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fMRI‑based validation 
of continuous‑wave fNIRS 
of supplementary motor area 
activation during motor execution 
and motor imagery
Franziska Klein1,2*, Stefan Debener2, Karsten Witt3 & Cornelia Kranczioch1,2

Compared to functional magnetic resonance imaging (fMRI), functional near infrared spectroscopy 
(fNIRS) has several advantages that make it particularly interesting for neurofeedback (NFB). A 
pre-requisite for NFB applications is that with fNIRS, signals from the brain region of interest can be 
measured. This study focused on the supplementary motor area (SMA). Healthy older participants (N 
= 16) completed separate continuous-wave (CW-) fNIRS and (f)MRI sessions. Data were collected for 
executed and imagined hand movements (motor imagery, MI), and for MI of whole body movements. 
Individual anatomical data were used to (i) define the regions of interest for fMRI analysis, to (ii) 
extract the fMRI BOLD response from the cortical regions corresponding to the fNIRS channels, and 
(iii) to select fNIRS channels. Concentration changes in oxygenated ( �[HbO] ) and deoxygenated 
( �[HbR] ) hemoglobin were considered in the analyses. Results revealed subtle differences between 
the different MI tasks, indicating that for whole body MI movements as well as for MI of hand 
movements �[HbR] is the more specific signal. Selection of the fNIRS channel set based on individual 
anatomy did not improve the results. Overall, the study indicates that in terms of spatial specificity 
and task sensitivity SMA activation can be reliably measured with CW-fNIRS.

Functional near infrared spectroscopy (fNIRS) has gained considerable popularity over the past decades. This 
popularity is to a large part owed to the fact that compared to the gold standard for in vivo imaging of the brain, 
functional magnetic resonance imaging (fMRI), less restrictions and safety concerns apply to fNIRS. fNIRS 
devices range from transportable to portable and even wireless, allowing greater flexibility regarding participant 
behaviour and types of experimental settings1,2.

Similar to fMRI, fNIRS captures hemodynamic changes. This is achieved by placing optodes consisting of light 
sources and light detectors on the head surface. Near infrared light is transmitted into the tissue between source 
and detector and hemoglobin absorption can be quantified as concentration changes in oxygenated ( �[HbO] ) 
and deoxygenated ( �[HbR] ) hemoglobin2,3. Unlike fMRI, fNIRS has no environmental restrictions and no 
contraindications, is less expensive, has been shown to tolerate motion, and it has a higher temporal resolution4.

One important limitation of fNIRS is the modest depth penetration of near infrared light. Therefore fNIRS 
does not capture subcortical activation and is limited to superficial cortical brain regions4. Another limitation is 
that optode placement and data processing pipelines have to cope with a lack of anatomical information4. Because 
of the lacking anatomical information, correct placement of the available optodes is important and of utmost 
relevance if the goal is to collect data from a particular region of interest (ROIs). Software has been developed 
to address this issue (e.g., fOLD5 and AtlasViewer6) by guiding optode placement using anatomical informa-
tion taken from standard brains. While this approach is without doubt very useful, the selection of channels for 
subsequent analysis may benefit from the consideration of individual anatomical information. Finally, a third 
limitation is the relatively low fNIRS signal-to-noise ratio, largely resulting from contamination by systemic noise 

OPEN

1Neurocognition and Neurorehabilitation Group, Department of Psychology, School of Medicine and Health 
Sciences, University of Oldenburg, Oldenburg, Germany. 2Neuropsychology Lab, Department of Psychology, 
School of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany. 3Neurology, 
Department of Human Medicine, School of Medicine and Health Sciences, University of Oldenburg, Oldenburg, 
Germany. *email: franziska.klein@uol.de

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-06519-7&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2022) 12:3570  | https://doi.org/10.1038/s41598-022-06519-7

www.nature.com/scientificreports/

(i.e., non-neuronal evoked and non-evoked physiological processes3,7). Demands for noise attenuation based on 
statistical procedures8–10 were recently met by making the necessary hardware-based solutions for dealing with 
physiological noise available11,12.

Despite these challenges, fNIRS can be easily applied repeatedly and is therefore an excellent technology 
for brain computer interfaces (BCIs1), neurofeedback research and application13. In motor-related neurore-
habilitation, individuals learn to self-regulate motor areas by receiving feedback based on task-related brain 
activations13,14. This may facilitate cortical reorganization that is necessary to initiate compensation and recovery. 
In most motor neurofeedback and motor BCI applications, brain activation is generated by asking users to imag-
ine movements. A mental simulation of the sensation of a movement15,16 is known as kinesthetic motor imagery 
(MI). FNIRS MI neurofeedback has been used with encouraging results for the support of motor recovery in 
stroke patients17,18. A relatively new, unexplored field for fNIRS MI neurofeedback is the alleviation of motor 
symptoms in patients suffering from Parkinson’s disease (PD). In two fMRI studies15,19 patients imagined whole-
body movements while receiving neurofeedback from the supplementary motor area (SMA) in a small number 
of sessions. In addition to subcortical brain areas affected in PD, the SMA is known to be highly underactive in 
these individuals20,21. A systematic SMA upregulation training has been proposed to produce lasting changes of 
the cortico-basal ganglia-circuit and to drive symptom improvements15,19. In order to pave the way towards a 
future fNIRS SMA upregulation neurofeedback training protocol, we here investigated whether fNIRS reliably 
captures motor execution and motor imagery induced SMA activation.

A number of studies have explored motor execution (ME) induced primary motor (M1) activation with 
simultaneous22–29 and consecutive fNIRS-fMRI setups30. We are aware of only one study exploring the sensitiv-
ity of fNIRS for capturing MI-induced brain activity from SMA and premotor cortex31. The authors used laser-
based time-resolved fNIRS (TR-fNIRS) rather than the more common diode-based continuous wave fNIRS 
(CW-fNIRS) technology, arguing that TR-fNIRS might provide better depth sensitivity. A main finding was that 
TR-fNIRS detected MI-related brain activity in SMA. Whether the same holds for CW-fNIRS has not been shown 
yet. The present study aims at closing this gap by considering spatial specificity and task sensitivity properties 
of SMA activity measured by CW-fNIRS. A second aim of this study was to contribute information regarding 
the choice of the signal used for CW-fNIRS neurofeedback, that is, �[HbO] or �[HbR] . Most previous fNIRS 
neurofeedback studies employed �[HbO] signals of motor areas because of larger amplitudes as compared to 
�[HbR] signals13. When compared to fMRI, there is no agreement on whether �[HbO] or �[HbR] provide better 
spatial specificity and task sensitivity4. Finally, a third aim of this study was to assess whether individual anatomi-
cal images are needed to improve fNIRS channel selection and thereby future fNIRS neurofeedback application.

In the present study, (f)MRI and fNIRS data were collected in a consecutive setup. The main region of inter-
est was the SMA, for which both ME and MI data were analysed. Bilateral M1 was included for the purpose of 
validation of the overall procedure. M1 analyses were restricted to ME data. For ME and M1 it was expected 
that analyses would confirm that ME results in activation in CW-fNIRS channels in spatial correspondence to 
M1 fMRI activation, with M1 defined by individual anatomical images, and that the M1 fNIRS signal follows 
a similar time course as the M1 fMRI signal (spatial specificity). Comparable task-related modulations were 
expected for fNIRS and fMRI, in particular a lateralisation of activation with stronger activation in contralateral 
M1 (task sensitivity). For SMA it was predicted that ME and MI activate SMA as confirmed by (f)MRI, and that 
the activation is evident in spatially corresponding fNIRS channels. The time course of SMA fNIRS data was 
expected to match the SMA fMRI time course (spatial specificity). Further, task-related differences in fMRI SMA 
activation were predicted to be evident also in fNIRS SMA data, in particular a stronger activation for ME than 
MI task was expected (task sensitivity). To address the choice of neurofeedback signal, spatial specificity and 
task sensitivity were considered for both, �[HbO] and �[HbR] . Regarding the value of individual anatomical 
images for fNIRS analysis, analyses were performed twice, once with the full fNIRS channel set and once with 
channels that were selected based on individual anatomy.

Results
Subjects.  Out of 34 participants (17 females, 17 males) a total of 18 participants were excluded because of 
the following reasons: mild cognitive decline as detected by the MoCa (2), poor fNIRS signal quality (2), falling 
asleep in the MR scanner (1), typing with the wrong hand (2), forgetting repeatedly not to execute the move-
ments during MI (1), cancelling the second session (1), insufficient cap placement (2), a beta mask that did not 
cover the whole cortex (1), and electromyography (EMG) signal saturation (fMRI session) (2) and excessive 
movement during MI (4). The latter was the case if for a participant more than half of the trials of a single MI 
task were classified as movement trials in either of both sessions (fNIRS or fMRI; for more details cf. section 
Electromyography (EMG)). A sample of N = 16 subjects (10 females, 6 males; age [mean ± SD]: [64.00 ± 5.27] 
years; range 56 to 71 years) remained for analyses.

Spatial specificity.  Between subjects: topographical similarity.  Figure 1 illustrates the averaged beta topo-
graphic maps for all tasks and data types (fMRI PEAK, fMRI CHANLOCS, fNIRS �[HbO] and fNIRS �[HbR] ). 
Descriptively, regarding the ME data (cf. Fig. 1A), for both ME LEFT and ME RIGHT a clear M1 lateralisation 
with comparable spatial patterns can be seen for fMRI PEAK and fMRI CHANLOCS data. For fNIRS �[HbO] 
and fNIRS �[HbR] data types this lateralisation seems reduced for ME LEFT for the fNIRS �[HbR] data type. 
However, the spatial patterns of fNIRS �[HbO] and fNIRS �[HbR] data are very similar. For the MI tasks (cf. 
Fig. 1B) the spatial patterns of fMRI CHANLOCS data type and fNIRS data types seem less comparable among 
one another. However, fNIRS �[HbO] and fNIRS �[HbR] data show similar spatial patterns. Descriptively, the 
MI WHOLE BODY task seems to be the most spatially specific within the ROI SMA.
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Figure 1.   Between subjects: topographical similarity between data types fMRI CHANLOCS, fNIRS �[HbO] , 
and fNIRS �[HbR] of (A) ME tasks and (B) MI tasks. For comparison, fMRI PEAK maps are included in the 
first column. Note that beta color bars are different for fMRI PEAK, fMRI CHANLOCS, and fNIRS data types. 
Lines below the maps show the Spearman correlation coefficients of the correlation between the respecting two 
connected topographic maps. Beta maps of fMRI PEAK were visualized using BrainNet Viewer32 (http://​www.​
nitrc.​org/​proje​cts/​bnv/).

http://www.nitrc.org/projects/bnv/
http://www.nitrc.org/projects/bnv/
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Spearman correlations were performed between the averaged beta maps of data types fMRI CHANLOCS, 
fNIRS �[HbO] and fNIRS �[HbR] to test for topographical similarity. For ME LEFT and ME RIGHT all correla-
tions were significant ( p < .05 ; cf. Fig. 1A for exact values), except for the comparison between fMRI CHAN-
LOCS and fNIRS �[HbR] for task ME RIGHT. For the MI tasks the picture was slightly mixed. For MI RIGHT all 
correlations were significant for all pairs (all p < .05 ; cf. Fig. 1B for exact values). For MI LEFT and MI WHOLE 
BODY only the comparisons between fNIRS �[HbO] and fNIRS �[HbR] were significant ( p < .01 ). Overall, 
these results indicate a high spatial specificity for the fNIRS data types of the ME tasks. Spatial specificity of the 
fNIRS data type is somewhat reduced in the MI tasks.

Within subjects: time series correlation.  Within subject analysis of spatial specificity focused on time series cor-
relations within ROIs. Individual grand average time series data of fMRI PEAK data type and all other data types 
were Spearman correlated separately for each ROI. As illustrated in Fig. 2, the averaged Fisher’s z-transformed 
Spearman correlation coefficients were generally positive for fMRI CHANLOCS and fNIRS �[HbO] and nega-
tive for fNIRS �[HbR].

The results of one-sample t-tests indicated for all data types a strong relationship with the fMRI PEAK data 
type for the ME tasks in the M1 ROIs (all p < .01 , all |d| ≥ 0.95 ). In addition, all analyses revealed a stronger 
correlation in the hemisphere contralateral to the executed hand. Patterns and statistical results were virtually 
identical for LABELED fNIRS data. (cf. Fig.  2A,B,D,E and Table 1).

For ROI SMA (cf. Fig.  2C,F), the pattern was less homogeneous. For both ME tasks t-tests were likewise 
highly significant for all data types (all p < .05 , all |d| ≥ 0.96 ; cf. Table 2). For the MI tasks all t-tests were 
highly significant for fMRI CHANLOCS (all p < .001 , all |d| > 1.19 ; cf. Table 2). For fNIRS �[HbR] all MI 
tasks ( p < .01 , |d| ≥ 1.01 ) and for fNIRS �[HbO] MI LEFT and MI RIGHT tasks ( p < .05 , |d| ≥ 0.64 ) were 
significantly different from zero.

Figure 2.   Within subjects: time series correlation. (A,B) Bar plots of the averaged Fisher’s z-transformed 
Spearman correlation coefficients between the individual grand average time series data of fMRI PEAK data 
type and data types fMRI CHANLOCS, fNIRS �[HbO] and fNIRS �[HbR] for ME tasks. (D,E) Illustrate the 
same for fNIRS �[HbO] and fNIRS �[HbR] LABELED. In (C) SMA data are shown for all tasks and data types 
and in (F) the same for fNIRS �[HbO] and fNIRS �[HbR] LABELED. Note: Error bars represent standard error 
of the mean. Asteriscs indicate statistical significance.
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In sum, the results confirmed the predicted task-related spatial specificity of fNIRS time series data, most 
clearly for ME tasks. For the MI tasks spatial specificity was strongest in �[HbO] for MI LEFT and for �[HbR] 
in MI WHOLE BODY.

Channel labeling.  Descriptively, for the vast majority of combinations of ROI, task and data type, statistical 
values and effect sizes decreased for the LABELED fNIRS data types (cf. Tables 1 and 2). The only exceptions 
were the combination of ME RIGHT and �[HbR] LABELED at ROI M1 LEFT as well as ME LEFT and �[HbO] 
LABELED at ROI SMA.

Task sensitivity.  Between subjects: task‑related activation patterns.  For ROI M1, descriptively, a clear later-
alisation for both ME tasks can be seen for all data types (cf. Fig. 3A). Regarding ROI SMA (cf. Fig. 3B), all data 
types except for fNIRS �[HbO] show stronger activation in ME tasks as compared to MI tasks. The increments 
in activation, again descriptively, differ between data types for both ME and MI tasks.

For M1 ROIs highly significant interactions between task and hemisphere ( p < .001 ) were found for all data 
types. Post-hoc tests comparing activation of both ME tasks within ROI M1 RIGHT were highly significant (all 
p < .001 ; cf. Table 3) for all data types. For ROI M1 LEFT results indicated highly significant differences between 
ME tasks ( p < .05 ) for all data types. For detailed results see Table 3.

Except for data type fNIRS �[HbO] , all rmANOVAs for the ROI SMA yielded a main effect of the factor task 
(cf. Table 4). Post-hoc tests revealed mixed results for pair-wise comparisons (cf. Fig. 3B and Table 4). How-
ever, no pair-wise comparison indicated significant differences between ME LEFT and ME RIGHT tasks. With 
respect to the MI tasks, only data type fMRI PEAK revealed a significant difference between MI LEFT and MI 
WHOLE BODY ( t(15) = 2.99 , p < .05 , d = 0.75 ). For fNIRS data types, only for �[HbR] ME task activation 
was significantly stronger than MI task activation.

Channel labeling.  With respect to ME tasks in M1, after adding anatomical information the comparison 
between ME LEFT and ME RIGHT in ROI M1 LEFT of fNIRS �[HbR] LABELED was not significant anymore, 

Table 1.   Within subjects: time series correlation (ME tasks and M1 ROIs). Table contains the results of all one 
sample t-tests of the Fisher’s z-transformed Spearman correlation coefficients from the correlation between the 
individual fMRI PEAK grand average time series data with the grand average time series data of all other data 
types. (mean ± SEM) represents the averaged z-transformed Spearman correlation coefficients and its standard 
error of the mean. P-values are corrected for multiple comparisons.

fMRI PEAK ∼

ME LEFT

M1 LEFT M1 RIGHT

fMRI 
CHANLOCS fNIRS �[HbO] fNIRS �[HbR]

fMRI 
CHANLOCS fNIRS �[HbO] fNIRS �[HbR]

(mean ± SEM) (0.93± 0.21) (0.88± 0.08) (−1.10± 0.11) (1.77± 0.14) (1.26± 0.14) (−1.39± 0.09)

t-test

t(15) = 4.40
p < .001

d = 1.10
95%CI[0.48, 1.38]

t(15) = 11.44
p < .001

d = 2.86
95%CI[0.71, 1.04]

t(15) = −9.82
p < .001

d = −2.45
95%CI[−1.34,−0.86]

t(15) = 12.83
p < .001

d = 3.21
95%CI[1.48, 2.06]

t(15) = 8.72
p < .001

d = 2.18
95%CI[0.95, 1.57]

t(15) = −14.68
p < .001

d = −3.67
95%CI[−1.59,−1.19]

fNIRS�[HbO]
LABELED

fNIRS�[HbR]
LABELED

fNIRS�[HbO]
LABELED

fNIRS�[HbR]
LABELED

(mean ± SEM) (0.62± 0.13) (−1.10± 0.12) (1.08± 0.17) (−1.39± 0.10)

t-test

t(15) = 4.65
p < .001

d = 1.16
95%CI[0.34, 0.91]

t(15) = −9.46
p < .001

d = −2.36
95%CI[−1.35,−0.85]

t(15) = 6.31
p < .001

d = 1.58
95%CI[0.72, 1.45]

t(17) = −14.34
p < .001

d = −3.59
95%CI[−1.60,−1.18]

fMRI PEAK ∼

ME RIGHT

M1 LEFT M1 RIGHT

fMRI 
CHANLOCS fNIRS �[HbO] fNIRS �[HbR]

fMRI 
CHANLOCS fNIRS �[HbO] fNIRS �[HbR]

(mean ± SEM) (1.76± 0.12) (1.20± 0.09) (−1.35± 0.11) (1.23± 0.17) (0.65± 0.17) (−0.89± 0.12)

t-test

t(15) = 14.54
p < .001

d = 3.63
95%CI[1.50, 2.02]

t(15) = 13.70
p < .001

d = 3.42
95%CI[1.01, 1.39]

t(15) = −12.18
p < .001

d = −3.05
95%CI[−1.59,−1.11]

t(15) = 7.07
p < .001

d = 1.77
95%CI[0.86, 1.61]

t(15) = 3.82
p < .01

d = 0.95
95%CI[0.29, 1.01]

t(15) = −7.19
p < .001

d = −1.80
95%CI[−1.16,−0.63]

fNIRS�[HbO]
LABELED

fNIRS�[HbR]
LABELED

fNIRS�[HbO]
LABELED

fNIRS�[HbR]
LABELED

(mean ± SEM) (0.98± 0.14) (−1.33± 0.10) (0.57± 0.17) (−0.65± 0.17)

t-test

t(15) = 6.93
p < .001

d = 1.73
95%CI[0.68, 1.28]

t(15) = −12.79
p < .001

d = −3.20
95%CI[−1.55,−1.10]

t(15) = 3.27
p < .01

d = 0.82
95%CI[0.20, 0.93]

t(15) = −3.96
p < .01

d = −0.99
95%CI[−1.01,−0.30]
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however, all other comparisons were similar to the unlabeled versions (cf. Table 3). For ROI SMA, results of both 
�[HbR] and �[HbO] LABELED were comparable to those of the unlabeled data types (cf. Table 4). 

Within subjects: repeated measures correlation.  Within subjects task sensitivity was explored by means of 
repeated measures correlation33 analyses for each ROI. Correlations were conducted between the fMRI PEAK 
data type and all other data types.

For ROIs M1 LEFT and M1 RIGHT the strongest positive relationship of normalized beta values was observed 
between fMRI PEAK and fMRI CHANLOCS (M1 LEFT: r(63) = 0.89 , 95% CI [0.83, 0.93], p < .001 ; M1 RIGHT: 
r(63) = 0.88 , 95% CI [0.80, 0.92], p < .001 ). Also, fNIRS �[HbO] (M1 LEFT: r(63) = 0.47 , 95% CI [0.25, 0.64], 
p < .001 ; M1 RIGHT: r(63) = 0.66 , 95% CI [0.49, 0.78], p < .001 ) and fNIRS �[HbR] (M1 LEFT: r(63) = 0.62 , 
95% CI [0.45, 0.76], p < .001 ; M1 RIGHT:r(63) = 0.66 , 95% CI [0.50, 0.78], p < .001 ) showed strong positive 
relationships with the fMRI PEAK beta values.

Concerning ROI SMA, likewise, the strongest positive relationship between beta values was observed for 
fMRI PEAK and fMRI CHANLOCS data types(r(63) = 0.71 , 95% CI [0.55, 0.81], p < .001 ). For fNIRS �[HbO] 
( r(63) = 0.06 , 95% CI [−0.19, 0.30] , p > .05 ) and fNIRS �[HbR] ( r(63) = 0.29 , 95% CI [0.05, 0.50], p < .05 ) 
repeated measures correlation coefficients were highly reduced and only significant for fNIRS �[HbR].

Table 2.   Within subjects: time series correlation (all tasks and SMA ROI). Table contains the results of all one 
sample t-tests of the Fisher’s z-transformed Spearman correlation coefficients from the correlation between the 
individual fMRI PEAK grand average time series data with the grand average time series data of all other data 
types. (mean±SEM) represents the averaged z-transformed Spearman correlation coefficients and its standard 
error of the mean. P-values are corrected for multiple comparisons.

fMRI PEAK ∼
MELEFT ME RIGHT

fMRI CHANLOCS fNIRS �[HbO] fNIRS �[HbR] fMRI CHANLOCS fNIRS �[HbO] fNIRS �[HbR]

(mean ± SEM) (1.02± 0.15) (0.87± 0.10) (−0.90± 0.10) (1.29± 0.13) (0.68± 0.18) (−1.08± 0.10)

t-test

t(15) = 6.65
p < .001

d = 1.66
95%CI[0.69, 1.35]

t(15) = 8.71
p < .001

d = 2.18
95%CI[0.65, 1.08]

t(15) = −9.04
p < .001

d = −2.26
95%CI[−1.11,−0.69]

t(15) = 9.77
p < .001

d = 2.44
95%CI[1.01, 1.57]

t(15) = 3.84
p < .01

d = 0.96
95%CI[0.30, 1.06]

t(15) = −10.84
p < .001

d = −2.71
95%CI[−1.29,−0.86]

fNIRS�[HbO]
LABELED

fNIRS�[HbR]
LABELED

fNIRS�[HbO]
LABELED

fNIRS�[HbR]
LABELED

(mean ± SEM) (0.70± 0.13) (−0.85± 0.16) (0.68± 0.18) (−1.05± 0.12)

t-test

t(15) = 5.42
p < .001

d = 1.35
95%CI[0.43, 0.98]

t(15) = −5.30
p < .001

d = −1.33
95%CI[−1.20,−0.51]

t(15) = 3.74
p < .01

d = 0.94
95%CI[0.29, 1.07]

t(15) = −9.07
p < .001

d = −2.27
95%CI[−1.30,−0.80]

fMRI PEAK ∼
MI LEFT MI RIGHT

fMRI CHANLOCS fNIRS �[HbO] fNIRS �[HbR] fMRI CHANLOCS fNIRS �[HbO] fNIRS �[HbR]

(mean ± SEM) (0.98± 0.10) (0.57± 0.12) (−0.63± 0.12) (1.03± 0.16) (0.39± 0.15) (−0.47± 0.12)

t-test

t(15) = 9.90
p < .001

d = 2.48
95%CI[0.77, 1.19]

t(15) = 4.55
p < .001

d = 1.14
95%CI[0.30, 0.83]

t(15) = −5.31
p < .001

d = −1.33
95%CI[−0.89,−0.38]

t(15) = 6.60
p < .001

d = 1.65
95%CI[0.70, 1.36]

t(15) = 2.56
p < .05

d = 0.64
95%CI[0.07, 0.71]

t(15) = −4.06
p < .01

d = −1.01
95%CI[−0.72,−0.22]

fNIRS�[HbO]
LABELED

fNIRS�[HbR]
LABELED

fNIRS�[HbO]
LABELED

fNIRS�[HbR]
LABELED

(mean ± SEM) (0.53± 0.18) (−0.44± 0.15) (0.33± 0.14) (−0.49± 0.14)

t-test

t(15) = 2.89
p < .05

d = 0.72
95%CI[0.14, 0.93]

t(15) = −3.01
p < .05

d = −0.75
95%CI[−0.76,−0.13]

t(15) = 2.44
p < .05

d = 0.61
95%CI[0.04, 0.62]

t(15) = −3.50
p < .01

d = −0.88
95%CI[−0.79,−0.19]

MI WHOLE BODY

fMRI PEAK ∼ fMRI CHANLOCS fNIRS �[HbO] fNIRS �[HbR]

(mean ± SEM) (0.74± 0.16) (0.25± 0.14) (−0.74± 0.14)

t-test

t(15) = 4.76
p < .001

d = 1.19
95%CI[0.41, 1.07]

t(15) = 1.74
p > .05
d = 0.43
95%CI[−0.06, 0.55]

t(15) = −5.43
p < .001

d = −1.36
95%CI[−1.02,−0.45]

fNIRS�[HbO]
LABELED

fNIRS�[HbR]
LABELED

(mean ± SEM) (0.19± 0.14) (−0.50± 0.17)

t-test

t(15) = 1.29
p > .05
d = 0.32
95%CI[−0.12, 0.49]

t(15) = −2.86
p < .05

d = −0.71
95%CI[−0.87,−0.13]



7

Vol.:(0123456789)

Scientific Reports |         (2022) 12:3570  | https://doi.org/10.1038/s41598-022-06519-7

www.nature.com/scientificreports/

Figure 3.   Between subjects: task related activation patterns for (A) ME tasks in M1 ROIs and (B) all tasks in 
ROI SMA. Illustration of mean normalized beta scores (min-max beta values) and rmANOVA results for ME 
LEFT (blue) and ME RIGHT (turquoise), MI LEFT (red), MI RIGHT (orange) and MI WHOLE BODY (green) 
tasks for fMRI PEAK, fNIRS �[HbO] , fMRI CHANLOCS and fNIRS �[HbR] on the left side. On the right side 
of the dashed line the results from tasks fNIRS �[HbO] LABELED and fNIRS �[HbR] LABELED are shown. 
Note: Error bars represent standard error of the mean. Asterisks indicate significance corrected for multiple 
comparisons within a data type.
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Channel labeling.   Overall, in M1 and SMA the results of the repeated measures correlations between 
fMRI PEAK and fNIRS LABELED were comparable to the unlabeled versions (fNIRS �[HbO] LABELED 
M1 LEFT: r(63) = 0.41 , 95% CI [0.18, 0.60], p < .001 , M1 RIGHT: r(63) = 0.55 , 95% CI [0.35, 0.70], p < .001 , 
SMA: r(63) = 0.16 , 95% CI [−0.09, 0.39] , p > .05 ; fNIRS �[HbR] LABELED M1 LEFT: r(63) = 0.53 , 95% CI 
[0.32,  0.69], p < .001 , M1 RIGHT: r(63) = 0.56 , 95% CI [0.37,  0.71], p < .001 , SMA: r(63) = 0.33 , 95% CI 
[0.09, 0.53], p < .05 ) .

Discussion
The present study aimed at validating CW-fNIRS SMA recordings for ME and MI. We expected that fNIRS data 
would show good spatial specificity and task sensitivity, thereby matching fMRI data, which served as a basis 
for comparison.

Table 3.   Between subjects: task-related activation patterns (ME tasks and M1 ROIs). Table contains the results 
of all 2× 2 repeated measures ANOVAs with min–max normalized betas of both ME tasks as dependent 
variables.(mean±SEM) represents the averaged min–max normalised beta values and its standard error of the 
mean. P-values are corrected for multiple comparisons.

fMRI PEAK M1 LEFT

ME LEFT ∼ ME RIGHT
fMRI CHANLOCS M1 LEFT

ME LEFT ∼ ME RIGHT

Task
F(1, 15) = 0.03
p > .05
η2p = 0.00

(mean ± SEM) ME LEFT : (0.50± 0.07)
ME RIGHT : (0.99± 0.01)

F(1, 15) = 0.41
p > .05
η2p = 0.03

(mean ± SEM)
(mean±SEM) 
ME LEFT : (0.47± 0.07)
ME RIGHT : (0.97± 0.03)

Hemisphere
F(1, 15) = 0.10
p > .05
η2p = 0.00

t-test
t(15) = −6.62
p < .001

d = −1.67

F(1, 15) = 0.33
p > .05
η2p = 0.02

t-test
t(15) = −5.81
p < .001

d = −1.45

Task :

Hemisphere

F(1, 15) = 102.81
p < .001

η2p = 0.87
M1 RIGHT
ME LEFT ∼ ME RIGHT

F(1, 15) = 71.37
p < .001

η2p = 0.83
M1 RIGHT
ME LEFT ∼ ME RIGHT

(mean ± SEM) ME LEFT : (0.98± 0.02)
ME RIGHT : (0.48± 0.05)

(mean ± SEM) ME LEFT : (0.89± 0.06)
ME RIGHT : (0.47± 0.07)

t-test
t(15) = 9.48
p < .001

d = 2.37
t-test

t(15) = 4.59
p < .001

d = 1.15

fNIRS �[HbO] M1 LEFT
ME LEFT ∼ ME RIGHT

fNIRS �[HbR] M1 LEFT
ME LEFT ∼ ME RIGHT

Task
F(1, 15) = 0.00
p > .05
η2p = 0.00

(mean ± SEM) ME LEFT : (0.42± 0.10)
ME RIGHT : (0.92± 0.04)

F(1, 15) = 1.03
p > .05
η2p = 0.06

(mean ± SEM) ME LEFT : (0.61± 0.08)
ME RIGHT:(0.89± 0.05)

Hemisphere
F(1, 15) = 0.06
p > .05
η2p = 0.00

t-test
t(15) = −4.96
p < .001

d = − 1.24

F(1, 15) = 1.37
p > .05
η2p = 0.08

t-test
t(15) = −2.45
p < .05

d = −0.61

Task :

Hemisphere

F(1, 15) = 45.47
p < .001

η2p = 0.75
M1 RIGHT
ME LEFT ∼ ME RIGHT

F(1, 15) = 33.62
p < .001

η2p = 0.69
M1 RIGHT
ME LEFT ∼ ME RIGHT

(mean ± SEM) ME LEFT : (0.91± 0.06)
ME RIGHT : (0.40± 0.09)

(mean ± SEM) ME LEFT : (0.92± 0.05)
ME RIGHT : (0.47± 0.07)

t-test
t(15) = 3.79
p < .01

d = 0.95
t-test

t(15) = 5.09
p < .001

d = 1.27

fNIRS �[HbO] 
LABELED

M1 LEFT
ME LEFT ∼ ME RIGHT

fNIRS �[HbR] 
LABELED

M1 LEFT
ME LEFT ∼ ME RIGHT

Task
F(1, 15) = 0.01
p > .05
η2p = 0.00

(mean ± SEM) ME LEFT : (0.39± 0.09)
ME RIGHT : (0.85± 0.07)

F(1, 15) = 2.20
p > .05
η2p = 0.13

(mean ± SEM) ME LEFT : (0.65± 0.09)
ME RIGHT : (0.79± 0.08)

Hemisphere
F(1, 15) = 0.07
p > .05
η2p = 0.00

t-test
t(15) = −3.97
p < .01

d = −0.99

F(1, 15) = 1.38
p > .05
η2p = 0.08

t-test
t(15) = −1.03
p > .05
d = −0.26

Task :

Hemisphere

F(1, 15) = 50.61
p < .001

η2p = 0.77
M1 RIGHT
ME LEFT ∼ ME RIGHT

F(1, 15) = 14.94
p < .01

η2p = 0.50
M1 RIGHT
ME LEFT ∼ ME RIGHT

(mean ± SEM) ME LEFT : (0.87± 0.07)
ME RIGHT : (0.40± 0.08)

(mean ± SEM) ME LEFT : (0.87± 0.06)
ME RIGHT : (0.43± 0.09)

t-test
t(15) = 3.86
p < .01

d = 0.97
t-test

t(15) = 3.81
p < .01

d = 0.95
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Validation of the general procedure: M1 lateralisation.  Motor execution in general and finger tap-
ping tasks in particular are well established and typically show a stronger activation in the hemisphere contralat-
eral to the performing hand as compared to the ipsilateral hemisphere34–36. In the present study, both �[HbO] 
and �[HbR] signal types showed the expected lateralisation pattern at the group level. Moreover, time series 
correlations and repeated measures correlations confirmed a very good match between fMRI and fNIRS data 
within subjects. These results confirm spatial specificity and task sensitivity for fNIRS measurements of primary 
motor areas during motor execution.

Validation of SMA activation.  At the between-subjects level spatial specificity was determined by com-
paring fMRI CHANLOCS beta maps with the beta maps of �[HbO] and �[HbR] . Maps covered SMA and left 
and right M1. Descriptively and in most cases statistically, analyses indicated a very good spatial match for ME 
task maps. For MI task maps the match was reduced. Here, only the spatial correlations of MI RIGHT reached 

Table 4.   Between subjects: task-related activation patterns (ME and MI tasks and ROI SMA). Table contains 
the results of all repeated measures ANOVAs with min-max normalized betas as dependent variables. 
(mean±SEM) represents the averaged min–max normalised beta values and its standard error of the mean. 
P-values are corrected for multiple comparisons.

Task

fMRI PEAK fMRI CHANLOCS

F(2.95, 44.17) = 11.12 , p < .001 , η2p = 0.43 F(3.20, 48.04) = 4.94 , p < .01 , η2p = 0.25

Post hoc tests Post hoc tests

ME LEFT

(0.64 ± 0.10)

ME RIGHT

(0.87 ± 0.04)

MI LEFT

(0.48± 0.08)

MI RIGHT

(0.34 ± 0.08)

MIWHOLE BODY

(0.15± 0.08)

ME LEFT

(0.69± 0.09)

ME RIGHT

(0.74 ± 0.07)

MI LEFT

(0.36± 0.10)

MI RIGHT

(0.35± 0.09)

MIWHOLE BODY

(0.30± 0.09)

ME LEFT −
t(15) = −2.30
p > .05
d = −0.57

t(15) = 1.10
p > .05
d = 0.27

t(15) = 2.52
p < .05

d = 0.63

t(15) = 3.16
p < .05

d = 0.79
−

t(15) = −0.42
p > .05
d = −0.10

t(15) = 1.99
p > .05
d = 0.50

t(15) = 2.29
p > .05
d = 0.57

t(15) = 2.37
p > .05
d = 0.59

ME RIGHT − −
t(15) = 3.71
p < .01

d = 0.93

t(15) = 6.17
p < .001

d = 1.54

t(15) = 7.32
p < .001

d = 1.83
− −

t(15) = 2.87
p < .05

d = 0.72

t(15) = 3.53
p < .05

d = 0.88

t(15) = 3.97
p < .05

d = 0.99

MI LEFT − − −
t(15) = 1.37
p > .05
d = 0.34

t(15) = 2.99
p < .05

d = 0.75
− − −

t(15) = 0.14
p > .05
d = 0.03

t(15) = 0.50
p > .05
d = 0.13

MIRIGHT – – – –
t(15) = 1.41
p > .05
d = 0.35

− − − −
t(15) = 0.39
p > .05
d = 0.10

Task

fNIRS �[HbO] fNIRS �[HbR]

F(3.38, 50.62) = 1.42 , p > .05 , η2p = 0.09 F(3.67, 55.04) = 6.79 , p < .001 , η2p = 0.31

Post hoc tests Post hoc tests

ME LEFT

(0.49± 0.10)

ME RIGHT

(0.57 ± 0.10)

MI LEFT

(0.41± 0.10)

MI RIGHT

(0.32± 0.09)

MIWHOLE BODY

(0.62± 0.10)

ME LEFT

(0.66± 0.10)

ME RIGHT

(0.75± 0.07)

MI LEFT

(0.32± 0.08)

MI RIGHT

(0.22± 0.08)

MIWHOLE BODY

(0.34 ± 0.09)

ME LEFT − − − − − −
t(15) = −0.69
p > .05
d = −0.17

t(15) = 2.62
p < .05

d = 0.66

t(15) = 3.40
p < .05

d = 0.85

t(15) = 2.25
p > .05
d = 0.56

ME RIGHT − − − − − − −
t(15) = 3.47
p < .05

d = 0.87

t(15) = 5.71
p < .001

d = 1.43

t(15) = 3.28
p < .05

d = 0.82

MI LEFT – – – – – – – –
t(15) = 0.82
p > .05
d = 0.21

t(15) = −0.13
p > .05
d = −0.03

MI RIGHT – – – – – – – – –
t(15) = −0.97
p > .05
d = −0.24

Task

fNIRS �[HbO] LABELED fNIRS �[HbR] LABELED

F(2.87, 43.01) = 0.75 , p > .05 , η2p = 0.05 F(3.26, 48.94) = 6.95 , p < .001 , η2p = 0.32

Post hoc tests Post hoc tests

ME LEFT

(0.58± 0.08)

ME RIGHT

(0.50± 0.11)

MI LEFT

(0.46± 0.09)

MI RIGHT

(0.34 ± 0.09)

MIWHOLE BODY

(0.52± 0.11)

ME LEFT

(0.72± 0.10)

ME RIGHT

(0.71± 0.07)

MI LEFT

(0.32± 0.10)

MI RIGHT

(0.22± 0.06)

MIWHOLE BODY

(0.35± 0.09)

ME LEFT − − − − − −
t(15) = 0.01
p > .05
d = 0.00

t(15) = 2.75
p < .05

d = 0.69

t(15) = 5.04
p < .001

d = 1.26

t(15) = 2.61
p < .05

d = 0.65

ME RIGHT − − − − − − −
t(15) = 2.66
p < .05

d = 0.66

t(15) = 5.79
p < .001

d = 1.45

t(15) = 2.97
p < .05

d = 0.74

MI LEFT – – – – – – – −
t(15) = 0.82
p > .05
d = 0.21

t(15) = −0.24
p > .05
d = −0.06

MI RIGHT – – – – – – – – –
t(15) = −1.15
p > .05
d = −0.29
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significance. Notably, at a descriptive level, fNIRS SMA activation was most specific across data types for the MI 
WHOLE BODY task. Within-subjects time-series correlations for the SMA indicated that for ME tasks, correla-
tions were comparably high for fMRI CHANLOCS on the one hand, and fNIRS data types on the other, indicat-
ing an excellent match between fMRI PEAK and channel data. With respect to the MI task correlations, again, 
all time-series correlations were significant with the one exception of �[HbO] in the MI WHOLE BODY task.

Within-subjects analyses of task sensitivity indicated that the task activation pattern of fMRI PEAK was, 
unsurprisingly, most closely matched by fMRI CHANLOCS data. Task sensitivity was reduced for both fNIRS 
data types. Across all data types between-subjects analyses showed that ME was generally associated with stronger 
activation than MI. However, pairwise comparisons indicated that even for fMRI PEAK data, this basic differ-
ence was not significant for all ME-MI pairs. Within MI tasks, fMRI PEAK data suggested a stepwise reduction 
in activation from MI LEFT to MI RIGHT to MI WHOLE BODY. Notably, this reduction was only significant 
between tasks MI LEFT and MI WHOLE BODY. For fMRI CHANLOCS activation seemed very comparable 
across the three MI tasks, whereas for fNIRS data types, descriptively, MI WHOLE BODY was associated with 
the strongest activation, followed by MI LEFT and MI RIGHT. However, none of the pairwise comparisons was 
significant. Thus, even though in terms of activation strength MI WHOLE BODY seems to be the winner for 
fNIRS, regarding MI task sensitivity the results remain inconclusive.

In summary, the results indicate that spatial specificity of fNIRS is strong for ME tasks for both �[HbO] and 
�[HbR] . For MI tasks spatial specificity seems generally lower, although the combination of �[HbR] and MI 
WHOLE BODY revealed the highest spatial specificity on a within subjects level. Task sensitivity was stronger for 
�[HbR] as compared to �[HbO] at both within and between subjects level. Dravida et al.37 observed an overall 
stronger (test–retest) spatial specificity for �[HbR] , whereas task-related (test–retest) reliability was stronger for 
�[HbO] . The authors argued that the results were not only dependent on the signal type, but also on the per-
formed (motor execution) task. Moreover, results improved after fNIRS data was corrected for systemic activity37, 
emphasizing the significance of applying adequate correction methods in order to increase spatial specificity and 
task sensitivity in fNIRS research. The results of the present study also indicate that differences between �[HbO] 
and �[HbR] in spatial specificity and task sensitivity are task- and signal-dependent. However, fNIRS and fMRI 
studies comparing different MI tasks are lacking, and most existing fNIRS studies that included a MI task did 
not report �[HbR] , making it difficult to compare the present findings. Furthermore, there is a lack of research 
on the neural correlates of MI of whole body movements. To the best of our knowledge, only one fMRI study 
compared MI of complex (everyday) upper limb and whole body movements38. Although the results revealed 
that both MI tasks activate similar brain areas as MI of hand/finger movements including the SMA, no direct 
comparison with hand/finger movements was conducted, which again limits comparability with the present study.

Notably, even for ME tasks, spatial specificity and task sensitivity of fNIRS data was somewhat reduced as 
compared to fMRI PEAK data. This could be taken as evidence for a general shortcoming of the CW-NIRS. How-
ever, differences in activation patterns were not only present between fMRI PEAK and fNIRS data, but already 
between fMRI PEAK and fMRI CHANLOCS data. This indicates that to some degree, differences between fMRI 
PEAK and fNIRS data result from the distance between the location of a channel and that of the fMRI PEAK 
activation. Differences between fNIRS channel data types and fMRI CHANLOCS could indicate that the 5 mm 
sphere used to extract voxels for fMRI CHANLOCS included voxels that were not reached by the near infrared 
light, but were closer to the fMRI PEAK location. A more precise way of estimating the involved voxels for each 
channel could be to simulate the propagation of the near infrared light in the tissue29,39,40.

Individual anatomical information: labeled channels.  A limitation of fNIRS is the lack of anatomi-
cal information4. In order to assess how individual anatomical information affects spatial specificity and task 
sensitivity, fNIRS data were also analysed only for those channels for which co-registration analysis confirmed 
that they covered either M1 or SMA. Overall, results did not change remarkably for the labeled channel set. 
However, as a general tendency effect sizes tended to decrease. This effect may indicate potential inaccuracies in 
cap placement. That is, higher effect sizes of the unlabeled fNIRS data types may result from picking up activity 
from neighboring but stronger activated brain regions (e.g., a channel supposed to cover the SMA and therefore 
picked for SMA data analysis actually records data from M1). Of course, the same problem could arise due 
to individual differences in brain anatomy. In order to minimize inaccuracies resulting from cap placement, 
anatomical landmarks should always be incorporated when placing the cap41. Besides, a suitable tool can help 
to design an optode layout and verify correct placement with respect to the regions of interest (e.g., fOLD5; 
AtlasViewer6). Additionally and if available, the application of a 3D digitizer should be considered in order to 
control for satisfying individual cap placement (e.g., with AtlasViewer). Subjects with poor cap placement can 
thus be detected and excluded from further analyses.

Taken together, for the present data set, individual anatomical information did not increase spatial specificity 
and task sensitivity of fNIRS data in motor regions for ME and MI tasks. Whether this result is transferable to 
other brain regions remains to be shown.

Which fNIRS signal should be used for neurorehabilitation purposes?  With respect to ME tasks 
and motor regions, several CW-fNIRS-fMRI co-registration studies set out to identify the signal type with the 
strongest relationship to fMRI BOLD. However, findings are ambiguous as in some cases �[HbR]22 was most 
strongly related with fMRI BOLD, while in others it was �[HbO]25,27. A possible reason for this inconsistency 
may be the lack of systemic activity correction in these early studies. It is well known that systemic artifacts can 
be distributed over the head and show complex characteristics within and between subjects as well as across 
tasks3,7,12,37. If not appropriately taken care of, the artifact is likely to affect the experimental effects9,10. Problems 
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arising from systemic artifacts are assumed to be stronger for �[HbO] than �[HbR]7,37, though weaker is not 
equivalent to absent9.

In the present study short-distance channel correction was applied in order to minimize systemic activity in 
the CW-fNIRS signal. When the aim is to use MI in combination with SMA neurofeedback, based on these data 
we suggest to give preference to �[HbR] , in particular when used with MI of whole body movements. Also, when 
considering all results together, for MI of finger/hand movements �[HbR] might be the better choice. When 
ME generated signals are relevant, then the results of our analysis indicate a slightly stronger task sensitivity for 
�[HbO] , but only for the M1 and not for the SMA region. However, our study does not support a firm conclu-
sion on the question of which fNIRS signal type to use for neurorehabilitation neurofeedback. Rather, our study 
demonstrates the importance of critically evaluating the choice of signal in a particular fNIRS neurofeedback 
application.

Limitations.  Our study has several limitations. One is that due to hardware limitations fNIRS and fMRI 
were recorded consecutively, not concurrently. Simultaneously recorded data would not increase the spatial 
specificity or task sensitivity of fNIRS measurements per se, but would improve the accuracy of co-registration 
and be particularly useful for understanding discrepancies between fMRI and fNIRS results. Based on this lack 
of simultaneous measurements, it is possible that the performance of the ME and MI tasks between sessions 
differed. This variability in task performance between data types could have influenced the results of the present 
study.

In this work, an optical digitizer was used to collect individual optode and marker point positions for fNIRS 
recordings. The optical digitizer works with two cameras that detect the position of a pointing stick. However, 
the field of view of the digitizer’s camera was too narrow, for which reason the connection to the pointing stick 
was lost numerous times. Compensatory movements of the stick resulted in position inaccuracies. To account 
for these inaccuracies, a correction method based on the individual 10-5 positions generated by AtlasViewer 
and a rigid transformation was applied. However, this correction method introduced another potential source 
of error because individual anatomical locations have to be selected manually in the AtlasViewer GUI.

For the filter settings the recommendations of Pinti et al. were followed, that is, a FIR bandpass filter with 
cut-off frequencies of [0.01, 0.09] Hz and a filter order of 1000. The lower cut-off frequency of 0.01 Hz was 
chosen to not attenuate the task frequency ( 0.0270− 0.0303 Hz). The filter did likely not account for very low 
frequency oscillations which typically overlap with or are very close to the task frequency and are therefore dif-
ficult to remove42.

One question raised in this study is the choice of fNIRS signal for SMA neurofeedback. We restricted our 
analyses to �[HbO] or �[HbR] because these are the most used signals in this area of research. Other potentially 
interesting signal types not taken into consideration here would be total hemoglobin concentration changes4 
(i.e., �[HbT] = �[HbO] + �[HbR] ) or the difference between �[HbO] and �[HbR]43 (i.e., �[HbDiff ] = �[HbO] 
− �[HbR]).

Conclusions.  We validated CW-fNIRS SMA recordings by comparing their spatial specificity and task sen-
sitivity to fMRI. Spatial specificity and task sensitivity were in many aspects comparable to fMRI, though some 
fluctuation was evident for particular combinations of MI task and fNIRS measure. We nonetheless conclude 
that CW-fNIRS can be employed in SMA neurofeedback in corresponding setups. We used short-distance chan-
nels to correct for systemic artifacts in the fNIRS data. The correction improves our confidence in the present 
results, in particular in relation to earlier reports that did not apply any systemic artifact correction. We think 
it is important that future fNIRS studies with or without neurofeedback similarly employ systemic artifact cor-
rection. Ideally, this will be based on short-distance channel recordings, which we believe will quickly become 
standard. Because of the advance in fNIRS signal preprocessing and because of the observed fluctuations in 
results for particular combinations of task and fNIRS measure we conclude that fNIRS paradigms will continue 
to benefit from systematic validation by fMRI, in particular if they target a specific cortical region.

Methods
Subjects.  Participants were recruited by way of advertisement in local newspapers. In one session fMRI 
data and in the other session fNIRS data were collected. Based on the study by Abdalmalak et al.31, we aimed for 
at least 15 data sets with both valid fNIRS and valid fMRI data. In total, 34 participants (17 females, 17 males) 
participated in the study. Handedness was assessed by means of the Edinburgh Handedness Inventory (EHI44). 
All participants were right handed with a mean laterality quotient of 95.50 ± 8.89 (mean ± SD; range: 71 to 100). 
To exclude mild cognitive decline, the Montreal Cognitive Assessement (MoCA; all subjects in the final sample 
> 25 points) was applied which ranges from 0 to 30 with higher scores indicating better performance. Two indi-
viduals were excluded because of a MoCa score below 25 points. EHI and MoCA were only conducted in the 
first session. Furthermore, the Kinesthetic and Visual Imagery Questionnaire was conducted in both sessions 
before start of the experiment in order to familiarize the subjects with the general concept of motor imagery and 
to clarify the difference between visual and kinesthetic motor imagery.

Only participants without a history of psychological, psychiatric and neurological disorders, with normal 
or corrected-to-normal vision and without any experience in piano playing were included. After explanation 
of the study, all subjects gave written informed consent. Participants were paid 10 Euros/h as reimbursement. 
In accordance to the Declaration of Helsinki, the study was approved by the Medical Ethics Committee of the 
University of Oldenburg (permit number: 2017-139).
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Experimental design.  Subjects participated in one fMRI and one fNIRS session which were at least 14 
days apart (mean ± SD: [17.38 ± 3.50] days; range: 14 to 25 days) in order to avoid habituation. The experimen-
tal design was identical in both sessions. The order of the sessions was pseudo-randomized, resulting in eight 
subjects starting with the fNIRS and eight subjects starting with the fMRI session. For both sessions, the main 
experiment consisted of five different tasks. Two tasks were ME tasks and three were kinesthetic MI tasks (cf. 
Fig. 1B in supplementary material). The main task for both ME and MI tasks was a self-paced 5-position finger 
tapping task (sequence: 4-1-3-2-4) with either the left or the right hand (ME LEFT, ME RIGHT and MI LEFT, 
MI RIGHT). In this task each finger was assigned a key on a number pad (1 = index finger, 2 = middle finger, 
3 = ring finger, 4 = little finger). Keys had to be pressed in a pre-specified order (cf. Fig. 1A in supplementary 
material) and continuously for the duration of a task block. In a familiarization phase participants learned and 
practiced the finger tapping sequence with each hand until they memorized the sequence. The fifth task was MI 
of a self-selected bilateral whole body movement (MI WHOLE BODY). The only restriction for this task was 
that the imagined movement included both arms and legs (e.g., swimming) and that the subject had experience 
in performing the movement. The experimenter asked the participants to provide own ideas for movements and 
did not provide examples. The order of task runs was pseudo-randomized for each session with the restriction 
that not all three MI tasks were presented consecutively in order to reduce fatigue.

A task block always started with the task instruction for the task block (e.g. ‘BEWEGEN’ [‘MOVE’] for an 
ME block, cf. Fig. 1C in supplementary material). This was followed by a rest phase of 18–22 s duration. A task 
run comprised 12 task blocks. Each task block consisted of a 15 s task period indicated by the word ‘START’ 
and 18–22 s of rest period indicated by the word ‘STOP’. For finger tapping blocks an arrow pointing to the left 
or the right indicated which hand to use. In whole body movement blocks the arrow was replaced by a human 
silhouette. Participants were instructed to execute or imagine the movement for as long as the word ‘START’ was 
on screen and then stop. After six task blocks and between two task runs subjects had 15 s breaks. Participants 
were instructed to move as little es possible during the whole experiment. The fMRI session was concluded by 
an anatomical scan.

Data recording.  Electromyography (EMG).  Electromyography (EMG) data were recorded from the ex-
tensor digitorum communis muscle on both arms. Two electrodes were placed on each arm, resulting in two 
bipolar channels. In the fNIRS session, the common electrode was attached to the processus styloideus ulnae 
and in the fMRI session to the left ankle. In the fNIRS session, EMG was recorded with BrainVision Recorder 
(version 1.21.0303) using a BrainAmp DC Amplifier in combination with a BrainAmp ExG MR (BrainProducts, 
Gilching, Germany). In the fMRI session an MR-compatible BrainAmp MR in combination with a BrainAmp 
ExG MR (BrainProducts, Gilching, Germany) and MR-compatible electrodes were used. The sampling rate was 
1 kHz with online filtering between 0.1 and 250 Hz.

Functional near infrared spectroscopy (fNIRS).  FNIRS data were recorded with a NIRScout 816 device (NIRStar 
15.2, NIRx Medizintechnik GmbH, Berlin, Germany). The eight LED sources (intensity 5 mW/wavelength) and 
the eight detectors resulted in a total of 20 channels of which the 16 channels covering both hemispheres of M1 
and SMA (approximated with the fOLD toolbox5 (v2.2; BrainAtlas: AAL2; Anatomical Landmarks: Supp_Motor_
Area_ L and Supp_Motor_Area_ R; BrainAtlas: Brodmann; Anatomical Landmarks: 4—Primary Motor Cortex; 
Specificity: 30%) were selected for analysis (cf. Fig. 4B). For the removal of systemic activity artifacts eight short 
separation detectors were attached to the eight light sources. The NIRS optodes were placed according to the inter-
national 10-5 system in a custom-made cap. The Cz position was used as a marker for correctly positioning the 
cap. If necessary optodes were attached to the cap with spring-loaded grommets (NIRx Medizintechnik GmbH, 
Berlin, Germany). This helped to reduce optode movement and improved contact between optodes and scalp. The 
distance between a source and a regular detector was approximately 3 cm, whereas the distance between a source 
and its short-distance detector was fixed at 0.8 cm. The sources emitted near infrared light at wavelengths 760 nm 
and 850 nm. Light intensity was sampled with a rate of 7.8125 Hz. For each subject optode positions and fiducial 
points (Nz, LPA and RPA) were digitized with an optical digitizer (Xensor, ANT Neuro, The Netherlands) at the 
end of the fNIRS session in order keep to the course of fMRI and fNIRS sessions comparable.

Functional magnetic resonance imaging (fMRI).  FMRI data were collected with a 3T whole-body Siemens Mag-
netom Prisma MRI and a 20-channel head coil (Siemens AG, Erlangen, Germany). Functional images were 
acquired with an ascending echo-planar imaging (EPI) sequence (voxel size = 3× 3× 3 ; TR = 2000 ms, TE = 
30 ms, flip angle = 75◦ ; FoV = 192× 192 mm, base resolution = 64× 64 voxels; 36 transversal 3 mm slices with 
a gap of 10% acquired in an interleaved mode; phase coding direction: anterior to posterior). T1-weighted struc-
tural images were acquired with a magnetization prepared rapid gradient-echo (MP-RAGE) sequence (voxel 
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Figure 4.   Schematic illustration of (A) the ROIs for the fMRI data extraction and (B) the channel layout and corresponding fNIRS ROIs 
approximated by means of the fOLD toolbox5 for the fNIRS data extraction. In addition, on the right side of (B) the channel frequency across 
subjects after channel pruning is visualized. For each subject the channel positions and the individual anatomical images were co-registered 
and channels were labeled as covering one of the fMRI ROIs or not. (C) Illustrates the frequency at which channels were labeled as covering 
an fMRI ROI. For easier comparison channels are overlaid on the fNIRS ROIs. The fNIRS ROIs and the corresponding channels are 
separately illustrated because some channels were assigned to more than one ROI (e.g., channel 19). The lower part of the figure illustrates 
all steps taken to extract data types (D) fMRI PEAK, (E) fNIRS �[HbO] and �[HbR] , (F) fNIRS �[HbO] and �[HbR] LABELED 
and (H) fMRI CHANLOCS. Boxes representing the final data type are highlighted with solid or dashed black lines. Data types (D,E) were 
derived directly from the functional data sets. For data types (F,H) co-registration of MRI and NIRS data was required. The large grey box (G) 
highlights the coregistration steps. In the figure, arrows between and within the smaller boxes illustrate the work flow. Arrows pointing from 
A to D and from B to E indicate that the areas from which functional data were extracted were restricted by a-priori ROI definitions. The 
arrow pointing from F to C indicates that (C) shows a result of co-registration and of labelling fNIRS channels based on individual anatomy.
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size = 0.8× 0.8× 0.8 ; TR = 2000 ms, TE = 2.07 ms, flip angle = 9 ◦ ; FoV = 240× 240 mm, base resolution = 
320× 320 voxels; 224 sagittal 0.75 mm slices with a gap of 50 %; phase coding direction: anterior to posterior).

Data processing and statistical analysis
Data preprocessing.  Electromyography (EMG).  EMG signals were collected in order to control for the 
absence of voluntary movements within the MI trials. The EMG data of the ME tasks served as training set. A 
classifier was trained to distinguish movement and no movement trials (Classification Learner App; The Math-
Works Inc., Natick, MA, USA). For each session, the training data set comprised 10–12 task phases of finger 
tapping EMG (one subject stopped typing in two trials of the fNIRS session).

EMG preprocessing was mainly performed by means of the EEGLAB toolbox (v14.2.1b45) using MATLAB 
R2019b (The MathWorks Inc., Natick, MA, USA). For the fMRI session the MRI gradient artifact was removed by 
an add-on function (pop_fmrib_fastr46) of eeglab that uses an average artifact template removal in combination 
with temporal principal component analysis (PCA). All subsequent preprocessing steps were identical for both 
sessions and included high-pass FIR filtering (pop_firws function; hamming window) with a cut-off frequency 
of 20 Hz and a filter order of 330, and wavelet denoising (Wavelet Signal Denoiser toolbox; The MathWorks 
Inc., Natick, MA, USA) with a Daubechies 4 (db4) wavelet (method: Bayes, threshold rule: soft; noise estimate: 
level dependent). The data was then epoched [0–15] s around stimulus onset for the training set and [−2.5–20] 
s around stimulus onset for the test set. For each epoch a root mean square envelope of the rectified signal was 
calculated (MATLAB function envelope() with a window length of 100 samples) and subsequently cut into 7.5 s 
segments, resulting in 20 to 24 movement and 20 to 24 no movement segments for each hand in the training set 
and in a total of 108 segments for the test set (3 MI tasks). For each of these segments, mean, standard deviation, 
wavelength, maximum value and log detector47 served as features for training the classifier based on a linear 
support vector machine algorithm.

If for a participant more than half of the trials of a single MI task were classified as movement trials the 
whole data set (fNIRS and fMRI) was excluded. This was the case in four participants (two fNIRS, two fMRI). 
Two additional subjects were excluded because no EMG analysis was possible for the MRI session due to signal 
saturation. On average 11.77 ( ±0.95 , ranging from 6 to 12 trials) MI trials (MI LEFT: 11.44 ± 1.55; MI RIGHT: 
12 ± 0; MI WHOLE BODY: 11.88 ±0.50 ) of the fMRI data and 11.40 ( ±1.57 , ranging from 6 to 12 trials) MI 
trials (MI LEFT: 11.38 ± 1.54; MI RIGHT: 11.50 ± 1.51; MI WHOLE BODY: 11.38 ±1.54 ) of the fNIRS data 
remained for analyses.

Functional near infrared spectroscopy (fNIRS) Preprocessing.   Signal quality was assessed by means of the 
qt-nirs toolbox (https://​github.​com/​lpoll​onini/​qt-​nirs; q-threshold = 0.65, sci-threshold = 0.6, psp-threshold 
= 0.1). Based on this, one subject had to be excluded because no channel remained for analysis. Furthermore, 
only data of those subjects were further processed if at least two channels in each ROI (SMA, M1 LEFT and 
M1 RIGHT) remained for analysis. This was the case for N = 16 individuals. Overall, on average across all 
subjects 2.69± 3.05 channels (range: 0 to 8 channels) out of the 16 channels covering the ROIs were pruned 
(SMA channels: 1.56± 1.63 ; M1 LEFT channels: 0.88± 1.31 ; M1 RIGHT channels: 1.19± 1.38 ). The frequency 
of the remaining channels across all subjects is visualized in Fig. 4B. Across all subjects, all eight short distance 
channels remained for analysis. FNIRS data were analysed with a combination of the NIRS Brain AnalyzIR 
toolbox48 and custom made scripts. Raw data were transformed into optical density changes. Motion artifacts 
were corrected by means of the Temporal Derivative Distribution Repair (TDDR) approach49. In a next step 
the optical density changes were band-pass filtered with a zero-phase digital FIR filter ([0.01, 0.09]Hz with 
filter order = 1000 as recommended by Pinti et al.42). Data were then converted into hemoglobin concentration 
changes by means of the modified Beer-Lambert law (partial pathlength factor (PPF) = differential pathlength 
factor (DPF)*partial volume factor (PVF = 1/60)) using individual age-related DPFs50. Finally, systemic artifact 
correction was applied by means of a short distance channel regression procedure using all eight short distance 
channels of both �[HbO] and �[HbR] as regressors11,12 with an autoregressive iterative least square (AR-ILS) 
model51. Note, that for the correction procedure no task-related regressors were included and therefore, after 
running the GLM the residuals, which are in this case the cleaned data, were selected for further processing. 
Details for preprocessing can be found in Table 1 of the supplementary material.

General linear model.   The data were analysed with an autoregressive iterative least square (AR-ILS) model51. 
All five tasks, task instructions and breaks as well as their first and second derivatives were modeled with a 
canonical hemodynamic response function (delay = 6 s). In addition, a constant term modeling the trend was 
added as additional regressor. If movement was detected in the EMG analysis the corresponding MI task blocks 
were modeled in an additional regressor and were excluded from the estimation of MI-related activation. Result-
ing beta values were extracted from the main regressor of each task.

Functional magnetic resonance imaging (fMRI).  FMRI data were analysed with the Statistical Parametric Map-
ping toolbox (SPM12; Wellcome Trust Centre for Neuroimaging, London, UK) in combination with MATLAB 
2019a. As recommended by Poldrack et al.52 and in order to ensure transparency and replicability, all details for 
preprocessing can be found in Table 2 of the supplementary material.

Preprocessing.   In order to remove movement artifacts, fMRI data were registered to the mean image and res-
liced. The exported realignment parameters were visually inspected and served as quality control measures. No 
subject was excluded due to excessive head movement (image-to-image movement < 3 mm). Subsequently the 

https://github.com/lpollonini/qt-nirs
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data were coregistered to the realigned mean image and to the canonical single subject T1 image (SPM12) with 
respect to the functional and anatomical images, respectively. The coregistered data were afterwards segmented, 
bias corrected and spatially normalized and finally smoothed using a Gaussian kernel (full width half maximum 
= 8 mm).

General linear model.   In the GLM analysis a temporal high-pass filter (128 s) was applied and temporal auto-
correlations across scans were modeled with an AR (1) model. The masking threshold was set to zero in order to 
ensure that the whole cortex was included in the analysis. In spite of this, for one subject relevant voxels were not 
included in the mask. The subject was therefore excluded from analysis. Head movement parameters, a constant 
term and additionally to the regressors of the five main tasks, task instruction and break regressors, the first and 
second derivative were as well modeled within the GLM. For subjects with detected movement in the MI task 
blocks an additional regressor containing all the contaminated MI trials entered the GLM analysis in order to 
keep out movement contaminated trials from estimating MI-related activation. Data were then modeled with 
the canonical hemodynamic response function (delay = 6 s) as basis function.

fMRI‑fNIRS coregistration.  With the coregistration, normalized Montreal Neurological Institute (MNI) coor-
dinates of the fNIRS channels projected to the cortex were obtained. FMRI beta values and the BOLD signal 
were extracted from these coordinates for comparison with the fNIRS channel data. The coregistration workflow 
is illustrated in Fig. 4G and explained in detail below.

Generation of individual meshes and 10‑5 positions.   The first step of coregistration was the generation of 
individual head and brain meshes (cf. Fig. 4G1). For this, the subject-specific anatomical images were segmented 
using the ’recon-all’ command of the freesurfer software (version 653). A subset of the resulting freesurfer data 
(i.e., T1.mgz, brain.mgz, aseg.mgz, wm.mgz) were further processed with the AtlasViewer toolbox (v2.86) in 
combination with MATLAB 2016a. In AtlasViewer, a nifti (head.nii) and an mgz (hseg.mgz) file were created 
that contained structural MRI information consisting of head surface, CSF, grey and white matter. The hseg.mgz 
was used within AtlasViewer to select individual marker points (Cz, LPA, RPA, Nz and Iz) and to automatically 
generate 10-5 positions based on these marker points. Coordinates of the individual marker points and the 10-5 
positions were extracted for further analysis.

Correction of digitizer data.   For all following steps custom made scripts were used in combination with MAT-
LAB 2019a. The NIRS optode positions derived from the digitizer data were distorted in many data sets due to 
difficulties in hardware handling. Therefore, for all subjects, NIRS optode positions were derived from the 10-5 
positions generated by AtlasViewer. For this, the MRI fiducials (Nz, LPA and RPA) and with it the 10-5 positions 
were transformed to the corresponding fNIRS digitized fiducials by means of a rigid transformation54 (https://
github.com/nghiaho12/rigid_transform_3D). The transformed 10-5 positions were then assigned to the corre-
sponding NIRS optode positions. This procedure resulted in undistorted optode positions (cf. Fig. 4G2).

Optode and channel projection.   The structural MRI outputs (hseg.mgz) from AtlasViewer were used to gener-
ated head surface and brain (grey matter) meshes (iso2mesh toolbox55,56). NIRS optode positions were projected 
to the head surface with a rigid transformation54. More precisely, the undistorted optode positions were trans-
formed to the head surface by using the three fiducial markers of both the MRI and the NIRS coordinate sets. 
Optode locations that were projected to locations outside of or within the head surface were corrected by taking 
the closest (outer) head surface point lying on a straight line between the head surface’s center and the projected 
optode location (cf. Fig. 4G3).

Based on the head surface optode locations, channel positions were calculated as the midpoint of the Euclidian 
distance between a channels’ source and detector. If necessary, channel positions were corrected in the same way 
as described for optodes. In order to create fMRI channels, head surface channel positions were then projected 
onto the cortex mesh by using the balloon inflation method57. The average distance between head surface and 
projected cortex position across subjects and channels was (mean ± SD) (16.88 ± 1.80) mm, ranging from 14.60 
to 20.27 mm. Averaged distances across subjects are illustrated in Fig. 3 of the supplementary material.

Voxel extraction and MNI coordinates of channel positions.  For each fMRI channel, the cortex voxel resulting 
from the previous step served as the center of a sphere with a radius of r = 5 mm. The voxel coordinates within 
each of the spheres were extracted for further processing27. Across subjects and channels, this procedure resulted 
in an average number of ( 209.94± 13.81 ) voxels per fMRI channel, ranging from a minimum of 185.94 to a 
maximum of 240.74 voxels.

As a final step, the extracted voxel coordinates were transformed into normalized MNI coordinates. There-
fore, individual deformation fields were generated by employing the Deformations Utility of SPM12, using the 
deformation generated by SPM12 and the inverse of the normalized anatomical image in composition with the 
nifti file from the AtlasViewer output (head.nii). The resulting 5-dimensional deformation field was used to 
transform the voxel space coordinates to normalized MNI coordinates.

Voxel extraction based on local activation peaks.  In addition to voxel extraction based on the projected channel 
positions, voxels were extracted based on activation peaks within anatomical masks. Three anatomical masks 
were generated based on the AAL atlas of the wfupickatlas toolbox in SPM12 (v2.458,59). Masks comprised left 
and right M1 (ROIs M1 LEFT and M1 RIGHT; 3D dilatation = 1) represented by the precentral gyrus, and the 
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bilateral supplementary motor area (ROI SMA). ROIs are illustrated in Fig. 4A. Within each ROI and separately 
for each task, the maximum beta value was determined and the normalized MNI coordinates of the voxels of a 
sphere ( r = 5 mm) around the position of this value were extracted.

Beta values and time series.  Beta values were extracted for fMRI channel voxel spheres, for activation 
peak voxel spheres, and for the regular fNIRS channels. The voxel sphere betas were averaged within a sphere. 
This resulted in one beta value per fNIRS channel, one beta value per fMRI channel, and one beta value per 
fMRI ROI for each subject and task. Furthermore, for all subjects and tasks time series data were extracted. 
FMRI BOLD signals and fNIRS concentration changes were epoched ([−2.5 to 20] s around stimulus onset) and 
baseline corrected ([−2 to 0] s around stimulus onset). For the fMRI data, epochs were first averaged for each 
voxel and then averaged across all voxels of a sphere, resulting in one grand average BOLD signal per channel or 
ROI. For the fNIRS data epoched time series was averaged channel wise, resulting in one grand average signal 
per channel.

Individual anatomical information: labeled channels.  To investigate whether guiding fNIRS channel 
selection by individual anatomical images improves task sensitivity and spatial specificity, fNIRS channels were 
labeled regarding their ROI affiliation. That is, an fNIRS channel was labeled as belonging to one of the three 
ROIs (M1 LEFT, M1 RIGHT and/or SMA) if at least 25% of the sphere voxels of the corresponding fMRI channel 
were part of the ROI mask. All 16 channels passed through this process for each ROI. As a result a channel at the 
border of several ROIs can belong to each of these ROIs.

For M1 LEFT, an average of (± SD) (3.00 ± 0.89) channels (ranging from 2 to 5 channels) was assigned to 
ROI M1 LEFT by the labeling process. Regarding ROI M1 RIGHT, on average (± SD) (3.56 ± 1.09) channels 
(ranging from 2 to 5 channels) were labeled as belonging to the ROI. For ROI SMA on average (± SD) (4.25 ± 
0.68) channels (ranging from 3 to 6 channels) were labeled as ROI channels. The resulting channel frequencies 
of this labeling process is shown in Fig. 4C.

Data types.  Analyses comprised four functional data types: (1) fMRI PEAK data (derived from averaged 
betas of the sphere around the beta peak within an ROI; 5 tasks × 3 ROIs per subject; cf. Fig. 4D), (2) fMRI 
CHANLOCS data (derived from the averaged betas of the sphere around each projected channel location; 5 tasks 
× 16 channel spheres per subject and ROI; cf. Fig. 4H), (3) fNIRS �[HbO] , and (4) fNIRS �[HbR] data (5 tasks × 
16 channels per subject and ROI; cf. Fig. 4E). For the fNIRS data, analyses were also performed on individually 
labeled channel data only (cf. section “Individual anatomical information: labeled channels”). These subsets are 
referred to as fNIRS �[HbO] LABELED and fNIRS �[HbR] LABELED (5 tasks × 16 channels per subject and 
ROI; cf. Fig. 4F).

Statistical analyses.  Statistical analyses were performed with R (v4.0.2 ’Taking Off Again’60) in RStudio 
(v1.3.1093 ‘Apricot Nasturtium’61) and JASP (v0.1562). In order to correct for violations of sphericity (repeated 
measures analysis of variance; rmANOVA) the Greenhouse-Geisser correction method was used. As post hoc 
tests paired Student’s t-tests or pairwise t-tests were applied. In order to correct for multiple comparisons false 
discovery rate63 correction was used and either applied within a ROI (i.e., M1 or SMA in the following para-
graphs Within subjects: time series correlation and Within subjects: repeated measures correlation), across condi-
tions irrespective of ROI (i.e., paragraph Between subjects: topographical similarity) or within an statistical test 
(i.e., post hoc tests after ANOVA in paragraph Between subjects: task-related activation patterns). Additionally, 
test specific effect sizes (Cohen’s d or generalized η2G ) and 95% CI are reported.

Spatial specificity.  Spatial specificity describes how well a signal is defined in space. For non-invasive functional 
neuroimaging fMRI is considered the gold standard for spatial specificity. In the present study spatial specificity 
of fNIRS data was assessed by considering topographical similarity with fMRI CHANLOCS data and channel-
specific time series correlations with fMRI PEAK data.

Between subjects: topographical similarity.   fNIRS channel beta values were compared to fMRI CHANLOCS 
beta values on a between subjects level. For each data type (fMRI CHANLOCS, fNIRS �[HbO] , fNIRS �[HbR] ) 
and task separately, betas were averaged for each channel across subjects. This resulted in one topographic beta 
map for each task and data type. The topographic map of data type fMRI CHANLOCS was considered the gold 
standard. To examine the similarity between beta maps Spearman correlations were conducted. It was expected 
that the fNIRS beta maps show strong positive ( �[HbO] ) or negative ( �[HbR] ) relationships with the fMRI 
CHANLOCS beta maps. Furthermore, strong negative relationships between fNIRS �[HbO] and fNIRS �[HbR] 
beta maps were anticipated. Map correlations were expected to be strongest for ME tasks, but also for the MI 
tasks significant correlations were assumed.

Within subjects: time series correlation.  For each individual subject, ROI and task, the fMRI PEAK time 
series data were extracted and averaged across all voxels obtained by the procedure described in section Voxel 
extraction based on local activation peaks. For data types fMRI CHANLOCS, �[HbO] and �[HbR] as well as 
�[HbO] LABELED and �[HbR] LABELED, the channel with the strongest beta value of each task and ROI was 
selected for each subject individually. For fNIRS data types the time series signal of the respective channel was 
extracted for this analysis. For fMRI CHANLOCS, all time series of the voxels within the selected channel sphere 
were extracted and averaged before entering the analysis. This approach allowed us to test the correspondence 
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between the signal time series at the individual fMRI peak location, which is unrestricted by channel location, 
and the individual fNIRS or fMRI CHANLOCS peak location, i.e., the channel associated with the largest signal 
for a given task within a ROI.

Single subject fMRI PEAK time series data were correlated with the single subject time series data of the 
individually selected channels of fMRI CHANLOCS, fNIRS �[HbO] or fNIRS �[HbR] time series data and the 
LABELED versions of the fNIRS data. Correlations were run separately for each task. Resulting Spearman correla-
tion coefficients were Fisher z-transformed and one sample t-tests were conducted for each task and each fMRI 
PEAK—channel data pair. For the ROIs M1 LEFT and M1 RIGHT only ME tasks (ME LEFT and ME RIGHT) 
were included in the analysis. For the ROI SMA all tasks were included. It was expected that fMRI PEAK shows 
the strongest positive relationship with fMRI CHANLOCS data, followed by a reduced but still significant (posi-
tive or negative) relationships with fNIRS data types. Stronger correlations for labeled compared to unlabeled 
fNIRS data types would indicate a benefit from individual MRI-fNIRS coregistration.

Task sensitivity.  Task sensitivity describes how well signal changes are driven by task changes. For judging task 
sensitivity, the pattern of fMRI PEAK signal changes in consequence to task was considered as representative for 
all other data types. The latter were regarded as task sensitive when their pattern of task-related signal changes 
was comparable to the pattern of fMRI PEAK changes.

For both task sensitivity analyses, for data types fMRI CHANLOCS, fNIRS �[HbO] , fNIRS �[HbR] , fNIRS 
�[HbO] LABELED, and fNIRS �[HbR] LABELED the channel with the strongest beta value was selected. This 
was done separately for each subject, task (ME LEFT, ME RIGHT, MI LEFT, MI RIGHT and MI WHOLE 
BODY) and ROI, and thus resulted, for each data type, in five task-related beta values per ROI. An overview of 
the channel selection frequency for each data type, ROI and task is given in supplementary material Fig. 2A,B.

Due to the high between-subjects variability of fNIRS beta values, individual min–max normalization (cf. 
Eq. 1) was performed based on the five task-related beta values separately for each data type.

In Eq. (1) x represents the vector of the five task-related beta values per ROI for a single subject. For fNIRS 
�[HbR] data, the absolute value of each beta value was used. After min-max normalization the five betas range 
from 0 (lowest beta) to 1 (highest beta).

Between subjects.  Task-related activation patterns Regarding the M1 ROI, for each data type (fMRI PEAK, 
fMRI CHANLOCS, fNIRS �[HbO] and fNIRS �[HbR] [and LABELED versions]) a 2× 2 rmANOVA with the 
within subjects factors task (ME LEFT, ME RIGHT) and hemisphere (LEFT, RIGHT) was conducted with the 
min–max normalized (over all five tasks) beta values as dependent variables. For the SMA ROI, a one factorial 
rmANOVA with the within subjects factor task (ME LEFT, ME RIGHT, MI LEFT, MI RIGHT, MI WHOLE 
BODY) was implemented with the min-max normalized beta values as dependent variables. The overall expecta-
tion was to see comparable rankings of signal changes related to tasks for fMRI PEAK and each of the other data 
types. Regarding the M1 ROIs, the predicted pattern was that of a lateralisation of activity, that is, a significantly 
stronger activation in the hemisphere contralateral to the executing hand. For ROI SMA we predicted higher 
activation for the ME compared to the MI tasks, without specific predictions for the different MI tasks.

Within subjects.  Repeated measures correlation Repeated measures correlations (’rmcorr’ package33) were 
conducted with min–max normalized betas of data type fMRI PEAK and each of the other data type (fMRI 
CHANLOCS, fNIRS �[HbO] and fNIRS �[HbR] [and LABELED versions]). Correlations were run for each 
ROI (M1 LEFT, M1 RIGHT and SMA). A strong positive relationship represented by a high repeated measure 
correlation coefficient between fMRI PEAK and another data type would be indicative of task sensitivity within 
subjects.

Data availibility
The data sets generated and/or analysed during the current study are not publicly available due to data protection 
issues but are available from the corresponding author on reasonable request.
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