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Temporal dataset shift associated with changes in healthcare over time is a barrier to deploying 
machine learning-based clinical decision support systems. Algorithms that learn robust models by 
estimating invariant properties across time periods for domain generalization (DG) and unsupervised 
domain adaptation (UDA) might be suitable to proactively mitigate dataset shift. The objective was to 
characterize the impact of temporal dataset shift on clinical prediction models and benchmark DG 
and UDA algorithms on improving model robustness. In this cohort study, intensive care unit patients 
from the MIMIC-IV database were categorized by year groups (2008–2010, 2011–2013, 2014–2016 
and 2017–2019). Tasks were predicting mortality, long length of stay, sepsis and invasive ventilation. 
Feedforward neural networks were used as prediction models. The baseline experiment trained 
models using empirical risk minimization (ERM) on 2008–2010 (ERM[08–10]) and evaluated them on 
subsequent year groups. DG experiment trained models using algorithms that estimated invariant 
properties using 2008–2016 and evaluated them on 2017–2019. UDA experiment leveraged unlabelled 
samples from 2017 to 2019 for unsupervised distribution matching. DG and UDA models were 
compared to ERM[08–16] models trained using 2008–2016. Main performance measures were area-
under-the-receiver-operating-characteristic curve (AUROC), area-under-the-precision-recall curve 
and absolute calibration error. Threshold-based metrics including false-positives and false-negatives 
were used to assess the clinical impact of temporal dataset shift and its mitigation strategies. In 
the baseline experiments, dataset shift was most evident for sepsis prediction (maximum AUROC 
drop, 0.090; 95% confidence interval (CI), 0.080–0.101). Considering a scenario of 100 consecutively 
admitted patients showed that ERM[08–10] applied to 2017–2019 was associated with one additional 
false-negative among 11 patients with sepsis, when compared to the model applied to 2008–2010. 
When compared with ERM[08–16], DG and UDA experiments failed to produce more robust models 
(range of AUROC difference, − 0.003 to 0.050).  In conclusion, DG and UDA failed to produce more 
robust models compared to ERM in the setting of temporal dataset shift. Alternate approaches are 
required to preserve model performance over time in clinical medicine.

The wide-spread adoption of electronic health records (EHRs) and the enhanced capacity to store and perform 
computation with large amounts of data have enabled the development of highly performant machine learning 
models for clinical outcome  predictions1. The utility of these models critically depends on sustained performance 
to maintain  safety2, end-users’ trust, and to outweigh the high cost of integrating each model into the clinical 
 workflow3. However, this is hindered in the non-stationary healthcare environment by temporal dataset shift 
due to mismatch between the data distribution on which models were developed and the distribution to which 
models were  applied4.
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There has been limited research on the impact of temporal dataset shift in clinical  medicine5. Recent 
approaches largely relied on maintenance strategies consisting of performance monitoring, model updating 
and calibration over certain time  intervals6–8. Another approach grouped clinical features into their underly-
ing concepts to cope with a change in the record-keeping  system9. Generally, these approaches either require 
detection of model degradation or rely on explicit knowledge or assumptions about the underlying cause of the 
shift. Complementary to these approaches would be ones that attempt to proactively produce robust models that 
incorporate relatively few assumptions on the nature of the shift.

The past decade of machine learning research offered numerous algorithms that learn robust models by 
using data from multiple environments to identify invariant properties. These algorithms were often developed 
for domain generalization (DG)10 and unsupervised domain adaptation (UDA)11. In the DG setting, the goal 
is to learn models that generalize to new environments unseen at training time. In the UDA setting, the goal is 
to adapt models to target environments using labeled samples from the source environment as well as a limited 
set of unlabeled samples from the target environment. If we consider EHR data across discrete time windows 
as related but distinct environments, then both DG and UDA settings may be suitable to combat the impact of 
temporal dataset shift. To date, these approaches have not been evaluated on improving model robustness to 
temporal dataset shift for clinical prediction tasks. Therefore, the objective was to benchmark learning algorithms 
for DG and UDA on mitigating the impact of temporal dataset shift on machine learning model performance 
in a set of clinical prediction tasks.

Methods
Data source. We used the MIMIC-IV  database12,13, which contains deidentified EHRs of 382,278 patients 
admitted to an intensive care unit (ICU) or the emergency department at the Beth Israel Deaconess Medical 
Center (BIDMC) between 2008 and 2019. For this cohort study, we considered ICU admissions sourced from 
the clinical information system MetaVision at the BIDMC, in which records from 53,150 patients were made 
available in the latest version of MIMIC-IV 1.0.

Data access. Data from MIMIC-IV was approved under the oversight of the Institutional Review Boards of 
BIDMC (Boston, MA) and the Massachusetts Institute of Technology (MIT; Cambridge, MA). Because of dei-
dentification of protected health information, the requirement for individual patient consent was waived by the 
Institutional Review Boards of BIDMC and MIT. Data access was credentialed under the oversight of the data 
use agreement through  PhysioNet13 and MIT. All experiments were performed in accordance with institutional 
guidelines and regulations.

Cohort. Each patient’s timeline in MIMIC-IV is anchored to a shifted (deidentified) year with which a year 
group and age are associated. The year group reflects the actual 3-year range (for example 2008–2010) in which 
the shifted year occurred, and age reflects the patient’s actual age in the shifted year. There are four available 
year groups in MIMIC-IV: 2008–2010, 2011–2013, 2014–2016 and 2017–2019. We included patients who were 
18 years or older and randomly selected one ICU admission that occurred in the year group for each patient. As 
a result, each patient is represented once in our dataset and is associated with a single year group. We excluded 
ICU admissions less than 4 h in duration.

Outcomes. We defined four clinical outcomes. For each outcome, the task was to perform binary predic-
tions over a time horizon with respect to the time of prediction, which was set as 4 h after ICU admission. Long 
length of stay (Long LOS) was defined as ICU stay greater than three days from the prediction time. Mortality 
corresponded to in-hospital mortality within 7 days from the prediction time. Invasive ventilation corresponded 
to initiation of invasive ventilation within 24 h from the prediction time. Sepsis corresponded to the develop-
ment of sepsis according to the Sepsis-3  criteria14 within 7 days from the prediction time. For invasive ventilation 
and sepsis, we excluded patients with these outcomes prior to the time of prediction. Further details on each 
outcome are presented in the Supplementary Methods online.

Features. Our feature extraction followed a common  procedure15 and obtained six categories of features 
including diagnoses, procedures, labs, prescriptions, ICU charts and demographics. Demographic features 
included age, biological sex, race, insurance, marital status and language. Clinical features were extracted over 
a set of time-intervals defined relative to the time of ICU admission as follows: 0–4  h after ICU admission, 
0–7 days prior, 7–30 days prior, 30–180 days prior, and 180 days-any time prior. For each time interval, we 
obtained counts of unique concept identifiers for diagnoses, procedures, prescriptions and labs with the excep-
tion that identifiers for diagnoses and procedures were not obtained in the 0–4 h interval after admission as they 
were not available. We also obtained measurements for lab tests for each time interval, and measurements for 
chart events in the 0–4 h interval after admission. In addition, we mapped each measurement variable in each 
time interval to the patient-level mean, minimum and maximum. Number of extracted features for each cat-
egory and time interval are listed in the Supplementary Methods online.

Feature preprocessing pruned features that had less than 25 patient observations, replaced non-zero count 
values with 1 s, encoded measurement features to quintiles, and one-hot encoded all but count features. This 
process resulted in binary feature matrices that were extremely sparse. All feature preprocessing procedures 
were fit on the training set (e.g., to determine the boundaries of each quintile) and were subsequently applied 
to transform the validation and test sets.
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Model and learning algorithms. In all experiments, we leveraged fully connected feedforward neural 
network (NN) models for prediction, as they enable flexible learning for differentiable objectives across algo-
rithms. The standard algorithm to learn models is the empirical risk minimization (ERM) algorithm in which 
the objective is to minimize average training  error16 without considerations of environment annotations (year 
groups in our case).

In this study, we largely employ DG and UDA algorithms that learn to produce representations that exhibit 
certain invariances across environments by leveraging the training data and their corresponding year groups. 
One exception is Group distributionally robust optimization (GroupDRO)17, which does not “learn” invariances 
but instead minimizes training error in the worst-case training environment by increasing the importance of 
environments with larger errors. DG algorithms that learn invariant representations include Invariant risk mini-
mization (IRM)18 and distribution matching. IRM aims to learn a latent representation (i.e., hidden layer activa-
tions) where the optimal classifier leveraging that representation is the same for all environments. Distribution 
matching algorithms include correlation alignment (CORAL)19, which seeks to match the mean and covariance 
of the distribution of the data encoded in the latent space across environments; maximum mean discrepancy 
(MMD)20, which minimizes distribution discrepancy between predictions belonging to different environments; 
and domain adversarial learning (AL)21,22, which matches the distributions using an adversarial network and an 
objective that minimizes discriminability between environments. The adversarial network used in this study is 
a NN model with one hidden layer of dimension 32. Since distribution matching algorithms (CORAL, MMD, 
and AL) do not require outcome labels, they can be leveraged for DG as well as UDA.

Model development. We conducted baseline, DG and UDA experiments. The baseline experiment con-
sisted of several aspects. First, to characterize temporal dataset shift on model performance, we trained models 
with ERM on the 2008–2010 group (ERM[8–10]) and evaluated these models in each subsequent year group. 
Next, to describe the extent of temporal dataset shift, we compared the performance of ERM[8–10] in each 
subsequent year group with models trained using ERM on that year group. Difference in performance in the 
target year group (2017–2019) between ERM[8–10] and models trained and evaluated on the target year group 
(ERM[17–19]) described the extent of temporal dataset shift in the extreme scenario in which models were 
developed on the earliest available data and were never updated. All models in the baseline experiment used 
ERM.

For DG and UDA experiments, model training was performed on 2008–2016, with UDA also incorporat-
ing unlabelled samples from the target year group. Performance of DG and UDA models were compared with 
ERM models trained using 2008–2016 (ERM[8–16]) as these are the fairest ERM comparators for DG and UDA 
models. For models in the DG and UDA experiments, we focused on their performance in the target year group, 
but also described their performance in 2008–2016.

Data splitting procedure. Data splitting procedure was performed separately for each task and experiment (see 
Fig. 1). The baseline experiment split each year group into 70% training, 15% validation and 15% test sets. In DG 
and UDA experiments, the training set included 85% data from 2008 to 2010 and 2011–2013, and 45% of data 
from 2014 to 2016. The validation set included 35% of data from 2014 to 2016 (chosen because of its temporal 
proximity to the target year group). The test set included the same 15% from each year group as the baseline 
experiment, which allowed us to compare model performance across experiments and learning algorithms on 
the same patients. For UDA, training year groups were combined into one group, and unlabeled samples of vari-
ous sizes (100, 500, 1000, and 1500) from the target year group (2017–2019) were leveraged for unsupervised 
distribution matching.

Model training. We developed NN models on the training sets of each experiment for each task and selected 
hyperparameters based on performance in the validation sets. DG and UDA models used the same model hyper-
parameters as ERM[8–16], but involved an additional search over the algorithm-specific hyperparameter that 
modulated the impact of the algorithm on model learning. For all experiments, we trained 20 NN models using 
the selected hyperparameters for each combination of outcome, learning algorithm and experiment-specific 
characteristic (for example, year group in baseline experiment and size of unlabeled samples for UDA). Further 
details on the models, learning algorithms, as well as hyperparameter selection and model training procedures 
are presented in the Supplementary Methods online.

Model evaluation. We evaluated models on the test sets of each experiment. Model performance was evalu-
ated using area-under-receiver-operating-characteristic curve (AUROC), area-under-precision-recall curve 
(AUPRC) and the absolute calibration error (ACE)23. ACE is a calibration measure similar to the integrated cali-
bration  index24 in that it assesses overall model calibration by taking the average of the absolute deviations from 
an approximated perfect calibration curve. The difference is that ACE uses logistic regression for approximation 
instead of locally weighted regression such as LOESS.

To aid clinical interpretation of the impact of temporal dataset shift and its mitigation strategies, we translated 
change in performance to interpretable threshold-based metrics (including sensitivity and specificity) across 
clinically reasonable threshold levels. We chose the task with the most extreme temporal dataset shift. Next, we 
set up a scenario with 100 hypothetical ICU patients and estimated the number of patients with and without a 
positive label using average prevalence from 2008 to 2019. We then estimated the number of false-positive (FP) 
and false-negative (FN) predictions using the average sensitivity and specificity for: (1) ERM[8–10] in 2008–2010, 
illustrating the results of initial model development with training and test sets in 2008–2010, and representing 
performance anticipated by clinicians applying the model to patients admitted in 2017–2019 if the model is not 
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updated; (2) ERM[8–10] in 2017–2019, illustrating the actual performance of the earlier model on patients, or 
the impact of temporal dataset shift; (3) ERM[8–16] in 2017–2019, illustrating the ERM comparators for DG 
and UDA models; (4) models trained using a representative approach from DG or UDA; and (5) ERM[17–19] 
in which training and test sets are both using 2017–2019 data.

Statistical analysis. For each combination of outcome, experiment-specific characteristic (e.g., year group 
in the baseline experiment), and evaluation metric (AUROC, AUPRC and ACE), we reported the median and 
95% confidence interval (CI) of the distribution over mean performance (across 20 NN models) in the test set 
obtained from 10,000 bootstrap iterations. To compare models (for example, learned using IRM vs. ERM[8–16]) 
in the target year group, metrics were computed over 10,000 bootstrap iterations and the resulting 95% confi-
dence interval of the differences were used to determine statistical  significance25.

Model training was performed on an Nvidia V100 GPU. Analyses were implemented in Python 3.826, Scikit-
learn 0.2427 and Pytorch 1.728. The code for all analyses is open-source and available at https:// github. com/ sungr 
esear ch/ mimic 4ds_ public.

Results
Cohort characteristics for each year group and outcome are presented in Table 1. Figure 2 shows performance 
measures (AUROC, AUPRC and ACE) of ERM[8–10] models in each year group vs. models trained on that 
year group. Largest temporal dataset shift was observed for sepsis predictions in 2017–2019 (drop in AUROC, 
0.090; 95% CI 0.080–0.101).

Figure 3 illustrates change in the performance measures of DG and UDA models in the target year group 
(2017–2019) relative to ERM[8–16]. In addition, change in performance measures of ERM[8–10] and 
ERM[17–19] are plotted in grey for comparison. ERM[8–16] performed better than ERM[8–10] (largest gain in 
AUROC, 0.049; 95% CI 0.041–0.057; see Supplementary Table S1 online), but performed worse than ERM[17–19] 
(worst drop in AUROC, 0.071; 95% CI 0.062–0.081) with some exceptions in mortality and invasive ventila-
tion predictions (see Supplementary Table S2 online). Performance of DG and UDA models was similar to 
ERM[8–16] and while some models performed significantly better than ERM[8–16], others performed signifi-
cantly worse with all differences being relatively small in magnitude (see Supplementary Table S3). Correspond-
ingly, shifts in the cumulative distribution of predicted probabilities across year groups were not reduced by DG 
and UDA relative to ERM (Supplementary Fig. S1), and model selection for DG and UDA algorithms tended 
to select small algorithm-specific hyperparameter values with little impact on model training (Supplementary 
Methods). However, increasing the magnitude of these hyperparameters did not result in performance gains 
(see Supplementary Fig. S2, S3, and S4).

Figure 1.  Data splitting procedure for baseline, domain generalization (DG) and unsupervised domain 
adaptation (UDA) experiments. Different shades of the same color indicate that they were used to train or 
evaluate different models. For instance, in the baseline experiment, the training set of each year group was used 
to learn models for that year group. In the DG experiment, the training year groups were kept separate to allow 
DG algorithms to estimate invariance across the year groups. In comparison, in the UDA experiment, data 
from the training year groups were pooled, and unlabeled samples from the target year group were leveraged for 
unsupervised distribution matching between training and target year groups. In addition, ERM[8–16] models 
were learned on pooled data from the training year groups (2008–2016) to be used as ERM comparators for DG 
and UDA models.

https://github.com/sungresearch/mimic4ds_public
https://github.com/sungresearch/mimic4ds_public
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Table 2 illustrates a clinical interpretation of temporal dataset shift in sepsis prediction using a scenario of 
100 consecutively admitted patients to the ICU between 2017 and 2019 with a risk threshold of 10% and an 
estimated outcome prevalence of 11% (see Supplementary Table S5 for results across thresholds from 5 to 45%). 
ERM[8–10] applied to 2017–2019 was associated with one additional FN among 11 patients with sepsis and 7 
additional FP among 89 patients without sepsis when compared to the model applied to 2008–2010. FN with 
AL, as the representative mitigation approach, was similar to ERM[8–16].

Discussion
Our results revealed heterogeneity in the impact of temporal dataset shift across clinical prediction tasks, with 
the largest impact on sepsis prediction. When compared to ERM[8–16], DG and UDA algorithms did not sub-
stantially improve model robustness. In some cases, DG and UDA algorithms produced less performant models 
than ERM. We also illustrated the impact of temporal dataset shift and the effect of mitigation approaches for 
clinical audiences so that they can determine whether the extent of dataset shift precludes utilization in practice.

The heterogeneity of impact by temporal dataset shift as characterized by our baseline experiment echoes the 
mixed results in model deterioration across several studies that made predictions of clinical outcomes in various 

Table 1.  Cohort characteristics by year group. pos: positive labels; SD: standard deviation.

2008–2010 2011–2013 2014–2016 2017–2019

Mortality

Patients, no. (% pos) 9042 (7.4%) 9476 (7.1%) 10,289 (7.4%) 10,060 (7.2%)

Age, mean ± SD 63 ± 18 63 ± 18 64 ± 17 64 ± 17

Sex, no. (%)

 Female 3864 (43%) 4090 (43%) 4430 (43%) 4170 (41%)

 Male 5178 (57%) 5386 (57%) 5859 (57%) 5890 (59%)

Race, no. (%)

 White 6784 (75%) 6217 (66%) 6468 (63%) 6129 (61%)

 Other 2258 (25%) 3259 (34%) 3821 (37%) 3931 (39%)

Long length of stay

Patients, no. (% pos) 9042 (29.8%) 9476 (28.4%) 10,289 (31.0%) 10,060 (35.2%)

Age, mean ± SD 63 ± 18 63 ± 18 64 ± 17 64 ± 17

Sex, no. (%)

 Female 3864 (43%) 4090 (43%) 4430 (43%) 4170 (41%)

 Male 5178 (57%) 5386 (57%) 5859 (57%) 5890 (59%)

Race, No. (%)

 White 6784 (75%) 6217 (66%) 6468 (63%) 6129 (61%)

 Other 2258 (25%) 3259 (34%) 3821 (37%) 3931 (39%)

Invasive ventilation

Patients, no. (% pos) 6692 (10.2%) 7181 (10.1%) 7447 (12.1%) 7311 (11.4%)

Age, mean ± SD 64 ± 18 64 ± 18 64 ± 17 64 ± 17

Sex, no. (%)

 Female 2947 (44%) 3133 (44%) 3318 (45%) 3124 (43%)

 Male 3745 (56%) 4048 (56%) 4129 (55%) 4187 (57%)

Race, no. (%)

 White 5078 (76%) 4839 (67%) 4920 (66%) 4727 (65%)

 Other 1614 (24%) 2342 (33%) 2527 (34%) 2584 (35%)

Sepsis

Patients, no. (% pos) 5410 (12.7%) 5557 (10.2%) 6217 (10.8%) 7161 (10.6%)

Age, mean ± SD 62 ± 19 62 ± 18 62 ± 18 63 ± 17

Sex, no. (%)

 Female 2334 (43%) 2442 (44%) 2809 (45%) 2948 (41%)

 Male 3076 (57%) 3115 (56%) 3408 (55%) 4213 (59%)

Race, no. (%)

 White 4032 (75%) 3648 (66%) 3945 (63%) 4447 (62%)

 Other 1378 (25%) 1909 (34%) 2272 (37%) 2714 (38%)
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 populations5. This calls for careful investigation of potential model degradation due to temporal dataset shift at 
both the population and task level. In addition, these investigations should translate model degradation, typically 
measured as change in AUROC, into change in clinically relevant performance  measures29 or utility in allocation 
of  resources30, and place its impact in the context of clinical decision making and downstream  processes31–34.

This study is one of the first to benchmark the capability of DG and UDA algorithms on EHR data across 
multiple clinical prediction tasks to mitigate the impact of temporal dataset shift. Our findings align with recent 
empirical evaluations of DG algorithms demonstrating that they do not outperform ERM under distribution shift 
across data sources in real-world clinical  datasets35,36 as well as non-clinical  datasets37. The reasons underlying the 
failure of DG algorithms are topics of active research, with several recent works offering theory to explain why 
models derived with IRM and groupDRO are typically not more robust than ERM in  practice38,39. Furthermore, 
other work has demonstrated that UDA objectives based on distribution matching, such as AL, CORAL, and 
MMD, failed to improve generalization to the target domain under shifts in the outcome rate or in the association 
between the outcome and  features40,41. These findings highlight the difficulty of improving robustness to dataset 
shift with methods that estimate invariant properties without explicit knowledge of the type of dataset shift.

Future research should continue to explore methods that have demonstrated success in improving model 
robustness outside of clinical medicine and identify the types of shift for which these methods might be effective. 
For instance, models adapted from foundation models pre-trained on diverse datasets have displayed impressive 
performance gains in addition to robustness to various types of dataset  shifts42. Domain adaptation methods that 
leverage distinct latent domains in the target  environment43, data augmentation including the use of adversarial 
 examples44, similarities between the source and target  environments45,46, and semi-supervised learning that 
alternatively generate pseudo labels and incorporate them into re-training the  model47,48 have all demonstrated 
success in various domains. In addition, domain knowledge as to which causal mechanisms are likely to be stable 
or change across time (for example, the causal effect of a disease on patient outcome versus the policy used to 
prescribe a specific drug) can be incorporated into learning robust  models49. We observed heterogeneity across 
tasks in the impact of temporal dataset shift on model performance. While investigating the cause of the hetero-
geneity is beyond the scope of this work, it is an important issue to investigate in future research.

Strengths of this study include the use of multiple clinical outcomes and the illustration of temporal dataset 
shift and its mitigations using more clinically relevant metrics. There are several limitations in this study. First, 

Figure 2.  Mean performance (AUROC, AUPRC, and ACE) of models in the baseline experiment. Solid blue 
lines depict models trained using 2008–2010 (ERM[8–10]) and evaluated in each year group. Dashed lines 
depict models trained and evaluated in each year group separately (comparators). Error bars indicate 95% 
confidence interval obtained from 10,000 bootstrap iterations. Black circles indicate statistically significant 
differences in performance based on the 95% confidence interval of the difference over 10,000 bootstrap 
iterations when comparing ERM[8–10] and comparators for each year group. The figure shows temporal 
dataset shift that is larger for Long LOS and Sepsis tasks. ERM: empirical risk minimization; LOS: length of stay; 
AUROC: area under the receiver operating characteristics curve; AUPRC: area under the precision recall curve; 
ACE: absolute calibration error.
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the coarse characterization of temporal dataset shift did not offer insight about the rate at which model perfor-
mance deteriorated. This was due to the deidentification in the MIMIC-IV database that left year group as the 
only time information that followed a correct chronological order across patients. Second, using data from the 
target year group to estimate best-case models is not realistic in real-world deployment as such data might not 
be available. Third, our assessment of clinical implications did not consider clinical use-cases in which the model 
alerts physicians of patients with the highest risks (i.e., acting on a threshold that is adaptively selected)50. In those 
scenarios, the amount of agreement in the ranking of risks between models need to be additionally considered. 
Finally, our choice of methods for DG and UDA algorithms were limited to those that estimate invariant proper-
ties across training data environments.

In conclusion, DG and UDA using methods that estimate invariant properties across environments failed to 
produce more robust models compared to ERM in the setting of temporal dataset shift. Alternate approaches 
are required to preserve model performance over time in clinical medicine.

Figure 3.  Difference in mean performance of DG and UDA approaches relative to ERM[8–16] in the target 
year group (2017–2019). Performance of ERM[8–10] (train set 2008–2010 and test set 2017–2019, dashed line) 
and ERM[17–19] (train and test sets 2017–2019, solid line) models are also shown for comparison. Error bars 
indicate 95% confidence interval obtained from 10,000 bootstrap iterations. Here, we show results from three of 
the four experimental conditions using differing number of unlabelled samples for UDA—we did not observe 
meaningful differences across the number of unlabelled samples evaluated. Numerical representation of the 
performance measures relative to ERM[8–16] are presented in Supplementary Table S3. LOS: length of stay; 
ERM: empirical risk minimization; IRM: invariant risk minimization; AL: adversarial learning; GroupDRO: 
group distributionally robust optimization; CORAL: correlation alignment; MMD: maximum mean 
discrepancy; AUROC: area under the receiver operating characteristics curve; AUPRC: area under the precision 
recall curve; ACE: absolute calibration error; domain generalization: DG; unsupervised domain adaptation: 
UDA.
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Data availability
The MIMIC-IV dataset analyzed during the current study is available from https:// mimic. mit. edu/ docs/ iv/. The 
code for all analyses is open-source and available at https:// github. com/ sungr esear ch/ mimic 4ds_ public.
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