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A robust gene expression signature 
for NASH in liver expression data
Yehudit Hasin‑Brumshtein1, Suraj Sakaram1, Purvesh Khatri2,3, Yudong D. He1* & 
Timothy E. Sweeney1*

Non‑Alcoholic Fatty Liver Disease (NAFLD) is a progressive liver disease that affects up to 30% of 
worldwide population, of which up to 25% progress to Non‑Alcoholic SteatoHepatitis (NASH), a 
severe form of the disease that involves inflammation and predisposes the patient to liver cirrhosis. 
Despite its epidemic proportions, there is no reliable diagnostics that generalizes to global patient 
population for distinguishing NASH from NAFLD. We performed a comprehensive multicohort analysis 
of publicly available transcriptome data of liver biopsies from Healthy Controls (HC), NAFLD and 
NASH patients. Altogether we analyzed 812 samples from 12 different datasets across 7 countries, 
encompassing real world patient heterogeneity. We used 7 datasets for discovery and 5 datasets were 
held‑out for independent validation. Altogether we identified 130 genes significantly differentially 
expressed in NASH versus a mixed group of NAFLD and HC. We show that our signature is not driven 
by one particular group (NAFLD or HC) and reflects true biological signal. Using a forward search we 
were able to downselect to a parsimonious set of 19 mRNA signature with mean AUROC of 0.98 in 
discovery and 0.79 in independent validation. Methods for consistent diagnosis of NASH relative 
to NAFLD are urgently needed. We showed that gene expression data combined with advanced 
statistical methodology holds the potential to serve basis for development of such diagnostic tests for 
the unmet clinical need.

Continuous accumulation of fat in hepatocytes leads to Non-Alcoholic Fatty Liver Disease (NAFLD)1. While 
NAFLD is considered a mild condition, Non-Alcoholic Steatohepatitis (NASH), the severe form of the disease, 
is defined by inflammation and cell damage in addition to the fat accumulation. NASH increases the risk of 
developing liver fibrosis and may lead to cirrhosis and end-stage liver  disease2–4. Approximately 25–40% of the 
general western world population develop NAFLD throughout their lives, of which approximately 30% progress 
to  NASH5–7, which is the leading cause for a liver  transplant8,9 with overall estimated economic burden of $103 
billion annually and projected 10-year burden of > $1 trillion in US  alone5,6,10,11.

Despite truly epidemic proportions, diagnostic options for NASH are very  limited12,13. Most NAFLD and 
NASH patients are asymptomatic until relatively late stages of the disease and suspicion of NASH often stems 
from coincidental  findings2. Initial screening is based on blood biomarkers such as liver enzymes or insulin resist-
ance, while more complex models also incorporate general risk factors such as age, sex, and BMI; these data are 
used to calculate risk scores which have reasonable performance at detecting NAFLD but have lower discrimi-
natory power to distinguish  NASH12,14–17. Based on these scores, a patient is then referred to a hepatologist for 
further tests involving imaging and/or liver biopsy—an uncomfortable, invasive, expensive, and low throughput 
procedure which is the gold standard of NASH diagnosis. Yet, even with histological evaluation of liver biopsies, 
there is poor interobserver and intraobserver agreement further underscoring the complex nature of the  disease18.

Several studies described differentially expressed genes, microRNAs, and long non-coding RNAs between 
liver tissues of NAFLD, NASH, healthy, and healthy obese individuals. Few studies also performed meta-analysis 
of multiple published  studies19–24. For example, Ryboshapkina and  Hammar24 used 7 publicly available studies 
to derive a network of genes related to particular phenotypes and NAFLD progression. However, the results of 
these independent studies lack consistency, and were not, so far, translated to clinical use. We have previously 
described the MetaIntegrator framework, which performs a multi-cohort analysis of multiple heterogeneous 
transcriptome  datasets25–27. This approach allows us to leverage biological, clinical, and technical heterogeneity 
to identify robust and generalizable biomarkers that repeatedly validate in independent studies. Our framework 
is particularly suitable for identifying biomarkers that consistently generalize in diverse contexts, such as real-life 
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patient populations and has been successfully applied to identify novel diagnostic and prognostic markers in 
cancer, TB, infectious and autoimmune diseases, vaccination, and organ  transplant28–41.

In this study, we hypothesized that a multi-cohort analysis of transcriptome profiles of liver biopsies from 
patients with NAFLD or NASH would identify a robust signature for NASH that generalizes across the biologi-
cal, clinical, and technical heterogeneity of the real-world patient population and will be suitable for clinical 
development.

Results
Data collection and compilation. Our search in GEO and ArrayExpress for transcriptome profiles 
of liver biopsies from patients with NASH or NAFLD resulted in 12 datasets composed of 812 samples from 
patients across 7 countries that met our inclusion criteria (Table 1, methods). Overall, the 12 datasets repre-
sent a broad spectrum of biological, clinical, and technical heterogeneity. They include samples from adoles-
cents or adults, with or without comorbidities, and profiled using a diverse set of commercial microarrays and 
RNA sequencing platforms. HCs across these datasets represented real-world heterogeneity as they included 
those with normal weight, healthy obese, and those suspected of NAFLD. We used 309 samples from 7 datasets 
identifying differentially expressed genes and 503 samples from 5 datasets for independent validation of those 
genes. When selecting datasets for discovery and validation, we aimed to maximize the biological, clinical, and 
technical heterogeneity representation within the discovery datasets, while ensuring that the number of samples 
allocated to discovery to no more than 50% of the total samples.

We first identified differentially expressed genes in NASH compared to NAFLD and HC groups as our primary 
comparison. We subsequently extended our analysis to all 6 possible comparisons (Fig. 1A, Table 2). Notably, 
not all datasets included samples from all phenotypic groups, thus some datasets were excluded from particular 
comparisons. Membership of datasets in particular comparisons is summarized in Table S1.

Gene expression signature differentiates NASH from NAFLD or healthy controls. First, we 
performed a multicohort analysis of NASH vs “others” where others included both the HC and NAFLD groups 
([NASH]vs[NAFLD + HC]). At thresholds of |ES|> 0.6 and FDR < 10%, we identified 130 genes that were con-
sistently differentially expressed in NASH vs others (85 over- and 45 under-expressed, Table 2). MetaIntegrator 
score derived from these 130 genes yielded mean discovery AUROC of 0.94 and validation AUROC of 0.80 
(Fig. 1B,C,D), and showed low inter-study heterogeneity of ES for particular genes (e.g. FABP4, Fig. 1E). This 
strongly suggests that our signature is likely to generalize well in independent datasets, and that a true and robust 
gene expression signal can be harnessed to reliably distinguish NASH from less severe forms of NAFLD in real 
world patient populations. 

Despite the encouraging performance of the [NASH]vs[NAFLD + HC] signature, it is possible that wide-
spread study design or sample ascertainment methods may have introduced technical variance between the 
NASH, NAFLD and HC groups, thus artificially inflating any signal in our data. To evaluate this possibility, we 
explored the performance of all other 5 possible signatures in this data (Fig. 1A,E). For a true biological signal 
we would expect: (a) signature [NASH]vs[HC] to carry the clearest signal and perform the best; (b) the signature 
[NAFLD]vs[HC] to carry a weaker signal and perform worse than any signature that involves NASH; and (c) 
given the progressive nature of the disease [NAFLD]vs[NASH + HC] is unlikely to produce a meaningful signal, 
serving as an “internal scramble control”. Conversely, if there is a persistent artificial difference between the 
groups introduced by the sampling process, we would expect that whatever comparison we make would validate 
similarly well. Indeed, the results from the other 5 signatures (Fig. 1E) support the validity of our analysis. The 
contrast between two extreme classes in the [NASH]vs[HC] comparison shows the best discriminatory perfor-
mance with discovery AUROC = 0.99 and validation AUROC = 0.86. The [NAFLD]vs[HC] signature produced an 
excellent discovery AUC (0.94) but dropped to 0.66 in validation. Lastly, [NAFLD]vs[NASH + HC], which com-
pares the NAFLD group with NASH and HC pooled together as one group, showed discovery performance close 
to the other five signatures (AUROC = 0.84), but validation performance was essentially random (AUROC = 0.52), 
as might be expected for this non-useful test case. Altogether, performance of these signatures is consistent with 
real biological signal as expected. Additionally, since HC is the most distinct group, based on phenotype data we 
would expect the [NASH + NAFLD]vs[HC] to score high. Indeed, the performance of [NASH + NAFLD]vs[HC] 
signature is 0.96 in discovery and 0.83 in validation. Notably, [NASH]vs[NAFLD] signature performed similarly 
to [NASH]vs[NAFLD + HC] (discovery AUROC = 0.94 and validation AUROC = 0.75, Fig. 1F) suggesting that 
the NAFLD group contributes individually to the overall signal, and [NASH]vs[NAFLD + HC] signature is not 
driven solely by the HC group.

Gene expression differences validate known pathways and suggests novel biology. To gain 
biological insight we compared the differentially expressed genes between the signatures. Each signature has 
between 41 and 173 differentially expressed genes (Table 2) and altogether the six signatures encompass 428 
genes (Table S1). The four signatures that include NASH were consistent with each other. For example, effect 
sizes (ESs) for genes captured in those four contrasts maintain their directionality (Fig. 2A) and the four signa-
tures that include NASH patients as cases share a substantial number of genes among them (Fig. 2A,B). This is 
in contrast to the weaker [NAFLD]vs[HC] and [NAFLD]vs[NASH + HC] signatures for which majority of the 
genes were only detected in that particular comparison and not shared by any other signature (Fig. 2B).

We then focused on the genes shared between the three signatures that distinguish NASH as a separate 
group: [NASH]vs[NAFLD + HC], [NASH]vs[HC], and [NASH]vs[NAFLD] (Fig. 2C). This comparison also 
underscores the individual contributions of HC and NAFLD groups to the [NASH]vs[NAFLD + HC], suggesting 
that the overall signature is not driven by either on group. There are 14 upregulated and 7 downregulated genes 
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that overlap between the three signatures (Fig. 2C,D). Notably, 13 of the 21 genes were previously implicated in 
hepatocellular carcinoma (HCC) progression or survival—11 of which are upregulated genes and 2 downregu-
lated. Similarly to our results, the human protein pathology  atlas42,43 (a database of protein levels measured in 
human samples) showed higher levels of CD58, UBP1, TREM2, and SPP1 are significantly associated with poorer 
survival in HCC patients while higher level of SLC27A5 is associated with favorable prognosis. Also, increased 
mRNA expression of TXN, SULF2, CASP1, LPL, ENTPD1, SPP1, DTNA, and UBD was associated with poor HCC 

Table 1.  Datasets included in multicohort analysis capture real world heterogeneity. The 12 datasets included 
in our analysis span multiple countries, age groups, diagnostic approaches, and technical variation in gene 
expression platforms. In the NASH/NAFLD and HC columns N indicates the number of samples in the 
relevant group. a Kleiner DE, Brunt EM 2005. b Brunt EM et al. 1999. c Xnathakos S 2006.

Dataset ID

Publication Patient and control populations

PlatformPMID Last Author Year Country Age NASH/NAFLD HC Available phenotypes

Discovery

E-MEXP-3291 24048683 Cherrington, NJ 2013 US 16–70

N = 16/10
N = 19
Postmortem samples were acquired from 
NIH-funded Liver Tissue Cell Distribution 
System. Classification based on presence of 
inflammation and fibrosis for NASH (regard-
less of fat deposition), and fat deposition 
of > 10% for steatosis

Sex, age
GPL6244 Affymetrix 
Human Gene 1.0 ST 
Array

GSE126848 30653341 Knop, FK 2019 Denmark

N = 16/15
Histological 
evaluation of steatosis, 
activity, and fibrosis 
(SAF) + Kleiner fibro-
sis  stagea

N = 26
Healthy normal 
weight and over-
weight individuals, no 
diabetes or excessive 
alcohol intake

Sex GPL18573 RNAseq, 
Illumina NextSeq 500

GSE33814 23071592 Sültmann, H 2012 Austria 25–78

N = 12/19
Presence of balloon-
ing in combination 
with variable degree 
of steatosis and/or 
inflammation

N = 13
Explant and tumor 
surgery

GPL6884 Illumina 
HumanWG-6 v3.0 
expression beadchip

GSE37031 23492103 Titos, E 2014 Spain N = 8/0 N = 7
GPL14877 Affym-
etrix Human Genome 
U133 Plus 2.0 Array

GSE63067 25993042 Martínez-Chantar, 
ML 2015 Spain N = 9/2

Histology N = 7
GPL570 Affymetrix 
Human Genome 
U133 Plus 2.0 Array

GSE66676 26026390 Inge, TH Teen-Labs 
Consortium 2015 US 13–20

N = 7/26
NASH Clinical 
Research Network 
scoring  systemc

N = 34
Obese, undergoing 
bariatric surgery, no 
evidence of steatosis 
in biopsy

Sex, age, BMI, histol-
ogy, HDL, LDL, cho-
lesterol, triglycerides

GPL6244 Affymetrix 
Human Gene 1.0 ST 
Array

GSE89632 25581263 Allard, JP 2014 Canada 22–68
N = 19/20
Necro-inflammatory 
Grading  Systemb

N = 24
Live donor liver trans-
plant, no steatosis or 
cirrhosis by imaging 
or histology

Sex, age, BMI, histol-
ogy, biochemistry

GPL14951 Illumina 
expression beadchip

Validation

GSE105127 30297808 Hampe, J 2018 Germany 29–68
N = 5/5
Kleiner NAFLD activ-
ity  scorea (NAS)

N = 9
Scheduled liver 
resection, exclusion 
of liver malignancy or 
bariatric surgery

GPL16791 Illumina 
HiSeq 2500

GSE130970 31467298 Sanyal, AJ 2019 US
N = 42/30
NASH Clinical 
Research Network 
scoring  systemc

N = 6
Live donor liver 
transplant or patients 
with ALT fluctuations 
related biopsy

Sex, age, histology GPL16791 Illumina 
HiSeq 2500

GSE48452 23931760 Hempe, J 2013 Germany 38–72
N = 18/14
Kleiner NAFLD activ-
ity  scorea (NAS)

N = 41
Exclusion of liver 
malignancy during 
major oncological 
surgery

Sex, age, BMI, histol-
ogy, biochemistry

GPL11532 Affym-
etrix Human Gene 
1.1 ST Array

GSE61260 25313081 Hempe, J 2014 Germany 20–86
N = 24/23
Kleiner NAFLD activ-
ity  scorea (NAS)

N = 62
Exclusion of liver 
malignancy during 
major oncological 
surgery

Sex, age, BMI
GPL11532 Affym-
etrix Human Gene 
1.1 ST Array

GSE83452 28679947 Stales, B 2017 Belgium 20–74
N = 126/0
NASH Clinical 
Research Network 
scoring  systemc

N = 98
Obese + suspected 
NAFLD

Sex, age
GPL16686 Affym-
etrix Human Gene 
2.0 ST Array
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prognosis, while mRNA expression of ACHY and SLC27A5 was potentially protective for HCC  patients44–54. These 
associations are in complete concordance with our results, suggesting that there is already a significant induc-
tion of the oncogenic pathways during NASH. Finally, several genes in the [NASH]vs[NAFLD + HC] signature 
(e.g. CHST9, DPYSL2) have not been previously implicated in liver disease and could potentially provide novel 
biological insights into NASH etiology.

We carried out gene set enrichment analysis on gene groups for all six signatures. Interestingly, only [NASH]
vs[NAFLD] signature (Fig. 2E), which also contains the largest number of unique genes (131), yielded significant 
enrichment results. The top pathways significantly over-represented in [NASH]vs[NAFLD] are extracellular 
matrix organization, leukocyte migration, and detoxification (Fig. 2E) which is consistent with the onset of 
hepatic inflammation as a hallmark of NASH versus NAFLD.

Figure 1.  130-mRNA score robustly distinguishes NASH from NAFLD or HC. (A) Study design overview. 
(B,C) ROC curves for [NASH]vs[NAFLD + HC] signature in (B) 7 discovery datasets and (C) 5 independent 
validation datasets. ROCs for individual studies are shown in color, summary ROC is shown in black with 
95% confidence interval. (D) Violin plot of the [NASH]vs[NAFLD + HC] 130-mRNA score in discovery and 
validation in each group, n indicates number of samples in each class. (E) FABP4 effects sizes across datasets, 
studies in bold are validation. (F) Performance (AUROCs) of all six possible signatures. Summary ROC 
performance and 95% CI are shown in solid symbol and line, smaller empty symbols show performance in 
individual studies. Triangles indicate discovery, and circles validation. Color coding same as in (A).

Table 2.  Number of samples used for and genes identified in the six possible gene signatures. Class indicates 
the assignment to comparison groups in MetaIntegrator. HC healthy control.

Signature

Class N samples (% class = 1) N genes

1 0 Discovery Validation (Up + Down)

[NASH]vs[NAFLD + HC] NASH NAFLD + HC 309 (28%) 503 (43%) 130 (85 + 45)

[NASH]vs[HC] NASH HC 217 (40%) 431 (50%) 173 (101 + 72)

[NASH]vs[NAFLD] NASH NAFLD 160 (44%) 161 (55%) 170 (112 + 58)

[NASH + NAFLD]vs[HC] NASH + NAFLD HC 309 (58%) 539 (57%) 50 (34 + 16)

[NAFLD]vs[HC] NAFLD HC 206 (44%) 226 (40%) 55 (30 + 25)

[NAFLD]vs[NASH + HC] NAFLD NASH + HC 276 (33%) 315 (29%) 41 (20 + 21)
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[NASH]vs[NAFLD + HC] optimization identifies small set of genes that retain the performance 
of the signature. While [NASH]vs[NAFLD + HC] carries significant signal to discriminate between NASH 

Figure 2.  NASH signature gene composition. (A) ES of union of all genes (n = 428) in each signature. ES 
of genes that are not significant for the particular signature were coded as 0 (grey). (B) Each signature is 
represented by a pie chart. Number of genes in each signature is represented by pie size, colored part of the chart 
represents proportion of genes that are unique to the relevant signature. Thickness of the lines represent number 
of genes shared by each pair of signatures (as in legend). (C) Overlap of [NASH]vs[NAFLD + HC], [NASH]
vs[NAFLD] and [NASH]vs[HC] signatures. Genes common to all three signatures (n = 21) are listed according 
to their direction of change (up or down) in [NASH]vs[NAFLD + HC] signature. (D) Violin plots of zscores of 
expression of 2 representative genes (FAT1 for over-expressed and SLC6A16 for under-expressed) listed in C. 
Groups are color coded based on classification (HN = healthy normal BMI, HO = healthy obese, HU = healthy 
unknown BMI, NAFLD and NASH). In analysis all healthy were considered as one group, regardless of BMI 
status. (E) Pathway enrichment analysis of [NASH]vs[NAFLD] signature.



6

Vol:.(1234567890)

Scientific Reports |         (2022) 12:2571  | https://doi.org/10.1038/s41598-022-06512-0

www.nature.com/scientificreports/

from NAFLD or HCs, measuring expression of 130 genes in clinical setting might be unpractical and unnec-
essary. In addition, while all the genes we used are differentially expressed in the NASH group, considerable 
correlation between the expression of some signature genes renders their contribution to the performance of 
the final score redundant. We used a greedy forward search to narrow down the number of genes necessary for 
our signature performance. We were able to minimize our gene set to 19 genes (Table S1) while optimizing for 
discriminatory performance between NASH and NAFLD or HC groups in the 7 studies used for discovery. We 
then re-computed a diagnostic score using only those 19 genes, and show that the 19 gene score performs as well 
as the complete list (validation summary AUROC 0.79 vs summary AUROC 0.80; Fig. 3A,B).

Discussion
To identify a persistent and reproducible gene expression signature for NASH, we performed the most compre-
hensive meta-analysis of published liver gene expression to date, encompassing 12 datasets (812 samples) that 
represent real world patient populations. We successfully leveraged both biological and technical heterogeneity 
in identifying a gene expression signature that robustly distinguishes NASH from NAFLD or HCs.

Multiple tests and scoring systems have been developed for non-invasive diagnostics for NAFLD and NASH. 
These perform well enough for detecting NAFLD, but not NASH, or are limited to particular  populations12,16. 
Our 19-gene signature achieved a performance of mean AUROC = 0.98 in discovery and AUROC = 0.79 in 
independent, blind validation in 5 datasets that included multiple populations or phenotypes. This strongly 
suggests that our approach has great potential for development of gene-expression-based diagnostic test for 
NASH. Gene enrichment analysis of the NASH signature reflects the diagnostic hallmark of NASH, relative to 
NAFLD—inflammation. Interestingly, many of the genes we identify were previously implicated as potential 
markers for HCC survival and progression. This result suggests that the molecular processes involved in pro-
gression of NASH to cirrhosis and HCC are evident in at least some NASH patients and could serve as basis for 
development of endotyping strategy for NASH.

As part of this study, we also examined all six possible signatures, and show that the discriminatory per-
formance of [NASH]vs[NAFLD + HC] signature is unlikely to stem from any technical variation introduced 
through general study design or sample ascertainment process. Furthermore, we investigated whether [NASH]
vs[NAFLD + HC] performance is driven by the HC group alone or reflects true signal, discriminating NASH 
from both HC and NAFLD. To this end, we compared both the performance and composition of the three 
signatures: [NASH]vs[NAFLD + HC], [NASH]vs[NAFLD] and [NASH]vs[HC]. If [NASH]vs[NAFLD + HC] is 
driven only by the HC group we would expect the [NASH]vs[NAFLD] signature to perform poorly and that the 
gene composition of [NASH]vs[NAFLD + HC] would be essentially a subset of the [NASH]vs[HC]. On the other 
hand, if both groups contribute to the signature, we should see a similar performance and significant overlap in 
composition between [NASH]vs[NAFLD + HC] and either of the other two signatures. Our results clearly suggest 
that [NASH]vs[NAFLD + HC] signature is driven by both of HC and NAFLD groups.

Ultimately, not all six signatures perform equally well in our analysis. It is clear that the distinction between 
NAFLD and HC ([NAFLD]vs[HC]) proved to be more difficult than distinguishing NASH from any combina-
tion of HC and NAFLD. This is expected as it mirrors the situation in the clinic. Also, the large spectrum of HC 

Figure 3.  A parsimonious set of 19 genes retains the full performance of [NASH]vs[NAFLD + HC] signature. 
(A) Performance of 19-gene signature in discovery studies. (B) Performance of 19-gene signature in validation 
studies.
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samples in the 12 datasets analyzed here (Table 1) suggests a significant overlap between definitions of NAFLD, 
healthy obese, and healthy. For example, HC samples in GSE66676 were taken from obese patients undergoing 
bariatric surgery. We believe that this wide variation in control population, at least in part, explains the relatively 
large variation in our validation performance. In particular, GSE83452, the worst performing validation dataset, 
is the only validation study that does not include patients diagnosed as NAFLD and uses obese as control popu-
lation. The control samples in this dataset were taken from people who had abnormal liver enzymes and had a 
biopsy taken, which was declared not NAFLD by a pathologist. Thus, in our opinion, the relatively large drop in 
performance between the discovery and validation is at least in part due to the differences in diagnostic approach 
and potentially inter-individual differences in histological evaluations between different  pathologists18,55. This 
variability further underscores the need for more cohesive and objective diagnostic framework for NASH.

 There are some limitations to our study. First, while our approach accounts for biological, technical, and 
clinical heterogeneity, it is limited by the variability captured in the datasets available to us. It is possible that 
incorporation of additional sources of variability—such as age, ethnicities, geographical areas, or technical 
platforms, would lead to reduced performance in these settings. Thus, further retrospective validation in inde-
pendent cohorts is needed to ensure that we can refine our gene signature and achieve a level of performance 
that has clinical utility. Yet this also highlights the strength of our framework: as new datasets become available, 
they can and should be incorporated in the analysis producing updated and refined signature models. Second, 
to reach clinical utility, our 19-gene signature should undergo further algorithmic refinement. Notwithstanding, 
the computational refinement process can also be computationally expensive, presents unique challenges and 
ideally should be done when more data is available. Thus, we believe that this type of signature optimization is 
beyond the scope of this manuscript. Third, the holy grail of NASH diagnostic is non-invasive molecular test 
that would not require liver biopsy. Our analysis indicates that the [NASH]vs[NAFLD + HC] signature is driven 
by changes in composition of immune cells (e.g. leukocyte migration), and we expect to be able to detect such 
processes in blood as well. Our experience with other  diseases28,33,40,41,56–58 suggests that given enough data, the 
MetaIntegrator framework would be successful in developing blood based signature. However, transcriptomic 
blood data for NASH patients is very sparce. Hence, our strategy is first to identify and validate NASH gene 
signature based on liver data and translate it into blood, when blood transcriptomic data becomes available. 
Finally, in this work we focused on feature selection which is only a first step in building a model. Our score is a 
difference of geometric means, it does not produce probability score and therefore some calibration metrics, such 
as calibration curves or Hosmer–Lemeshow test are not applicable. Rather, these metrics if applicable, should 
be included in final model evaluation.

Taken together, we believe that our work provides a solid foundation for development of gene-expression-
based test for NASH. Accurate liver gene expression testing could help with NASH diagnosis, patient care, and 
potentially drug development. For example, it could inform retrospective analysis of clinical trials of failed NASH 
therapies—potentially opening an avenue for more successful characterization of patient subgroups that benefited 
from the treatment and repositioning of otherwise failed drug candidates. We envision that, in addition to the 
current standards of histological evaluation by qualified pathologists, a gene-expression-based NASH diagnostic 
will add value in clinical decision making and promote standardization in the field. Biopsies represent only a 
small area of the liver, therefore histological changes that have not widely spread could be missed. In principle, a 
gene-expression-based diagnosis would have the added value of reflecting changes in cellular microenvironment 
that occur outside of that particular area.

To summarize, our results demonstrate that gene expression analysis harbors an exciting opportunity for 
development of diagnostic test for NASH. We believe that this work provides a solid foundation for further 
development, both in terms of algorithmic refinement of the presented signatures and addition of other datasets 
that would help develop accessible, high throughput and reliable diagnostic. With further prospective validation, 
our results hold the potential for breakthrough diagnostic test for NASH.

Methods
Data collection. We searched public gene expression repositories  (GEO59 and  ArrayExpress60) for datasets 
that included transcriptome profiles of liver biopsies from patients with NASH in January 2020. We identified 83 
datasets with 3,359 samples. We excluded datasets that did not meet the following criteria: human, liver tissue, 
includes at least 5 patients in either NAFLD or HC groups and at least 5 patients in the NASH group. Twelve 
datasets met the inclusion criteria (Table 1). We then manually curated the 12 datasets to ensure integrity of 
phenotypic data, diagnostic criteria of NASH, NAFLD, and HC patients, and for general match between the 
deposited data and the numbers cited in associated publication when available.

Data preprocessing. For each dataset, we downloaded raw expression data and pre-processed using stand-
ard methods. Specifically, we applied RMA to all data from Affymetrix  platforms61,62 and used limma  package63,64 
with quantile normalization for Illumina and other commercial arrays. For RNAseq datasets, we downloaded 
the associated SRA read fastq files and used FastQC for initial quality control. We then used STAR v2.265,66, 
human genome  GRCh3867 and  GENCODE68,69 v32 human genome annotation for read alignment and gene 
expression quantification, as previously  described70. To facilitate integrated analysis, we used the Annotation 
Dbi and Hs.org71 packages to map probe and gene identifiers in each dataset to Entrez Gene identifiers (IDs). We 
used sample identifier to match phenotypic data from the databases to expression data and used the phenotypic 
and expression data to ensure sample uniqueness. We found no duplicated samples between the datasets.

Multicohort analysis. We used the R package MetaIntegrator for multi-cohort  analysis26,27,72. Briefly, to 
identify robust changes in gene expression, in each discovery dataset MetaIntegrator calculates gene specific 
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Hedges’ g effect size (ES) between two classes labelled as 1 and 0, as well as Benjamini–Hochberg False Discovery 
Rate adjusted p-value for that ES. The pooled ES of each gene, across all datasets, is computed using DerSimo-
nian & Laird random-effects model and Fisher’s sum of logs method is used to summarize p-value of ES across 
datasets.

We a priori divided the datasets into two groups: (1) 7 datasets (309 samples) as “discovery cohorts” and (2) 
5 datasets (503 samples) held out as independent “validation cohort” (Table 1). When dividing the studies into 
discovery and validation we sought to maximize the technical and biological heterogeneity encompassed by the 
discovery studies, while keeping the number of samples for discovery bellow 50%. To avoid overfitting we also 
designate all studies from the same research group either for discovery or validation. For each comparison, we 
defined the more severe phenotypic group as “case” and the less severe group as “control” (Table 2). We used the 
more stringent Leave-One-Study-Out (LOSO) cross-validation within the discovery cohorts to identify differ-
entially expressed genes, whereby each of the discovery datasets is left out in a round-robin fashion to obtain ES 
for each gene. In each iteration, we applied the ES and q-value thresholds, and selected the genes that met these 
thresholds in every iteration. This ensures that gene’s ES is not driven by one particular dataset and results in a list 
of genes that are consistently positively or negatively differentially expressed between the classes. We examined 
the gene lists produced by MetaIntegrator filterGenes function over multiple ES and q-value thresholds (0.6–0.8, 
and 0.1–0.01 respectively), adopting the cutoffs of |ES|> = 0.6 and FDR p < 0.1. Notably, the FDR in this case refers 
to the significance level associated with the pooled effect size, not to a separate testing of differential expression. 
These thresholds were determined based on the guideline from power estimate (Figure S1) as well as to allow for 
meaningful pathway analysis in all 6 signatures. Expression of the selected genes is then combined into a score:

Gene set enrichment analysis. We used enrichGO function from the R package clusterProfiler to perform 
gene enrichment  analysis73–75. The package supports overrepresentation test against the entirety of organism 
specific GO annotation as represented in the OrgDb object, and provides Benjamini–Hochberg adjusted p-value 
for the observed overrepresentations. We used union of all genes expressed in the discovery datasets, for general 
background.

Approval for human experiments. All studies included in this meta-analysis obtained informed consent 
of the human subjects and were performed in accordance with relevant named guidelines and regulations gov-
erning the study. No new subjects were recruited for the purpose of this work.
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