develop the prediction models. To pick a better 
prediction model, we trained three popular classifiers, ADA42, SVM43, and RF44 (see section “Learning classifier”) 
based on the encoded features of each three schemes, separately. Then we developed an improved prediction 
model by fusing three encoding schemes with each of ADA, SVM, and RF machine learning approaches (see 
section “Fusion model”). We observed that the RF based combined model outperform the other alternative 
candidates. Thus, as seen in Fig. 1, we developed an improved computational prediction model.

Two sample logo (TSL) analyses.  The Two sample logo (TSL) analysis for the protein sequence is used 
to illustrate the significant differences between the positive and negative window groups of amino acid sam-
ples. It finds the difference between the two window groups by identifying the statistically significant residues 
around the protein PTM site. The residue sample follows the same distribution in both positive and negative 
window groups for each amino acid at a specific position. Let X and Y denote two groups of protein sequences 
based on negative and positive windows. Let |X| and |Y| denote the number of sequences, and N denotes the 
length of each window in both groups. Let Xi be the ith sequence in group A and let Xi,j is the jth position in Ai. 

Figure 1.   An overview of the proposed PredSPS predictor.
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tA
j,r
X = 1, ifXi,j = r, otherwiseA

j,r
X = 0, where r is the symbol of a residue. The vector Aj,p

Y  is formed conversely. 
Then we calculate the p-value of H0 so that both vectors Aj,p

X  and Aj,p
Y  follows the same distribution. Two sample 

t-tests and binomial tests are usually used for testing the null hypothesis H0. It should be pointed out that the 
binomial test is more accurate than the t-test, but the t-test is significantly faster than the binomial test. Two 
types of graphical image are demonstrated in the TSL analysis: (i) Significant symbols of amino acid are plotted 
in a display that reflects the size of the symbol that is proportional to the difference of two amino acid samples, 
(ii) Significant symbols of amino acid are plotted based on the identical size for every amino acid symbols. 
Amino acids are classified into two groups: (i) enriched samples in the optimistic window, (ii) depleted samples 
in the optimistic window.

Data encoding scheme.  The protein sequence features are required to convert the numeric features to 
develop a prediction model. Numerous encoding approaches were developed for converting sequence data to 
numeric data. In this study, we utilized three popular encoding approaches as described below:

CKSAAP encoding.  The composition of k-spaced amino acid pairs (CKSAAP) is a popular encoding approach 
for various PTM site predictions37. CKSAAP encoding approach has been mostly developed for solving various 
bioinformatics problems31–33,37,45–50.A sequence fragment of 25 amino acids is identified from the phosphoryla-
tion or non-phosphorylation sites in the current study. For every single k (Gap between two amino acids denoted 
by k), it may construct (21 × 21) = 441 (21 denotes 21 kinds of amino acids with the gap (O)) kinds of amino acid 
pairs (i.e., AA, AC, AD,…, OO), if window size of the fragment is 2r + 1 . There is 21 × (k max + 1) × 21 = 2646 
specific combinations of amino acids are produced for a maximum score of k (taking k max = 5). Then the fol-
lowing equation is used to measure the feature vectors:

where Ntal is the total composition residue length, NAA,NAC , . . . ,N00 denotes the fragment’s frequency of the 
amino acid pair. More details are available somewhere51,52.

Binary encoding.  The binary encoding approach was used to transform 21 amino acids (including gap (O)) 
into numeric vectors. Therefore, 21 different amino acids (like ACDEFGHIKLMNPQRSTVWYO) are arranged 
throughout this encoding scheme. Almost every amino acid is shown by a 21-dimensional binary vector in the 
query set of proteins. A: 100000000000000000000, C: 010000000000000000000, …, O: 000000000000000000001, 
etc. The central location is considered as K for every window of phosphorylation site to be included in the report. 
If a window of size is 25, then the entire dimension of the encoding scheme is (21X (25–1)) = 504. Details are 
described in previous studies31,32.

AAC encoding.  One of the most common and widely used strategies in protein bioinformatics analysis is 
Amino acid composition (AAC) encoding53,54. It can encode amino acid event frequencies to produce protein 
arrangements data. The amino acid event frequencies in the arrangement regions enclosing the phosphorylation 
and non-phosphorylation sites (the site itself isn’t recorded) were used to calculate AAC in this study. For each 
group, 20 frequencies for 20 different amino acids were calculated. Given a split arrangement x with a 25-mer 
string length, nx(m) is the quantity of certain amino acid, m, occurring in the section, where m specifies the 20 
amino acids. As a result, the probability Px(m) of a specific amino acid m is,

Then, given the split-sequence x, the construction of the 20 amino acids may be transformed to a 20-dimen-
sional numeric vector Vx:

Feature selection from the encoded data.  Both phosphorylation and non-phosphorylation fragments 
encoded a large number of feature variables. However, a prediction model based on a large number of features 
increases the computational load and creates different types of complexities. Furthermore, the features with 
similar abundance patterns in both positive samples (phosphorylation) and negative samples (non-phospho-
rylation) groups cannot increase the prediction performance. So, these types of features are usually removed 
from the encoded dataset to develop an effective prediction model. This study used the Kruskal–Wallis (KS)30 
non-parametric test as a feature selection method. We selected the highest 1500 features out of 2646 CKSAAP 
features and 400 features out of 504 binary features by the KS statistical test to develop the prediction models.

Learning classifier.  We considered three popular classifiers (Random Forest (RF), AdaBoost (ADA) & Sup-
port Vector Machine (SVM)) for comparisons based on the encoded protein sequences to create a more effective 
predictor for protein phosphorylation site prediction. Let us consider a dataset consisting of n training data ( x1
,y1 ), ( x2,y2),…, ( xn,yn ), where xi is an input vector in space X ⊆ Rm and yi is the response variable that takes 
value + 1 (phosphorylation site) and − 1 (non- phosphorylation site). The main task is to classify a new sample 
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of x windows into one of the two classes (+ 1, − 1). For the convenience of the readers, let us introduce together 
those classifiers as follows. Let us introduce these classifiers together as follows for the convenience of the read-
ers.

Random forest (RF).  The random forest (RF) classifier is a popular statistical learning algorithm and is widely 
used in bioinformatics research34,37,44,46,47,49,50. Generally, the whole process of random forest is completed 
through two steps; the first is to create a random forest classifier. The second step is to predict with the help of 
the random forest classifier created in the first step. For better presentation, let (X, Y) = {(x1,y1 ), ( x2,y2 )… ( xn,yn
)}. Then B (b = 1, …, B) times selects a random sample ( Xb, Yb with replacement from the given dataset (X,Y) 
and train a regression tree  fb on (Xb, Yb ) to fit trees to these samples. After training, predictions for new sam-
ples x’ can be written as,

R package ‘randomForest’ was used in this paper to implement the random forest algorithm55.

AdaBoost.  AdaBoost is an efficient meta-algorithm for machine learning42. In this paper, AdaBoost is denoted 
as ADA. It is efficient in the sense that subsequent weak learners are modified in favor of those instances that 
were misclassified by previous classifiers. It can be described as follows:

Training dataset: {(xi,yi); i = 1,2,…,n }.
Suppose there are T weak classifiers defined by  ft(x); t = 1, 2, 3, . . . ,T satisfying

Then the AdaBoost classifier is defined by

where αt = 1
2 log

1−εt (ft )
εt (ft )

,εt
(
ft
)
= min

f ǫF
εt
(
ft
)
, ft = argmin

f ǫF

εt
(
f
)
, εt(f ) =

∑n
i=1 I(yi �= ft(xi))wt(i)/

∑n
j=1 wt(j) , 

wt+1(i) = wt(i)exp{−αt ft(xi)yi}
Then the classification rule is defined as

R package ’ada’ was used in this paper to implement the AdaBoost algorithm42.

Support vector machine (SVM).  The purpose of SVM is to identify a hyperplane in an m-dimensional space 
that specifically classifies the data points42,43,47. Let us consider that the data points consist of n training data ( x1
,y1 ), ( x2,y2 )… ( xn,yn ), where xi is an input vector in the space X ⊆ Rm and yi is the output variable that takes 
values 1 for succinylated site and -1 for non-succinylated site. A hyperplane in high dimensional space is con-
structed by the SVM approach, which can be used in both classification and regression. The hyperplane may be 
written in the following form:

where b is scalar, and W is a normalized m-dimensional vector perpendicular to the divided hyperplane. If the 
data can be separated in a linear way, then the two classes can be written as follows: WTX + b > 0 if yi = 1 and 
WTX + b < 0 if yi = −1 . If the data is not linearly separable, then SVM uses kernel functions to transform the 
original data to a reasonable space, with high dimensional space that can separate the classes in phosphorylation 
and non-phosphorylation site. In such a situation, the hyperplane can be written as follow:

where, αn is Lagrange multiplier, yi is the class label that belongs to (− 1, 1), and K(xi , x) is the Kernel function 
between xi and x . In this study, we have adopted the kernel as a radial basis function (RBF). R package ’e1071’ 
was used in this paper to implement the SVM algorithm35.

Fusion model.  To increase the efficiency of their prediction models, many authors used fusion 
techniques46,56,57.

We have attempted to boost the efficiency of our prediction model in this article by combining binary, 
CKSAAP, and AAC encoding schemes with the RF classifier as follows,

where RF(CKSAAP), RF(Binary), and RF(AAC) denote the RF classification scores estimated with CKSAAP, 
binary, and AAC encoding schemes, respectively. The values of w1, w2, and w3 were selected based on the ratio 
of individual prediction performance of RF(Binary), RF(CKSAAP), and RF(AAC) satisfying w1 + w2 + w3 = 1. 

(4)f̂ =
1

B

B∑

b=1

fb

(
x
′
)

yt = sign(ft(x)) = ±1; t = 1, 2, 3, . . . ,T

FT (x) =

T∑

t=1

αt ft(x),

(5)fT (x) = sign(FT (x)) = ±1,

(6)WTX + b = 0

(7)f (x) =
∑m

i=1
αiyiK(xi , x)+ b

(8)RF
(
CKSAAP, Binary, AAC

)
= w1 × RF(CKSAAP) + w2 × RF

(
Binary

)
+ w3 × RF(AAC)
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To compare the performance of the RF based prediction model with the performance of ADA and SVM based 
prediction models, we also enhanced the prediction performance of the ADA and SVM based prediction model 
by combining binary, CKSAAP, and AAC encoding methods.

Performance evaluation measures.  In the present study, some widely used performance measures 
including true positive rate (TPR) known as ‘sensitivity’, true negative rate (TNR) known as ‘specificity’, false 
negative rate (FNR), accuracy (ACC), misclassification rate(MCC), Mathew correlation coefficient (MCC), 
receiving operating characteristics (ROC) curve, area under the ROC curve (AUC) and partial AUC (pAUC) 
were considered to select the best prediction model. These measurement scores are calculated as

where n(TN): True Negative number, n(TP): True Positive number, n(FN): False Negative number, n(FP): False 
Positive number. The ROC curve is formed by plotting TPR: sensitivity against FPR = (1-specificity). Obviously 
TPR + FNR = 1, TNR + FPR = 1, (FPR, FNR) → (0, 0) implies MCR → 0 and (TPR, TNR, ACC, MCC, AUC) → (1, 
1, 1, 1, 1), conversely (FPR, FNR) → (1, 1) implies MCR → 1 and (TPR, TNR, ACC, MCC, AUC) → (0, 0, 0, 0, 
0, − 1). Therefore, a prediction model that produces comparatively larger values of TPR, TNR, ACC, MCC, and 
AUC, and the smaller values of FPR, FNR, and MCR, indicates the better prediction model.

K‑fold cross‑validation (CV).  To perform K-fold CV, the dataset “D” was randomly partitioned into k = 5 dis-
joint subsets (D1, D2,…, Dk) such that every subset contains almost equal elements. The (K-1) subsets were used 
as train the prediction model and the remaining one set was used to validate the prediction model by computing 
different performance scores with measures TPR/SN, TNR/SF, FPR, FNR, MCR, ACC​, MCC & AUC​. This pro-
cedure was replicated K = 5 times by changing the validation set with one of the training sets. Then the average 
score for each performance measure was computed to evaluate the prediction model.

Results
To develop an effective model for prediction of serine phosphorylation site mapping on SP, we considered the 
dataset that was consisted of 766 serine phosphorylated protein sequences with 4530 positive sites and 36,705 
negative sites. The redundant sequences were removed from this dataset by using the CD-HIT cut-off at 30%. 
Then we created the training dataset by randomly taking 690 (90%) phosphorylated protein sequences with 3925 
positive and 33,360 negative window sites. The rest 76 (10%) phosphorylated protein sequences with 605 positive 
and 3345 negative window sites were considered to create the independent test set. Then we selected WS = 25 by 
two sample logo (TSL) analysis to generate the effective feature variables for both training and independent test 
datasets. Each window was represented by a 25 (± 12)-residue peptide segment with S in the middle (see “The 
TSL analysis”). However, the total number of positive windows (n1 = 3925) and negative windows (n2 = 33,360) 
were clearly unbalanced in the training dataset. Therefore, we created 3 comparatively balanced datasets with 
1:1, 1:2, and 1:3 ratios of positive and negative window samples, respectively, to select one of them for developing 
a better predictor as discussed in section “Data preparation and overview on the development of the proposed 
prediction model”. We compared the training performance of different prediction models in section “Performance 
of prediction models with the training dataset”. Then we evaluated their performances by 5-fold CV in section 
“Prediction performance evaluation by 5-fold cross validation (CV)”. The success ratings based on the independ-
ent test dataset were addressed in section “Performance of prediction models with the independent test dataset”.

The TSL analysis.  To investigate the adequacy of the dataset for the development of prediction model, we 
conducted two sample logo (TSL) tests. The neighboring phosphorylation and non-phosphorylation sites for 

(9)TPR =
n(TP)

n(TP)+ n(FN)
; 0 ≤ TPR ≤ 1

(10)FPR =
n(FP)

n(TN)+ n(FP)
; 0 ≤ FPR ≤ 1

(11)TNR =
n(TN)

n(TN)+ n(FP)
; 0 ≤ TNR ≤ 1

(12)FNR =
n(FN)

n(TP)+ n(FN)
; 0 ≤ FNR ≤ 1

(13)ACC =
n(TP)+ n(TN)

n(TP)+ n(FP)+ n(TN)+ n(FN)
; 0 ≤ ACC ≤ 1

(14)MCR =
n(FP)+ n(FN)

n(TP)+ n(FP)+ n(TN)+ n(FN)
; 0 ≤ MCR ≤ 1

(15)

MCC =
(n(TP)× n(TN))− (n(FP)× n(FN))

√
(n(TP)+ n(FN))× (n(TN)+ n(FP))× (n(TP)+ n(FP))× (n(TN)+ n(FN))

;−1 ≤ MCC ≤ 1
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the training dataset are shown in Fig. 2 through TSL software57. Positive or negative samples, respectively, define 
residues at each position above and below the X-axis. The height of the letter accommodating the corresponding 
residue was shown in proportion to the percentage of over-represented (if positive) or underrepresented samples 
(if negative). The total percentage of these positive/negative residues is represented by the y-axis. The amino 
acid occurrences between positive and negative phosphorylation protein samples are described by TSL logos. 
Figure 2 shows the TSL of 25-mer (− 12, + 12)WS. It represented some significantly enriched (over represented) 
or depleted (under represented) residues with the flanking of focused phosphorylation sites (p-value < 0.05), 
which indicates that the dataset is adequate to develop a prediction model with WS = 25. Similarly, Supplemen-
tary Figs. S1 and S2 showed that the dataset is also suitable for WS = 21 and 27 to develop the prediction model.

Performance of prediction models with the training dataset.  At first, we trained ADA based 7 pre-
diction models denoted as ADA(CKSAAP), ADA(Binary), ADA(AAC), ADA(CKSAAP, Binary), ADA(CKSAAP, 
AAC), ADA(Binary, AAC), and ADA(CKSAAP, Binary, AAC) by using the training dataset that contained 1:2 
ratio of positive and negative samples. Similarly, 7 prediction models based on each of SVM and RF classifiers 
were trained by the same dataset. We computed different performance scores (TPR, TNR, FNR, MCR, ACC, 
MCC & AUC) at FPR = 0.20 to investigate the success for each of those 21 prediction models (see Table 1).

At first, we investigated the performance of ADA based 7 prediction models. We observed that 3 encodings 
(Binary, CKSAAP, AAC) based fusion model produces largest scores of TPR (0.789), TNR (0.801), ACC (0.912), 
MCC (0.720), AUC (0.933) and pAUC (0.154), and smallest scores of FNR (0.210) and MCR (0.121). Thus ADA 
based fusion prediction model with 3 encoding features showed better performance compared to the other 6 
ADA based prediction modes. Similarly, each of SVM and RF based prediction models with the fusing of those 
3 types of encoding features, also showed better performance compared to their 6 alternative prediction modes. 
Then we compared the ADA, SVM, and RF based three best prediction models and observed that the RF-based 
fusion model RF(Binary, CKSAAP, AAC) produces the larger TPR (0.898), TNR (0.802), ACC (0.957), MCC 
(0.792), AUC (0.977) and pAUC (0.199), and the smaller FNR (0.121) and MCR (0.06) compare to the ADA 
and SVM based best prediction models that were denoted as ADA (Binary, CKSAAP, AAC) and SVM (Binary, 
CKSAAP, AAC). That is, the proposed RF based fusion prediction model RF (Binary, CKSAAP, AAC) outper-
forms the other 20 prediction models as discussed above with the training dataset corresponding to 1:2 ratio of 
positive and negative samples. Similarly, it showed better performance compare to both ADA and SVM based 
fusion models with the training datasets corresponding to 1:1 and 1:3 ratio cases also (see Tables S1 and S2 in 
the Supplementary File S1). Again, we observed from Tables 1, S1 and S2 that the proposed RF based fusion 
prediction model RF (Binary, CKSAAP, AAC) shows slightly better performance for both 1:2 and 1:3 ratio cases 
compared to the 1:1 ratio of positive and negative samples. It was also observed that its performance is almost 
same for both 1:2 and 1:3 ratio cases.

Prediction performance evaluation by 5‑fold cross validation (CV).  To evaluate the prediction per-
formance of the proposed RF based fusion prediction model RF (Binary, CKSAAP, AAC) compare to other 20 
candidate prediction models by 5-fold CV, the training dataset corresponding to 1:2 ratio of 3925 positive and 
7850 negative window samples was partitioned into 5 mutually exclusive subgroups (G1, G2, G3, G4, G5) such 
that each subgroup consists of 1:2 ratio of positive and negative samples. Each subgroup obviously consisted of 
around 785 positive window samples (5% of 3925) and around 1570 negative window samples (5% of 7850). 
Within 5 replications, the 5-fold CV was completed. A phase-1, four subgroups (G2, G3, G4 & G5) that contains 
80% samples of the training dataset, including the 1:2 ratio of positive and negative cases, were used to train all 

Figure 2.   Two study logos program58 presents the occurrences of amino acid propensities of surrounding 
positive windows (phosphorylation site) and negative windows (non-phosphorylation sites) of size 25.
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21 prediction models. The other group G1 was utilized to validate the trained models by computing TPR, TNR, 
FNR, ACC, MCR, MCC, ROC, AUC, and pAUC. At phase 2, four subgroups (G1, G3, G4 & G5) containing 
approximately 80% window samples were also used as before to train all prediction models. The other G2 group 
was used to compute the performance indicators (TPR, TNR, FNR, ACC, MCR, MCC, ROC, AUC, and pAUC) 
as before. In this case, only the subgroup pair G1–G2 interchanged their positions between the training and 
test sets. Similarly, subgroup pairs G2–G3, G3–G4, & G4–G5 exchanged, their positions between the training 
and test sets, respectively, at another three (3) loops. The performance scores of TPR, TNR, FNR, ACC, MCR, 
MCC, and pAUC were calculated by fixing the cutoff point at FPR = 0.20 for each of 5 loops. Then we computed 
the average performance scores of TPR, TNR, FNR, ACC, MCR, MCC, ROC, AUC, and pAUC and displayed 
the summary results in Table 2. The values in the first bracket represent the standard error (SE) of performance 
scores. As before, at first, we investigated the performance of ADA based 7 prediction models. We observed that 
3 encodings (Binary, CKSAAP, AAC) based fusion model produces largest average scores of TPR (0.654), TNR 
(0.801), ACC (0.721), MCC (0.456), AUC (0.799) and pAUC (0.1404), and smallest scores of FNR (0.346) and 
MCR (0.287). Thus ADA based fusion prediction model with 3 encoding schemes showed better performance 
compare to the other 6 ADA based prediction modes (see Table 2 and Fig. 3A). Similarly, SVM and RF based 
fusion prediction models with 3 encoding schemes also showed better performance compared to their 6 alterna-
tive prediction modes (see Table 2 and Fig. 3B,C). Then we compared the ADA, SVM, and RF based three best 
prediction models and observed that the fusion model RF(Binary, CKSAAP, AAC) produces the larger TPR 
(0.810), TNR (0.802), ACC (0.778), MCC (0.666), AUC (0.832) and pAUC (0.168) and the smaller FNR (0.190) 
and MCR (0141) compare to the ADA and SVM based best prediction models that were written as ADA(Binary, 
CKSAAP, AAC) and SVM(Binary, CKSAAP, AAC) as before (see Table 2 and Fig. 3D). That is, the proposed RF 
based prediction model RF (Binary, CKSAAP, AAC) performed much better compared to the other 20 predic-
tion models by 5-fold CV with the training dataset corresponding to 1:2 ratio of positive and negative samples. 
Similarly, it showed better performance compared to both ADA and SVM based fusion models by 5-fold CV 
with the training datasets corresponding to 1:1 and 1:3 ratio cases also (see Figs. S3A and S4A in the Supple-
mentary File S2). Again, we observed from Figs. 3D, S3A, and S4A that the proposed RF based fusion prediction 
model RF (Binary, CKSAAP, AAC) show slightly better performance for both 1:2 and 1:3 ratio cases compared to 
the 1:1 ratio of positive and negative samples. It was also observed that its performance is almost same for both 
1:2 and 1:3 ratio cases. Thus, the RF-based fussing model with 3 encoding schemes (Binary, CKSAAP, AAC) 
showed better performance compared to the ADA and SVM based best prediction models by 5-fold CV also.

Performance of prediction models with the independent test dataset.  To evaluate the independ-
ent test performance of the proposed prediction model compared to the other 20 candidate models, all candidate 
models were trained by the training dataset of 1:2 ratio of 3925 positive and 7850 negative window samples, 
as mentioned earlier in sections “Data preparation and overview on the development of the proposed predic-
tion model” and “Performance of prediction models with the training dataset”. The independent test dataset 

Table 1.   Training performance scores at FPR = 0.20 for 21 prediction models that were trained by 1:2 ratio of 
positive and negative samples. Better results with each of ADA, SVM and RF were highlighted by bold values.

Predictors TPR TNR FNR ACC​ MCC MCR AUC​ pAUC​

ADA (CKSAAP) 0.763 0.801 0.237 0.877 0.662 0.172 0.891 0.121

ADA (binary) 0.757 0.800 0.243 0.863 0.657 0.210 0.872 0.119

ADA (AAC) 0.750 0.802 0.250 0.862 0.643 0.198 0.876 0.115

ADA (CKSAAP, binary) 0.772 0.802 0.220 0.907 0.645 0.142 0.923 0.141

ADA (CKSAAP, AAC) 0.757 0.801 0.243 0.868 0.656 0.189 0.887 0.133

ADA (binary, AAC) 0.761 0.800 0.239 0.869 0.658 0.186 0.899 0.139

ADA (CKSAAP, binary, AAC) 0.789 0.801 0.210 0.912 0.720 0.121 0.933 0.154

SVM (CKSAAP) 0.769 0.801 0.233 0.887 0.668 0.173 0.899 0.132

SVM (binary) 0.765 0.800 0.221 0.879 0.668 0.167 0.898 0.120

SVM (AAC) 0.638 0.801 0.362 0.737 0.541 0.268 0.820 0.079

SVM (CKSAAP, binary) 0.869 0.801 0.121 0.939 0.787 0.100 0.942 0.131

SVM (CKSAAP, AAC) 0.668 0.802 0.332 0.779 0.575 0.243 0.848 0.071

SVM (binary, AAC) 0.675 0.801 0.325 0.781 0.578 0.241 0.850 0.072

SVM (CKSAAP, binary, AAC) 0.878 0.801 0.121 0.946 0.797 0.09 0.952 0.143

RF (CKSAAP) 0.867 0.801 0.113 0.935 0.789 0.107 0.934 0.152

RF (binary) 0.854 0.800 0.123 0.939 0.781 0.109 0.927 0.145

RF (AAC) 0.761 0.802 0.239 0.905 0.627 0.159 0.913 0.129

RF (CKSAAP, binary) 0.888 0.802 0.111 0.945 0.789 0.100 0.965 0.198

RF (CKSAAP, AAC) 0.857 0.801 0.143 0.932 0.778 0.113 0.942 0.157

RF (binary, AAC) 0.859 0.801 0.141 0.934 0.779 0.110 0.947 0.161

RF (CKSAAP, binary, AAC) 0.898 0.802 0.121 0.957 0.792 0.060 0.977 0.197
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consisted of 76 proteins with 982 positive samples and 1964 negative samples, as introduced in section “Data 
preparation and overview on the development of the proposed prediction model”. Then we computed the perfor-
mance scores TPR, TNR, FNR, ACC, MCR, MCC, ROC, AUC, and pAUC as before based on the independent 
test dataset.

At first, we assess the performance of ADA based 7 prediction models as before. We found that 3 encodings 
(Binary, CKSAAP, AAC) based fusion model produces highest average scores of TPR (0.639), TNR (0.801), ACC 
(0.700), MCC (0.502), AUC (0.791) and pAUC (0.146), and lowest scores of FNR (0.381) and MCR (0.299). 
Thus ADA based fusion prediction model with 3 encoding features showed better performance compare to the 
other 6 ADA based prediction modes (see Table 3 and Fig. 4A). Similarly, SVM and RF based fusion prediction 
models with 3 encoding schemes also showed better performance compared to their 6 alternative prediction 
modes (see Table 3 and Figs. 4B,C). Then we compared the ADA, SVM, and RF based three best prediction 
models and observed that the fusion model RF(Binary, CKSAAP, AAC) produces the larger TPR (0.798), TNR 
(0.802), ACC (0.791), MCC (0.629), AUC (0.825) and pAUC (0.169) and the smaller FNR (0.201) and MCR 
(0145) compare to the ADA and SVM based best prediction models that were written as ADA (Binary, CKSAAP, 
AAC) and SVM (Binary, CKSAAP, AAC) as before (see Table 3 and Fig. 4D). That is, the proposed RF based 
prediction model RF(Binary, CKSAAP, AAC) showed much better independent test performance compared to 
the other 20 candidate prediction models with the training dataset corresponding to 1:2 ratio of positive and 
negative samples. Similarly, it showed better independent test performance compared to both ADA and SVM 
based fusion models with the training datasets corresponding to 1:1 and 1:3 ratio cases also (see Figs. S3B and 

Table 2.   Performance scores at FPR = 0.20 for 21 prediction models by 5-fold CV with the training dataset 
that was consisted of 1:2 ratio of positive and negative samples. Better results with each of ADA, SVM and RF 
were highlighted by bold values. The values within the first bracket indicate the standard error (SE).

Predictors 
classifier 
(encoding) TPR TNR FNR ACC​ MCC MCR AUC​ pAUC​

ADA 
(CKSAAP) 0.676 (0.32) 0.800 (0.00) 0.323 (0.32) 0.689 (0.01) 0.378 (0.16) 0.311 (0.01) 0.737 (0.04) 0.12 (0.06)

ADA (binary) 0.613 (0.03) 0.800 (0.01) 0.386 (0.03) 0.657 (0.01) 0.315 (0.03) 0.343 (0.01) 0.718 (0.03) 0.11 (0.07)

ADA (AAC) 0.644 (0.31) 0.801 (0.00) 0.355 (0.31) 0.692 (0.03) 0.383 (0.02) 0.291 (0.09) 0.747 (0.05) 0.133 (0.04)

ADA 
(CKSAAP, 
binary)

0.650 (0.24) 0.800 (0.01) 0.349 (0.24) 0.702 (0.12) 0.407 (0.24) 0.297 (0.12) 0.771 (0.10) 0.136 (0.05)

ADA 
(CKSAAP, 
AAC)

0.661 (0.09) 0.800 (0.00) 0.339 (0.09) 0.712 (0.10) 0.417 (0.21) 0.289 (0.10) 0.783 (0.09) 0.139 (0.03)

ADA (binary, 
AAC) 0.653 (0.12) 0.800 (0.00) 0.347 (0.12) 0.710 (0.13) 0.412 (0.11) 0.292 (0.13) 0.778 (0.10) 0.137 (0.09)

ADA 
(CKSAAP, 
binary, AAC)

0.654 (0.08) 0.801 (0.00) 0.346 (0.08) 0.721 (0.01) 0.456 (0.15) 0.287 (0.07) 0.799 (0.02) 0.140 (0.06)

SVM 
(CKSAAP) 0.677 (0.16) 0.800 (0.00) 0.323 (0.03) 0.712 (0.12) 0.425 (0.07) 0.287 (0.02) 0.788 (0.06) 0.143 (0.07)

SVM (binary) 0.683 (0.02) 0.800 (0.00) 0.317 (0.03) 0.718 (0.01) 0.438 (0.15) 0.281 (0.09) 0.787 (0.08) 0.138 (0.04)

SVM (AAC) 0.681 (0.12) 0.801 (0.00) 0.316 (0.12) 0.704 (0.13) 0.382 (0.06) 0.325 (0.01) 0.785 (0.03) 0.134 (0.05)

SVM 
(CKSAAP, 
binary)

0.711 (0.08) 0.800 (0.00) 0.293 (0.29) 0.728 (0.11) 0.445 (0.26) 0.256 (0.11) 0.799 (0.23) 0.146 (0.09)

SVM 
(CKSAAP, 
AAC)

0.543 (0.13) 0.802 (0.00) 0.456 (0.09) 0.667 (0.23) 0.376 (0.12) 0.356 (0.04) 0.800 (0.03) 0.154 (0.11)

SVM (binary, 
AAC) 0.567 (0.12) 0.801 (0.00) 0.432 (0.11) 0.684 (0.13) 0.382 (0.21) 0.324 (0.12) 0.803 (0.05) 0.169 (0.10)

SVM 
(CKSAAP, 
binary, AAC)

0.598 (0.08) 0.802 (0.00) 0.401 (0.13) 0.700 (0.12) 0.422 (0.09) 0.312 (0.02) 0.812 (0.07) 0.170 (0.08)

RF (CKSAAP) 0.798 (0.15) 0.800 (0.00) 0.201 (0.15) 0.749 (0.26) 0.500 (0.20) 0.251 (0.11) 0.803 (0.16) 0.145 (0.08)

RF (binary) 0.735 (0.09) 0.800 (0.00) 0.264 (0.09) 0.721 (0.14) 0.443 (0.01) 0.278 (0.02) 0.793 (0.13) 0.143 (0.06)

RF (AAC) 0.691 (0.15) 0.801 (0.00) 0.308 (0.15) 0.786 (0.26) 0.584 (0.20) 0.213 (0.11) 0.791 (0.16) 0.141 (0.08)

RF (CKSAAP, 
binary) 0.806 (0.02) 0.800 (0.00) 0.193 (0.01) 0.754 (0.02) 0.510 (0.06) 0.246 (0.10) 0.823 (0.03) 0.158 (0.02)

RF (CKSAAP, 
AAC) 0.681 (0.13) 0.800 (0.00) 0.319 (0.13) 0.659 (0.23) 0.502 (0.18) 0.182 (0.09) 0.797 (0.14) 0.151 (0.08)

RF (binary, 
AAC) 0.725 (0.09) 0.802 (0.00) 0.275 (0.09) 0.671 (0.14) 0.588 (0.01) 0.185 (0.02) 0.826 (0.13) 0.159 (0.06)

RF (CKSAAP, 
binary, AAC) 0.810 (0.02) 0.802 (0.00) 0.190 (0.01) 0.778 (0.02) 0.666 (0.06) 0.141 (0.10) 0.832 (0.03) 0.168 (0.02)
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S4) in the Supplementary file S2). Again, we observed from Figs. 4D, S3B, and S4B that the proposed RF based 
fusion prediction model RF(Binary, CKSAAP, AAC) shows slightly better performance for both 1:2 and 1:3 ratio 
cases compared to the 1:1 ratio case. It was also observed that its performance is almost same for both 1:2 and 1:3 
ratio cases. Thus, the RF-based fussing model with 3 encoding schemes (Binary, CKSAAP, AAC) showed better 
performance compared to the ADA and SVM based best prediction models with the independent test dataset.

Discussion
In this study, we proposed an effective computational model for prediction of serine phosphorylation sites 
mapping on SP by fusion three encoding schemes (CKSAAP, Binary, AAC) with RF classifier based on 1:2 ratio 
of positive and negative window samples with respect to the cutoff value of CD-HIT at 30% and window size 
(WS) at 25. We selected this model as the best prediction model compare to the SVM and ADA based predic-
tion models, giving the weight on its largest performance scores with SN, SP, ACC, MCC, and AUC, and the 
smallest performance scores with FPR, FNR and MCR. We observed from our investigation that all candidate 
prediction models show slightly better performance with both 1:2 and 1:3 ratio cases compared to the 1:1 ratio 
of positive and negative window samples (see Tables 1, S1 and S2, and Figs. 3, 4, S3 and S4). It was also observed 
that their performance was almost same with 1:2 and 1:3 ratios of positive and negative samples. The negative 
samples were representative for all of 3 ratio cases, since negative samples were selected randomly in each ratio 
case. Moreover, better estimates of the model parameters not only depend on representative samples but also on 

Figure 3.   Performance of 21 prediction models by 5-fold CV results based on the training dataset that was 
consisted of 1:2 ratio of positive and negative samples. (A) ROC curves with the RF based 7 different prediction 
models, (B) ROC curves with the ADA based 7 different prediction models, (C) ROC curves with the SVM 
based 7 different prediction models, and (D) ROC curves for the best prediction models with ADA, SVM, and 
RF.
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the larger sample size. Therefore, we selected the dataset corresponding to the 1:2 ratios of positive and negative 
window samples to build the prediction model, since prediction performance was almost same for both 1:2 and 
1:3 ratio cases. We also observed that the prediction performances are almost same for all three window sizes at 
21, 25, and 27 (See Figs. 4 and S5), which is also supported by the TSL analysis results (see Figs. 2, S1 and S2). 
Now, let us discuss, how we selected the RF based prediction model as the best prediction model compare to the 
SVM and ADA based models. To observe the training performance of the proposed prediction model in a com-
parison of the other candidate predictors, we computed different performance scores with the training dataset. 
Then we investigated their comparative performance by 5-fold CV with the training dataset. To investigate the 
independent test performance of the prediction models, we computed different performance scores with the 
independent test dataset also. In almost all cases, we observed that CKSAAP encoding feature based prediction 
model with each of ADA, SVM, and RF, shows slightly better performance compared to the binary and AAC 
encoding feature based prediction models, individually (See Tables 1, 2, 3, S1–S3, Figs. 3,4). So we provided more 
weight to the CKSAAP encoding compared to the binary and AAC encoding to develop the fusion model [see 
Eq. (8)]. Then, we observed that the training performance of the proposed RF based fusion prediction model 
RF (CKSAAP, Binary, AAC) are much better compared to the other 20 candidate prediction models that were 
denoted as ADA (CKSAAP), ADA (Binary), ADA (AAC), ADA (CKSAAP, AAC), ADA (CKSAAP, Binary), ADA 
(Binary, AAC), ADA (CKSAAP, Binary, AAC), SVM (CKSAAP), SVM (Binary), SVM (AAC), SVM (CKSAAP, 
AAC), SVM (CKSAAP, Binary), SVM (Binary, AAC), SVM (CKSAAP, Binary, AAC), RF (CKSAAP), RF (Binary), 
RF (AAC), RF (CKSAAP, AAC), RF (CKSAAP, Binary) and RF (Binary, AAC) (see Tables 1 and S1). Similarly, 
Tables 2, S2, and Fig. 3, as discussed in section “Prediction performance evaluation by 5-fold cross validation 
(CV)”, indicate that the proposed prediction model performs much better compared to the other 20 candidate 
prediction models in the case of fivefold CV. Finally, we investigated the independent test performance of the 
proposed prediction model based on independent test dataset and found much better performance compared 
to the other 20 candidate prediction models (see Tables 3, S3, and Fig. 4). Thus, we observed that the proposed 
RF based fusion prediction model outperforms the SVM and ADA based fusion models.

Conclusions
Based on the protein sequence information, we developed an effective predictor to predict the serine phospho-
rylation sites mapping on SP by combining three encoding schemes, CKSAAP, binary, and AAC, with the RF 
classifier. We conducted a comparative study to select the better model for prediction of serine phosphoryla-
tion sites by using the experimentally detected phosphorylated protein sequences of SP. The 5-fold CV and 
independent test investigational findings indicated that our proposed approach can be more reliable to detect 
the phosphorylated protein compare to the other candidate prediction models. Thus, in the case of SP PTMs, 
the suggested approach can be a helpful and motivating computational resource for the prediction of serine 
phosphorylation sites. Finally, a user-friendly web server was developed for its implementation, which is freely 
accessible at http://​mollah-​bioin​forma​ticsl​ab-​stat.​ru.​ac.​bd/​PredS​PS/.

Table 3.   Independent test performance scores at FPR = 0.20 for 21 prediction models that were trained by 1:2 
ratio of positive and negative samples. Better results with each of ADA, SVM and RF were highlighted by bold 
values.

Predictors TPR TNR FNR ACC​ MCC MCR AUC​ pAUC​

ADA (CKSAAP) 0.631 0.800 0.369 0.665 0.331 0.334 0.726 0.121

ADA (binary) 0.614 0.800 0.385 0.657 0.316 0.342 0.718 0.118

ADA (AAC) 0.618 0.802 0.381 0.669 0.426 0.338 0.755 0.122

ADA (CKSAAP, binary) 0.635 0.800 0.364 0.697 0.397 0.303 0.763 0.138

ADA (CKSAAP, AAC) 0.621 0.801 0.398 0.682 0.467 0.309 0.782 0.140

ADA (binary, AAC) 0.626 0.802 0.393 0.691 0.487 0.308 0.788 0.142

ADA (CKSAAP, binary, AAC) 0.639 0.801 0.381 0.700 0.502 0.299 0.791 0.146

SVM (CKSAAP) 0.718 0.800 0.281 0.721 0.442 0.278 0.793 0.137

SVM (binary) 0.677 0.800 0.322 0.716 0.433 0.283 0.790 0.136

SVM (AAC) 0.645 0.901 0.345 0.772 0.563 0.227 0.777 0.122

SVM (CKSAAP, binary) 0.728 0.800 0.278 0.734 0.467 0.268 0.796 0.140

SVM (CKSAAP, AAC) 0.698 0.902 0.301 0.761 0.526 0.238 0.801 0.145

SVM (binary, AAC) 0.701 0.901 0.298 0.812 0.667 0.209 0.804 0.149

SVM (CKSAAP, binary, AAC) 0.703 0.902 0.297 0.811 0.666 0.208 0.819 0.151

RF (CKSAAP) 0.772 0.800 0.227 0.739 0.479 0.261 0.798 0.143

RF (binary) 0.729 0.800 0.271 0.716 0.432 0.283 0.786 0.142

RF (AAC) 0.732 0.902 0.267 0.771 0.544 0.228 0.795 0.147

RF (CKSAAP, binary) 0.777 0.800 0.222 0.749 0.478 0.261 0.814 0.154

RF (CKSAAP, AAC) 0.732 0.802 0.267 0.671 0.544 0.228 0.737 0.124

RF (binary, AAC) 0.761 0.802 0.239 0.760 0.627 0.159 0.805 0.129

RF (CKSAAP, binary, AAC) 0.798 0.802 0.201 0.791 0.629 0.145 0.825 0.169

http://mollah-bioinformaticslab-stat.ru.ac.bd/PredSPS/
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