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Mutational analysis of driver genes 
defines the colorectal adenoma: 
in situ carcinoma transition
Jiri Jungwirth1,2,15, Marketa Urbanova1,3,15, Arnoud Boot4, Petr Hosek5, Petra Bendova3,5, 
Anna Siskova1,3, Jiri Svec6,7, Milan Kment8, Daniela Tumova9, Sandra Summerova10, 
Zdenek Benes10, Tomas Buchler11, Pavel Kohout10, Tomas Hucl12, Radoslav Matej13,14, 
Ludmila Vodickova1,3,5, Tom van Wezel4, Pavel Vodicka1,3,5 & Veronika Vymetalkova1,3,5*

A large proportion of colorectal carcinomas (CRC) evolve from colorectal adenomas. However, 
not all individuals with colonic adenomas have a risk of CRC substantially higher than those of the 
general population. The aim of the study was to determine the differences or similarities of mutation 
profile among low- and high-grade adenomas and in situ carcinoma with detailed follow up. We 
have investigated the mutation spectrum of well-known genes involved in CRC (such as APC, BRAF, 
EGFR, NRAS, KRAS, PIK3CA, POLE, POLD1, SMAD4, PTEN, and TP53) in a large, well-defined series 
of 96 adenomas and in situ carcinomas using a high-throughput genotyping technique. Besides, the 
microsatellite instability and APC and MLH1 promoter methylation were studied as well. We observed 
a high frequency of pathogenic variants in the studied genes. The APC, KRAS and TP53 mutation 
frequencies were slightly lower in adenoma samples than in in situ carcinoma samples. Further, when 
we stratified mutation frequency based on the grade, the frequency distribution was as follows: low-
grade adenoma—high-grade adenomas—in situ carcinoma: APC gene 42.9–56.0–54.5%; KRAS gene 
32.7–32.0–45.5%; TP53 gene 8.2–20.0–18.2%. The occurrence of KRAS mutation was associated with 
the presence of villous histology and methylation of the APC promoter was significantly associated 
with the presence of POLE genetic variations. However, no association was noticed with the presence 
of any singular mutation and occurrence of subsequent adenoma or CRC. Our data supports the 
multistep model of gradual accumulation of mutations, especially in the driver genes, such as APC, 
TP53 and KRAS.

Colorectal cancer (CRC), the third most common cancer and the fourth most frequent cause of cancer death 
 worldwide1, represents an ideal model to investigate and dissect the genetic alterations involved in tumor initia-
tion and progression. It has been known for some time that the majority of CRCs arises and progresses through 
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a series of well-defined molecular and histopathological changes, the so-called adenoma-carcinoma  sequence2,3, 
first described by Fearon and  Vogelstein4.

The adenoma-carcinoma sequence was described as a gradual transformation of colorectal epithelium to 
adenomatous lesions and ultimately to an adenocarcinoma and a metastatic tumor. Even though most neo-
plastic adenomas will not give rise to cancer, it is well accepted that most colorectal carcinomas evolve from 
adenomatous  polyps5. However, it cannot currently be predicted which of the early lesions will develop into 
 cancer6. Molecular alterations that play a role in the initiation and progression of CRC suggest a heterogeneous 
adenoma-carcinoma sequence that comprises several distinct molecular pathways. These include chromosomal 
instability, microsatellite instability (MSI), and CpG island methylator phenotype (CIMP) pathways that all of 
which are responsible for genetic and epigenetic instability in CRC 2. These genetic and epigenetic alterations 
affect different pathways that regulate multiple biological processes critical to cancer  development7.

Genetic mutations enriched in both adenomas and carcinomas are likely to represent early driver events. 
Mutations present predominantly in the carcinomas may constitute later driver mutations involved in tumor 
progression. Genes mutated in adenomas and not mutated in associated carcinoma tissue comprise either random 
mutation events not important for cancer initiation, or rare events that were not identified in the  carcinomas8.

The aim of the present study was to explore the genetic heterogeneity of adenomas and early carcinomas by 
analyzing the mutation spectrum of well-known genes involved in colorectal carcinogenesis (APC, BRAF, EGFR, 
NRAS, KRAS, PIK3CA, POLE, POLD1, SMAD4, PTEN, and TP53) in a large, well-defined series of adenomas 
and in situ carcinomas with follow up using a next generation sequencing approach.

In this context, we have analyzed each gene for the number and type of mutations present in the adenomas 
and in situ carcinomas and their specific relationship to MSI status. In addition, we have analyzed the levels of 
methylation of CRC-related genes by methylation-sensitive high-resolution melting (MS-HRM). We investigated 
the tumor suppressor adenomatous polyposis coli gene (APC), which encodes a key protein in the WNT sign-
aling pathway and is indicated as an early event in  carcinogenesis9, and MLH1 gene whose aberrant promoter 
methylation is responsible for the loss of mismatch repair activity.

Results
Patient’s characteristics. The studied set included 96 patients, out of which 74 were patients with adeno-
mas and 22 with in situ carcinoma. The clinic-pathological characteristics are presented in Table 1.

APC and MLH1 promoter methylation. The promoter methylation status of APC and MLH1 genes was 
studied by MS-HRM.

There was no remarkable difference in the distribution of promoter methylation in the APC gene (mean 9%): 
for in situ carcinoma, the mean promoter methylation in affected tissue was 8% and in adenomas it was 8.4% 
(9.1% for low grade and 6.8% for high grade dysplasia).

Interestingly, methylation of the APC promoter was significantly associated with the presence of POLE genetic 
variations (p = 0.02, Fig. 1A; n = 11).

The only one hypermethylated MLH1 promoter corresponded to the only sample with MSI-H status.

MSI status. MSI status of all adenomas and in situ carcinomas was tested. In our set, only 3 samples had 
MSI instability: 2 of them with MSI-L and one with MSI-H status. The MSI-H status was observed in an in situ 
carcinoma located in the right colon while MSI-L was noticed in two low grade dysplasia samples located in the 
left colon.

Mutation spectrum. In total, 96 adenomas and in situ carcinomas were analyzed for mutations in 11 genes 
(APC, BRAF, EGFR, NRAS, KRAS, PIK3CA, POLE, POLD1, SMAD4, PTEN, and TP53). The mutation hotspots 
in KRAS, NRAS, BRAF, PIK3CA, EGFR, SMAD4 genes as well as exonuclease domain for POLE and POLD1 

Table 1.  Patient´s clinical characteristics. *For adenoma patients only.

All 
n = 96
(%)

Adenomas 
n = 74
(%)

In situ carcinomas n = 22
(%)

p value (test)
for difference between adenomas 
and in situ carcinomas

Age (mean ± SD) years 65.6 ± 10.4 65.1 ± 10.6 67.0 ± 9.9 0.48 (t test)

Sex
Men 58 (60.4) 46 (62.2) 12 (54.5)

0.62 (Fisher’s)
Women 38 (39.6) 28 (37.8) 10 (45.5)

Lesion site
Colon 54 (56.2) 46 (62.2) 8 (36.4)

0.05 (Fisher’s)
Rectum 42 (43.8) 28 (37.8 14 (63.6)

Polyp type

Tubular 46 (47.9) 37 (50) 9 (40.9)

0.62 (Fisher’s)Tubulo-villous 38 (39.6) 29 (39.2) 9 (40.9)

Villous 12 (12.5) 8 (10.8) 4 (18.2)

Grade*
Low – 49 (66.2) –

–
High – 25 (33.8) –
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Figure 1.  The mutated gene signature of colorectal adenomas and in situ carcinomas. (A) The APC promoter 
methylation distribution with POLE genetic variations, (B) The mutation distribution of APC gene between 
low-, high-grade adenomas and in situ carcinomas, (C) The mutation distribution of KRAS gene between low-, 
high-grade adenomas and in situ carcinomas, (D) The mutation distribution of TP53 gene between low-, high-
grade adenomas and in situ carcinomas, (E) The mutation distribution of POLE gene between low-, high-grade 
adenomas and in situ carcinomas, (F) The Venn diagram of mutations of APC, TP53, and KRAS genes in in situ 
carcinomas, (G) The Venn diagram of mutations of APC, TP53, KRAS, and POLE genes in adenomas.



4

Vol:.(1234567890)

Scientific Reports |         (2022) 12:2570  | https://doi.org/10.1038/s41598-022-06498-9

www.nature.com/scientificreports/

genes were studied. Concerning the APC, PTEN and TP53 genes, we have focused on the entire open reading 
frame (ORF).

Of all 96 samples, 21 (18 adenomas and 3 in situ carcinomas) of them did not bear any mutation in the studied 
genes. Out of the remaining 75 samples with mutation(s), 56 were adenomas and 19 carcinomas (Fig. 2). We 
did not observe any significant differences in mutation distribution between adenomas and in situ carcinomas.

APC. In the present study, we have focused on the entire ORF of the APC gene as it harbors most of the 
mutations described in the APC gene. In both the low- and high-grade adenoma samples (Fig. 1B), 36 deleteri-
ous (according to HGMD guidelines and pathogenic according to ACMG guidelines; Supplementary Table 1) 
mutations in 35 individuals were observed: 12 deletion (p.E1268fs, p.1275_1275del, p.D1279fs, p.T1283fs, 
p.1289_1291del, p.1302_1304del, p.1344_1350del, p.P1406fs, p.1431_1432del, p.T1469fs, p.P1479fs, and 
p.1561_1562del), 7 insertion (p.Q1226fs, p.S1316fs, p.V1359fs, p.P1391fs, p.T1469fs, p.G1481fs, and p.E1536fs), 
15 nonsense (three times p.Q1273X, twice p.Q1349X, twice p.E1379X, twice p.R1432X, p.Q1276X, p.E1288X, 
p.S1297X, p.E1304X, p.E1335X, and p.Q1349X), and 2 missense (p.T1274M and p.E1299Q) mutations. While 
in carcinoma samples, 13 mutations in 12 patients were detected: 4 deletion (p.1284_1286del, p.1454_1455del, 
p.T1469fs, and p.E1542fs), 4 insertion (p.Q1226fs, p.M1365fs, p.S1377fs, and p.T1478fs), 4 nonsense (p.E1198X, 
p.K1292X, p.E1361X, and p.E1379X), and 1 missense (p.L1493I) mutations. Interestingly, one patient with low 
grade adenoma and one patient with carcinoma had two concurrent APC deleterious mutations (2 insertions 

Figure 2.  The distribution of genetic alterations detected in low-grade, high-grade adenomas, and in situ 
carcinomas. Each row represents a patient, and each column represents a gene. Different mutation types are 
indicated by different colors. The bar chart on the top shows the total number of the given gene’s mutations 
observed in the sample.
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(p.G1481fs and p.E1536fs) in the adenoma sample and 1 deletion (p.E1542fs) and 1 nonsense (p.E1379X) type 
of APC mutation in the carcinoma sample).

Interestingly, several identical APC mutations have been observed both in high-grade adenomas and in situ 
carcinomas, namely: deletion (p.T1469fs), insertion (p.Q1226fs) and nonsense (p.E1379X) mutations.

KRAS. For the KRAS gene, several missense mutations were successfully identified in 34 individuals [24 
individuals with either low- or high-grade adenoma and 10 with in  situ carcinoma, (Fig.  1C)] at codon 12: 
c.34G > C/A/T, c.35G > A/T/C, codon 13: c.38G > A/C/T, codon 61: c. 182A > G, c.183A > C: and 146: c.437C > T. 
Both adenomas and carcinomas were most frequently mutated at codon 12, position 35 (22 cases out of 34: in 
particular, in 16 adenomas and 6 carcinomas, 73% and 27%, respectively) and a G > A transition was the most 
common nucleotide for both phenotypes (14 cases out of 34: in particular, 10 in adenomas and 4 in carcinomas, 
71% and 29%, respectively). The presence of KRAS mutation was significantly associated with the presence of 
villous histology (p = 0.02).

TP53. Concerning the TP53 gene, we have focused on the entire ORF. Nine patients with adenomas and 4 
carcinoma patients bore mutations in the TP53 gene (Fig. 1D). In the adenoma samples (either grade), 5 of them 
had missense (p.R43H, p.P45S, p.H47R, p.R49C, and p.R116Q) mutations and 4 had insertion (twice p.H46fs 
and twice p.C143fs). On the other hand, 4 mutations were identified in carcinoma samples: 2 missense (p.R43H 
and p.I122V) and 2 insertion (p.P59fs and p.V71fs). None of the analyzed patients had more than one TP53 
mutation. The p.R43H missense mutation was observed both in high-grade adenoma and in in situ carcinoma 
tissues.

APC, KRAS and TP53 co-mutations. Only 4 out of 96 samples had all 3 APC, KRAS and TP53 genes 
mutated. Interestingly, 1 sample was a carcinoma, 2 samples were high grade dysplasia adenomas, and 1 sample 
a low grade dysplasia adenoma (Fig. 1F,G). All above samples had an MSS status and were located in the right 
colon. The individual with low grade dysplasia later developed another adenoma in the bowel.

Simultaneously, when we compared the frequency of mutations in these three genes between both low- and 
high-grade adenomas and in situ carcinoma, the APC mutation frequency was lower in adenoma samples than in 
carcinoma samples (47.3% vs. 54.5%, p = 0.63). The KRAS mutation frequency was again lower in adenoma than 
in carcinoma samples (32.4% vs. 45.5%, 0.31), while the TP53 mutations frequency was the lower in adenomas 
and the highest in carcinoma samples (12.2% vs. 18.2%, p = 0.27). These distribution differences among adenomas 
and in situ carcinomas were not significant. Further, when we stratified mutation frequency for low- and high-
grade adenoma, the distribution was as follows: low-grade adenoma—high-grade adenomas- in situ carcinoma: 
APC gene 42.9–56.0–54.5%; KRAS gene 32.7–32.0–45.5%; TP53 gene 8.2–20.0–18.2%.

Other mutations. Four NRAS mutations were found, two missense (twice c.181A (p.Q61K) in the right 
colon and a c.38A (p.G13R)) mutations and insertion (c.430dupA:p.T144fs) in the left colon. The first two men-
tioned missense mutations have recently been described in  adenomas7. The second mentioned NRAS mutation 
was observed in in situ carcinoma in our set of patients.

In the present study, BRAF mutation c.1799 T > A (p.V600E) was only observed in a single carcinoma sample 
that also displayed MSI-H status. Further, three PIK3CA mutations were detected, namely a hotspot missense 
mutation (c.1624G > A, p.E542K) in an in situ carcinoma and two deletions ((twice c.3114delT:p.Y1038fs), one 
in a low-grade and one in a high-grade dysplasia sample). SMAD4 (c.941dupT:p.I314fs in high-grade dysplasia 
and c.353_354insA:p.A118fs in low-grade dysplasia) and PTEN (twice c.908dupT:p.I303fs in low- and high-grade 
dysplasia) mutations were also recorded.

Additionally, mutations in POLD1 and POLE genes were studied. For the POLD1 gene, a c.1263 dupG:p.L421fs 
mutation was observed in low grade dysplasia. Interestingly, in 12 samples (11 adenomas and 1 in situ carcinoma, 
(Fig. 1E), POLE (c.T1166C:p.F389S) mutation was identified. However, no record about this particular mutation 
was published in  COSMIC10,  LOVD11 or  HGMD12. For this reason, we rather assessed this genetic variant as 
variant of uncertain significance (VUS) rather than pathogenic mutation.

There was no significant overlap between these mutations identified in our set of samples.

Follow up. For 70 out of 96 patients included into the study, follow up data were available. Out of these, 21 
developed a subsequent adenoma. Seventeen of them had previously adenoma (7 high-grade and 10 low-grade 
adenoma) and four in situ carcinoma (Table 2). The only common feature of these patients is that their first 
samples included in our study were all of an MSS status (apart one low grade adenomas that was MSI-L). Unfor-
tunately, we were not able to obtain the following adenoma tissue for analysis. Apart from one low-grade and 
one high-grade adenoma, all of them had previously at least one mutation in the high-risk genes, such as APC, 

Table 2.  Follow up of patients included into the study.

Normal findings Recurrence of adenoma Occurrence of CRC 

Low grade adenomas 39 10 2

High grade adenomas 18 7 1

In situ carcinomas 12 4 6
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KRAS, or TP53, however no association was observed in relation of the presence of any singular mutation and 
occurrence of subsequent adenoma. Concerning the histology and subsequent adenoma, patients with mixed 
histology (tubule-villous) were less prone to develop further adenomas than those with villous or tubular histol-
ogy alone (p = 0.02). Besides, patients with higher age also develop subsequent adenomas rather than younger 
patients (p = 0.04).

In all patients with in situ carcinoma, the tumor was surgically removed, and patients were regularly moni-
tored by colonoscopy procedure.

Furthermore, out of 22 patients with in situ carcinoma, 4 developed adenoma (as stated above) and 6 even 
invasive carcinoma within few years after the first in situ carcinoma. The proportion of patients developing 
subsequent invasive carcinoma depended significantly on the type of their primary lesion (p = 0.009), being by 
far the highest for in situ carcinomas (27.3%) in comparison to low-grade and high-grade adenomas (4.1% and 
4.0%, respectively).

Most of the patients with in situ carcinoma who underwent a clinical follow up had further developed CRC 
in about the same location as the previous findings quite soon or within two years.

For the patient with adenoma and subsequently developed CRC, the situation is a bit different. In a few years, 
the emerging CRC was located in a completely different colon segment than the previous adenoma. One patient 
with low grade adenoma developed liver metastases very quickly.

Discussion
The progression from adenoma into cancer can take as long as 20 years and is not usually affected by a single 
 pathway5,13,14. This transition represents a multistep process that is characterized by chromosomal instability 
(CIN), MSI, and CIMP. Effects of all these pathways may combine and are responsible for genetic instability in 
an adenoma that underlies malignant  transformation15.

Despite this, little is known about the mutation profiles of advanced adenomas and in situ carcinomas. It 
is not certain whether they share the same genetic background, or the driver mutations are more abundant in 
in situ carcinomas compared to adenomas. As these two forms of neoplasia are described as subsequent stages of 
carcinogenesis in the Vogelstein model, the cascade of low grade—high grade- adenoma and in situ carcinoma 
represents a suitable model for the analysis of CRC development. Up to now, the research of the transformation 
of colon adenoma into cancer has mostly focused on association studies assessing the cancer risk or advanced 
colorectal carcinomas.

The aim of the present study was to use a well-defined series of adenomas and in situ carcinomas to perform 
a parallel investigation of the mutation status of 11 genes known to be involved in CRC, as hypothesized by 
Vogelstein. The studied genes are involved in several different signal transduction pathways.

According to the recent study by Lee-Six et al.16, mutations in APC, KRAS and TP53 genes are common in 
CRC (accounting for 56% of base-substitution and indel driver mutations) while being rare among unaffected 
colonic crypts. The authors suggested that mutations in these genes confer higher likelihoods of conversion of 
normal epithelium to adenoma and carcinoma. However, in our study, only 4 out of 96 individuals had all APC, 
KRAS and TP53 genes mutated concurrently suggesting that further alterations in mutational frequency and 
spectrum may occur along with CRC progression.

In our study, we did not observe any significant differences in the distribution frequency of mutations in APC, 
KRAS and TP53 genes between adenoma and in situ carcinomas. Without the stratification for low- and high-
grade adenoma, the mutation frequencies were rather similar. The APC mutation frequency was moderately lower 
in adenoma samples (47.3%) than in carcinoma samples (54.5%). The KRAS mutation frequency was again lower 
in adenoma than in carcinoma samples (32.4% and 45.5%), as were the TP53 mutation frequency (12.2% and 
20%). Only 4 out of 96 individuals had all APC, KRAS and TP53 genes mutated concurrently. Further, when we 
stratified mutation frequencies for low- and high-grade adenoma, the distribution frequencies of mutations in the 
APC and TP53 genes had an increasing tendency towards in situ carcinoma, while the frequency of mutations in 
the KRAS gene in the low- and high-grade adenoma was lower than that in in situ carcinoma. This may point to 
the fact that in situ carcinoma still carries the mutation profile of the adenoma and only during further progres-
sion the mutation frequencies change, or, alternatively vice versa that high-grade adenomas are already approach-
ing in situ carcinomas with their mutation profile. Therefore, a more thorough examination and assessment of 
the risk of CRC in people with adenomas is needed. Nonetheless, the observed higher mutation frequency in 
in situ carcinomas resembles the generally accepted Fearon and Vogelstein model of  carcinogenesis4. However, 
additional studies are warranted to track the dynamics of mutational in relation to the disease heterogeneity.

The rather higher KRAS mutation frequency than expected might be explained by the fact that the current 
study investigated KRAS mutations in codons 12, 13, 61 and 146 covering most of all reported mutations for 
KRAS in CRC, while earlier studies investigated mostly codon 12 and/or 13 of the KRAS gene  only17,18.

In our study we have observed the presence of KRAS mutation associated with the presence of villous histol-
ogy. Similar outcomes were obtained by Zauber et al.19. The authors hypothesized that non-mucinous and MSS 
CRC with wild-type KRAS gene may have had a mutation in the KRAS gene during their earlier stages, however 
the mutation was lost during further growth.

Over the last years, many studies have shown that germline mutations in the proofreading domains of POLD1 
and POLE predispose to CRC and other  malignancies20,21. These mutations arise early in oncogenesis and serve 
as gatekeeper mutations—conferring a growth advantage to cellular subpopulations and driving tumor growth. 
Interestingly, in 12 samples (11 adenomas and 1 in situ carcinoma), POLE (c.T1166C:p.F389S) VUS was identi-
fied. However, no record about this identified VUS was published in public databases yet, this VUS was observed 
in oral squamous cell  carcinoma22 and small cell lung  cancer23 and thus it deserves further attention. Besides this, 
APC promoter methylation was significantly associated with the presence of POLE VUS. Although inactivating 
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framshift not likely leads to a hypermutation profile, Poulos et al.24 observed the presence of coding mutation 
hotspots in POLE-mutant cancers at highly-methylated CpGs in the tumor-suppressor genes APC and TP53. 
This finding points to the links between methylation and mutations and DNA repair, and these mechanisms 
define a key part of the mutational background of cancer genomes.

While BRAF mutations are more common in MSI colorectal cancers, they are less prevalent in  adenomas25. In 
our study, we have observed BRAF mutation only in one in situ carcinoma sample that simultaneously possessed 
the MSI-H phenotype. BRAF and KRAS mutations are mutually  exclusive26, as was observed in our set of samples.

In the current study, three mutations were found in the PI3KCA and two mutations in the negative regula-
tor of the PI3K-AKT pathway, the PTEN gene. According to the literature, the PIK3CA mutation frequency in 
CRC ranges between 10–30%27. However, PIK3CA mutations are less common in colorectal adenomas, around 
3%, indicating that mutations in PIK3CA would generally arise later during the adenoma-carcinoma transition. 
Although it may seem that our results are not in complete agreement with these observations, we have detected 
a hotspot mutation (c.1624G > A, p.E542K) in an in situ carcinoma and two deletion (c.3114delT:p.Y1038fs), 
one in a low-grade, and one in a high-grade dysplasia sample. However, we focused only on in situ carcinomas 
and not on invasive CRC and the mutation frequency rate in adenomas is in concordance with other studies, 
being around 3%.

A further aim of the study was to regularly follow up all patients included into study. Unfortunately, we were 
not able to follow many of the patients for various reasons: patients did not attend the regular check-ups, moved 
away, died for other than gastrointestinal reasons, etc. Follow-up data were recorded by clinicians to determine 
if patients had, a) clear colonoscopy findings, b) recurrence of adenoma, and c) occurrence of CRC. Clinical 
follow-up of 70 patients out of 96 was performed within this study. Several patients developed a subsequent 
adenoma or even CRC. The only common feature of these patients is that their first samples included in our 
study were all of an MSS status and all of them previously had at least one mutation in the high-risk genes, such 
as APC, KRAS, or TP53.

Concerning the histology and subsequent adenoma, patients with mixed histology (tubule-villous) were less 
prone to develop further adenomas than those with tubular or villous histology (p = 0.02). The fact that patients 
with higher age developed subsequent adenomas rather than younger patients might be a result of more regular 
colonoscopy controls advised among older people.

Besides, out of 22 patients with in situ carcinoma, 4 further developed adenoma and 6 even invasive carci-
noma within few years after the first in situ carcinoma diagnosis. The occurrence of in situ carcinoma is in itself 
a clear evidence of a malignant reversal in the body and therefore these conclusions are not so unexpected.

As it was stated earlier, mutations identified in both adenomas and in situ carcinomas are likely to represent 
early driver events. However, mutations present predominantly in carcinomas may indicate later driver mutations 
involved in tumor progression. Genes mutated in adenomas and not mutated in cancer tissue can illustrate either 
random mutation events that are not as important for cancer onset or rare events that have not been identified 
in cancers. So how do we know that the adenoma is no longer embarking on transformation into cancer and, 
conversely, that the cancer does not carry even the historical "adenoma" mutations? Or can it be stated that once 
the adenoma tissue has accumulated all the necessary mutations, it will switch to carcinoma so quickly that we 
do not have much chance of catching it in this transitional phase?

Of course, it is still more likely to find those driver mutations in carcinomas and rare events in adenomas, but 
depending on how fast such a transformation takes place, the classification of genes as potential early and late 
driving events can help dissect pathways involved in both tumor initiation and progression.

The weaknesses of the present study include the still limited number of patients and incomplete clinical 
follow-up, partly responsible for the impossibility of comparing the mutational profile of initial lesion and 
following lesion. Also, the used method detected the presence of the mutation in the one region of the lesion, 
thus the results do not reflect possible heterogeneity of the non-invasive colorectal lesions. Furthermore, only 
adenoma tissue was analyzed in this study. Unfortunately, due to Ethical reason, the adjacent unaffected tissue 
was not collected and analyzed. For this reason, we cannot say with certainty whether we have identified exclu-
sively somatic variants.

The early cancer biomarkers are strongly needed and are taking advantage of rapid progress in molecular 
biology. These biomarkers should be able to distinguish healthy people from patients with adenomas and subjects 
with early-stage CRC (stage Tis, I or II) with relative ease and low cost, and to be minimally invasive with aim to 
increase screening acceptability. With this respect, circulating nucleic acid-based biomarkers (or so-called “liquid 
biopsy”) are currently extensively studied in cancer research. Circulating cell-free DNA (cfDNA) is probably the 
most promising tool among all components of liquid biopsy.

Pathogenic mutations in the KRAS, BRAF, APC, and TP53 genes have been predominantly analyzed in the 
cfDNA isolated from CRC patients and less in patients with adenoma. The concordance of the mutations found 
in these genes in tumor tissue and plasmatic cfDNA was 100% (reviewed  in28). Recently, the study by Cervena 
et al.29 proved the clinical relevance of APC and TP53 genes especially in the light of longitudinal monitoring 
of CRC patients.

However, the sensitivity of cfDNA based markers for early-stage disease is lower than for advanced  stages30,31. 
To our knowledge, this is problem that has not been overcome yet. Although in our intended studies we would 
like to address this problem and attempt to detect identified pathogenic mutations in cfDNA isolated from both 
plasma and stool of patients with adenoma and early cancer stages.
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Conclusion
Our data confirms the Vogelstein’s theory of gradual accumulation of mutations, especially in the driver genes, 
such as APC, TP53 and KRAS. The set of adenomas and in situ carcinomas only very rarely exhibited MSI-H 
phenotype and the role of mutations in POLE and PI3KCA genes in adenoma to carcinoma transition warrants 
further investigations.

Material and methods
Tissue samples. Fresh frozen tissue samples from adenomas and in situ carcinomas were collected consec-
utively at three different institutes during the planned colonoscopy (Thomayer University Hospital, University 
Hospital Kralovske Vinohrady, and Mediconas, all in Prague, Czech Republic). The study included individu-
als with adenomas of tubular, villous or tubulo-villous histology and individuals with in situ carcinomas who 
underwent colonoscopy examination as a part of CRC screening or for intestinal symptoms. There were no age, 
gender, and ethnicity restrictions. The exclusion criteria were proven hereditary CRC syndromes, inflammatory 
bowel disease (IBD), histology of hyperplastic polyps, and size smaller than 5 mm. Patients with any personal 
history of previous malignancy, or with colorectal cancer-associated well-defined inherited syndromes (includ-
ing Lynch syndrome, familial adenomatous, and MUTYH-associated polyposis) were also excluded from the 
study.

The study was approved by Ethical committees of all institutions (Institute of Experimental Medicine, Prague, 
Czech Republic, IKEM and Thomayer hospital) and all individuals agreed with participation in the study and 
signed an informed consent in accordance with the World Medical Association Declaration of Helsinki.

Colorectal adenomas were histologically classified according to the revised Vienna  classification32. Low-grade 
dysplasia was marked Category 3, while category 4.1 was assigned to high-grade dysplasia. Accordingly, category 
4.2 was as assigned to carcinomas in situ. Adenomas with dysplasia (categories 3 and 4.1) or with carcinoma 
(other categories, such as 4.2) were analyzed separately.

All patients were monitored with a regular follow-up until December 31, 2019. Follow-up data were recorded 
by clinicians to determine if patients had normal findings on follow-up colonoscopy, recurrence of adenoma, 
or occurrence of CRC.

DNA and RNA isolation and quality control. Total DNA was isolated using AllPrep DNA/RNA Isola-
tion kit according to the manufacturer’s protocol (Qiagen, Germany). Quantity and purity of DNA was meas-
ured using Nanodrop. OD260/280 ratios of all samples ranged between 1.8 and 2.0. After the isolation, DNA 
was stored at -80 °C.

Bisulfite modification. 200 ng of DNA from each sample were treated with sodium bisulfite using the 
‘‘EpiTect Bisulfite Kit’’ (Qiagen, Germany) according to the manufacturer’s protocol.

MS-HRM. For the MS-HRM of the APC gene, methylation independent primers, based on Migheli et al.33, 
were employed. Primer sequences for MLH1 gene were described  earlier34. All analyses were run according to 
the following conditions: 1 cycle of 95 °C for 12 min, 60 cycles of 95 °C for 30 s, Ta for 30 s and 72 °C for 15 s; 
followed by an HRM step of 95 °C for 10 s and 50 °C for 1 min, 65 °C for 15 s, and continuous acquisition to 
95 °C at one acquisition per 0.2 °C. PCR was performed in a final volume of 25 µl, containing 12.5 µl of master 
mix (Qiagen), 10 pmol of each primer and 1 µl (almost 10 ng) of bisulfite-modified DNA template. Each reaction 
was performed in triplicate. We analyzed 10% of the samples independently on separate occasions to verify the 
inter-assay variability and observed a good reproducibility.

Fully methylated and unmethylated DNA (EpiTectH methylated and unmethylated human control DNA, 
bisulfite converted, Qiagen, Germany) were mixed to obtain the following ratios of methylation: 0%, 12.5%, 25%, 
50%, 75%, 100%. Standard curves with known methylation ratios were included in each assay and were used to 
deduce the methylation ratio of each tumor and reference sample.

MSI Status. MSI status was determined by molecular testing of five mononucleotide repeat markers 
(Bethesda consensus panel, BAT-25, BAT-26, NR-21, NR-24, and NR-27) that were run as a pentaplex, using 
fluorescently labeled primers and standard PCR as described in Kroupa et  al.35. Fragment analysis was per-
formed on ABI 3130 (Applied Biosystems). A comparison between the adenoma or in situ carcinoma and adja-
cent mucosa DNA short tandem repetition profiles were analyzed with GeneMapper v4.1 software (Applied 
Biosystems). When one or more markers were instable, the sample was interpreted as MSI, all other samples 
were classified as microsatellite stable (MSS). Further, when one instable marker was presented, the sample was 
indicated as MSI-Low (MSI-L), in the case that 2 or more markers were instable, the sample was marked as MSI-
High (MSI-H).

Mutation analysis. DNA concentrations were measured prior to amplification, using the Qubit® dsDNA 
HS assay (Life Technologies) and diluted to a concentration of 5 ng/μl.

Mutations were determined using a custom multiplex PCR sequencing panel consisted of M13-tailed primer 
pairs, as described  previously36. The custom primers cover mutational hotspots in the genes BRAF, EGFR, KRAS, 
NRAS, PIK3CA and SMAD4, the exonuclease domain of POLE and POLD1 and the entire coding sequence of 
APC, PTEN and TP53 (primer sequences available upon request).

PCR was performed with FastStart Hifi Enzyme Blend (Sigma-Aldrich, St. Louis, MO, USA) in two PCR 
pools with non-overlapping M13-tailed primers. PCR products per sample were combined and purified with 
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Agencourt AMPure XP beads (Beckman Coulter Life Sciences, Brea, CA, USA). In a second PCR barcodes and 
sequencing primers A and P1 were added. The reads generated by the Ion Torrent PGM sequencer (Thermo 
Fisher) were mapped against the human reference genome (GRCh37/hg19) using the TMAP 5.0.7 software with 
default parameters (https:// github. com/ ionto rrent/ TS). Variants were called with VarScan with more conservative 
coverage and minimum variant allele frequency cut-off values for indels (min-coverage = 20, min-var-freq = 0.2) 
than for single nucleotide variants (min-coverage = 8, min-var-freq = 0.1).

Statistical analysis. The occurrence of individual mutations (independently) between groups was assessed 
by the Fisher’s exact test. Similarly, their possible associations with the localization, gender, or histology type 
and mutually with each other were determined by the Fisher’s exact test. Associations of mutations with age, 
Vienna classification and APC methylation were analyzed using the Mann–Whitney U test. The statistical analy-
sis was performed using STATISTICA (version 11Cz; TIBCO Software Inc., Palo Alto, CA, USA), Matlab (ver-
sion 2019b; The MathWorks, Inc., Natick, MA, USA), SISA (https:// www. quant itati veski lls. com/ sisa/ stati stics/ 
fiveb y2. htm) and JVenn (http:// jvenn. toulo use. inra. fr/ app/ index. html,37). Confidence intervals of mutation fre-
quencies were calculated according to Agresti and  Coull38. All reported p-values are two-tailed and the level of 
statistical significance was set at α = 0.05.
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