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Artificial intelligence in positioning 
between mandibular third molar 
and inferior alveolar nerve 
on panoramic radiography
Eunhye Choi1, Soohong Lee2, Eunjae Jeong2, Seokwon Shin2, Hyunwoo Park2, 
Sekyoung Youm2, Youngdoo Son2,4* & KangMi Pang3,4*

Determining the exact positional relationship between mandibular third molar (M3) and inferior 
alveolar nerve (IAN) is important for surgical extractions. Panoramic radiography is the most common 
dental imaging test. The purposes of this study were to develop an artificial intelligence (AI) model to 
determine two positional relationships (true contact and bucco-lingual position) between M3 and IAN 
when they were overlapped in panoramic radiographs and compare its performance with that of oral 
and maxillofacial surgery (OMFS) specialists. A total of 571 panoramic images of M3 from 394 patients 
was used for this study. Among the images, 202 were classified as true contact, 246 as intimate, 61 
as IAN buccal position, and 62 as IAN lingual position. A deep convolutional neural network model 
with ResNet-50 architecture was trained for each task. We randomly split the dataset into 75% for 
training and validation and 25% for testing. Model performance was superior in bucco-lingual position 
determination (accuracy 0.76, precision 0.83, recall 0.67, and F1 score 0.73) to true contact position 
determination (accuracy 0.63, precision 0.62, recall 0.63, and F1 score 0.61). AI exhibited much higher 
accuracy in both position determinations compared to OMFS specialists. In determining true contact 
position, OMFS specialists demonstrated an accuracy of 52.68% to 69.64%, while the AI showed an 
accuracy of 72.32%. In determining bucco-lingual position, OMFS specialists showed an accuracy of 
32.26% to 48.39%, and the AI showed an accuracy of 80.65%. Moreover, Cohen’s kappa exhibited a 
substantial level of agreement for the AI (0.61) and poor agreements for OMFS specialists in bucco-
lingual position determination. Determining the position relationship between M3 and IAN is possible 
using AI, especially in bucco-lingual positioning. The model could be used to support clinicians in the 
decision-making process for M3 treatment.

Mandibular third molar (M3) extraction is one of the most frequently performed surgical procedures in oral 
and maxillofacial surgery (OMFS). Among the complications following surgery, damage to the inferior alveolar 
nerve (IAN) is one of the most distressing, causing temporary or permanent neurosensory impairments in the 
lower lip and chin area at an incidence of 0.4% to 13.4%1,2. To avoid IAN damage, preoperative assessment of the 
position of the IAN in relation to the tooth is necessary. Panoramic radiography is used commonly to assess the 
relationship between M3 and IAN. Certain radiographic features such as darkening of the root and narrowing 
of the mandibular canal have been reported as risk factors for IAN injuries, although its clinical correlation was 
 low3. Due to the development of cone-beam computerized tomography (CBCT), determination of positioning 
between the IAN and teeth has become more accurate, and CBCT is recommended before M3 extraction when 
the two aforementioned structures are superimposed on panoramic  radiography4. However, the disadvantages of 
CBCT include higher radiation doses compared to two-dimensional imaging and the presence of image artifacts 
mainly produced by metal  restorations5.
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Therefore, accurate methods diagnosing the relationship between M3 and IAN on panoramic radiography 
are necessary. After the diagnostic methods determine whether both structures are truly in contact or intimate, 
assessment whether M3 is positioned lingually or buccally to the IAN is necessary to determine the direction of 
insertion of the surgical instruments.

Artificial intelligence (AI) models have reported excellent performance, mimicking the precision and accuracy 
of trained specialists in  dentistry6. Various studies have applied AI algorithms to read panoramic radiographs for 
clinical conditions such as age  estimation7,  osteoporosis8,9, vertical root  fracture10, automatic teeth detection and 
 numbering11, apical  lesions12, maxillary  sinusitis13, detecting and segmenting the approximation of the inferior 
alveolar nerve and mandibular third  molar14, periodontal bone  loss15, gender  determination16, and temporo-
mandibular joint  osteoarthritis17,18. Although some studies evaluate the relationship between M3 and IAN, those 
studies usually determine whether AI could determine M3 and IAN on panoramic radiograph or CBCT, which 
was easily discernible in human  eyes4,14,19,20. A recent study predicting the difficulty of extraction by deep learning 
was easily distinguishable by  humans21. In this study, we focused on the cases with M3 and IAN overlapping on 
panoramic radiograph and evaluated whether AI could determine if two structures were in contact or not and 
whether these structures were positioned buccally or lingually, which was difficult for humans to distinguish.

This study aimed to investigate the clinical use of an AI model developed to determinate the positional rela-
tionship between M3 and IAN from panoramic radiography using deep learning that compared the AI readings 
with those of OMFS specialists.

Methods
Materials. The written documentation of informed consent was waived and approved by the decision of 
the Institutional Review Board of Seoul National University Dental Hospital (ERI21004) and ethics committee 
approval for the study in the same institute was also obtained. All methods were performed in accordance with 
the relevant guidelines and regulation. Subjects were included retrospectively from an image database of patients 
who visited the Department of Oral and Maxillofacial Surgery at Seoul National University Gwanak Dental Hos-
pital between January 2019 and December 2020. Patients who underwent both panoramic radiography (Kodak 
8000 Digital Panoramic System, Trophy Radiologies, Carestream Health Inc., NY, USA) and CBCT (CS 9300, 
Carestream Health Inc., NY, USA) for M3 extraction with superimposition of M3 and IAN on the panoramic 
radiographs were selected. The patients consisted of 200 males and 194 females, with an age range of 20 to 
72 years (mean ± SD age, 31.5 4 ± 9.96 years; range, 20 to 72 years). The panoramic images of 571 M3s from these 
patients were used in this study.

AI model developments. The AI model was developed to evaluate two positional relationships between 
M3 and IAN.

(1) Experiment 1: Determination of the true contact position between M3 and IAN.
(2) Experiment 2: Determination of the bucco-lingual position between M3 and IAN.

Panoramic images that appeared overlapped were classified as true contact and intimate according to the 
presence or absence of the cortical line of the IAN canal on CBCT (Fig. 1A,B). Independently, the bucco-lingual 
positional relationship was also confirmed by CBCT (Fig. 1C,D). Determination of the positional relationship 
based on the CBCT was performed by an OMFR specialist (K.M. Pang). Among the 571 images, 202 were clas-
sified as true contact, 246 as false contact, 61 as IAN buccal position, and 62 as IAN lingual position. Regions 
of Interest (ROI) were extracted from the panoramic radiograph manually in JPG format with a matrix size of 
400 × 400 pixels.

ResNet-50, mainly used for medical image  classification22, is a substantially deeper and easier model to train 
compared to simple models such as VGGnet, and the core structure is a residual  block23. Residual learning does 
not allow for error accumulation on the convolution layers but enables a better representation of the content in 
the convolution layers. By adopting a shortcut structure, the vanishing gradient issue is  resolved24. Every image 
was resized to 224 × 224 pixels, and we randomly split the dataset into 75% for training and validation and 25% 
for testing. The model performance varies depending on the difficulty of data classification, so we performed 5 
repeated experiments through random sampling. As a technical and strategic method to avoid overfitting, data 
augmentation was performed by image rotation ± 30 degrees, horizontal flipping, and brightness 20–80% for 
every mini-batch in training to compensate for the small number of data points to increase model robustness. 
In Experiment 1, a model was trained for 60 epochs with augmented data. The learning rate of the model was 
set to 1.0 ×  10–4 and an Adam optimizer was used. In Experiment 2, training was progressed in 30 epochs with 
augmented data. In addition, the learning rate of the model was 1.0 ×  10–4, and an Adam optimizer was used.

Specialist performance analysis. To compare the accuracy between specialist and AI model, the same 
test dataset with the highest accuracy among the random samplings was selected for comparison with specialists 
in each experiment. Six oral and maxillofacial specialists with a mean 15.3 years (range from 8 to 30 years) of 
experience of third molar extraction were asked to assess the dataset. The specialists used a computer monitor 
for daily practice in their clinics, and the size of pixels was the same with images for AI, 224 × 224. For experi-
ment 1, 100 images were analyzed; experiment 2 comprised 31 images. They had only one opportunity to analyze 
the images.
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Model and statistical analysis. Accuracy, precision, recall, F1 score, and AUC were calculated to evaluate 
each model performance. Accuracy is defined as the ratio of correct predictions. Precision is the ratio of true 
positives to true positives and false positives. Recall is the ratio of true positives to true positives and false nega-
tives. F1 score is a harmonic mean of precision and recall: (2 × precision × recall)/(precision + recall), and AUC is 
the area under the ROC curve. The confidence intervals of AUC were found by bootstrapping with 1000 test sets 
sampled with replacement. For evaluation of AI clinical usability, the results between OPG reads by the AI and 
six OMFS specialists were compared. Accuracy, sensitivity, and specificity were calculated for diagnostic perfor-
mance, and Cohen’s kappa was calculated to estimate the strength of agreement. Python programming language 
(v. 3.8.5), Tensorflow (v. 2.5.0), and a graphics card (GeForce RTX 3090) were used for analysis.

Results
Table 1 shows the model performance in each experiment. The average accuracy, precision, recall, and F1 score 
were 0.63, 0.62, 0.63, and 0.61, respectively, in Experiment 1, with true contact position determination between 
M3 and IAN. The average accuracy, precision, recall, and F1 score were 0.76, 0.83, 0.67, and 0.73, respectively, in 

Figure 1.  Classification of panoramic images based on CBCT. The M3 and IAN seemed to be superimposed in 
four panoramic images. White triangles point to the border of the IAN in CBCT. (A) Intimate but non-contact 
positioning between M3 and IAN. (B) True contact positioning between M3 and IAN. (C) IAN positioned 
buccal to M3. (D) IAN positioned lingual to M3. CBCT cone-beam computerized tomography, M3 mandibular 
third molar, IAN inferior alveolar nerve.

Table 1.  Model performance of five random samplings in each experiment. M3 mandibular third molar, IAN 
inferior alveolar nerve, AUC  Area under the ROC curve.

Work Accuracy Precision Recall F1 score AUC 

Experiment 1, true contact position between M3 and IAN

1 0.72 0.72 0.55 0.63 0.75

2 0.55 0.54 0.74 0.62 0.59

3 0.67 0.65 0.59 0.62 0.67

4 0.61 0.55 0.68 0.61 0.66

5 0.60 0.62 0.57 0.60 0.64

Average 0.63 0.62 0.63 0.61 0.66

Experiment 2, bucco-lingual position between M3 and IAN

1 0.77 0.82 0.78 0.80 0.88

2 0.81 0.86 0.75 0.80 0.91

3 0.74 0.67 0.77 0.71 0.75

4 0.77 0.89 0.57 0.70 0.79

5 0.68 0.89 0.47 0.62 0.80

Average 0.76 0.83 0.67 0.73 0.83
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Experiment 2, with bucco-lingual position determination between M3 and IAN. The overall model performance 
was superior in Experiment 2 compared to Experiment 1.

The comparison of sensitivities and specificities between AI and OMFS specialists in each experiment is 
shown in Fig. 2. AI exhibited 72.32% accuracy in Experiment 1 and 80.65% in Experiment 2, but the highest 
accuracy among OMFR specialists in each experiment was 69.64% and 51.61%, respectively (Table 2). Cohen’s 
kappa of AI was highest in Experiment 2 and showed a substantial level of agreement (0.61), but those of OMFS 
specialists exhibited a slight to fair level of agreement. In both experiments, the AI read panoramic images more 
accurately than OMFS specialists, demonstrating higher diagnostic performance.

Discussion
This study evaluated if AI could determine the positional relationship between M3 and IAN based on pano-
ramic radiography regarding whether the two structures were in contact or intimate and whether the IAN was 
positioned lingually or buccally to M3 when two structures were overlapped. In this situation, determining the 

Figure 2.  Comparison of sensitivities and specificities of six OMFS specialists and the AI model for 
determination of the positional relationship between M3 and IAN. (A) Experiment 1: Determination of true 
contact positioning between M3 and IAN. (B) Experiment 2: Determination of bucco-lingual positioning 
between M3 and IAN. OMFS oral and maxillofacial surgery, AI artificial intelligence, M3 mandibular third 
molar, IAN inferior alveolar nerve.

Table 2.  Comparison of diagnostic performance across experiments. M3 mandibular third molar, IAN 
inferior alveolar nerve.

Reader Accuracy (%) Sensitivity (%) Specificity (%) Cohen’s kappa Kappa index

Experiment 1, true contact position between M3 and IAN

A 58.04 87.69 17.02 0.05 Slight

B 58.04 66.15 46.81 0.13 Slight

C 61.61 50.77 76.60 0.26 Fair

D 55.36 41.54 74.47 0.15 Slight

E 52.68 24.62 91.49 0.12 Slight

F 69.64 86.15 46.81 0.35 Fair

AI 72.32 84.62 55.32 0.41 Moderate

Experiment 2, bucco-lingual position between M3 and IAN

A 41.94 60.00 25.00 − 0.15 Poor

B 38.71 46.67 31.25 − 0.22 Poor

C 45.16 53.33 37.50 − 0.09 Poor

D 48.39 100.00 0.00 incalculable incalculable

E 51.61 46.67 56.25 0.03 Slight

F 32.26 40.00 25.00 − 0.35 Poor

AI 80.65 86.67 75.00 0.61 Substantial
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exact position was limited and unreliable even for the specialist, as shown in previous  studies25,26. However, AI 
could determine both positions more accurately than OMFS specialists.

Until now, if M3 and IAN overlap on panoramic radiograph, specialists could use the known predictive signs 
of IAN injury to determine the positional relationship whether the two structures were in contact or intimate. 
Umar et al. compared the positional relationship between IAN and M3 through panoramic radiography and 
CBCT. Loss of the radiopaque line and diversion of the canal on panoramic radiographs resulted in tooth and 
nerve contact in 100% of the cases on CBCT. Darkening of the roots were associated with contact on CBCT 
in 76.9% of the cases  studied27. However, another study reported that the sensitivities and specificities ranged 
from 14.6 to 68.3% and from 85.5 to 96.9%, respectively, for those three predictive  signs1. Datta et al. compared 
those signs with the clinical findings during surgical removal and found that only 12% of patients with positive 
radiological signs showed clinical evidence of  involvement3. In the present study, we adopted CBCT reading 
results instead of radiological signs on panoramic radiography to determine the positional relationship so that 
the AI could determine whether the two structures were in contact or intimate, showing an accuracy of 0.55 
to 0.72. Compared to another  study1, our deep learning model exhibited similar performance (accuracy 0.87, 
precision 0.90, recall, 0.96, F1 score 0.93, and AUC 0.82) to determine whether M3 is contacting the IAN or not. 
This could explain the different model performance depending on the characteristics of the data.

To replace CBCT with analysis of panoramas with AI, information about bucco-lingual positioning was 
necessary to ensure safe surgical outcomes. It has been reported that the lingual position of the nerve to the 
tooth has a significantly higher risk of IAN injury compared to other  positions28. To the best of our knowledge, 
no studies have evaluated bucco-lingual positioning through panoramic radiograph because there were no 
methods to predict this position using one radiograph. Two intraoral radiographs with different angle (vertical 
tube-shift technique) in the third molar area caused patient discomfort and nausea during placement of the 
film or sensor of the digital intraoral x-ray  devices29 and is difficult to use clinically. Since there was no effec-
tive method to discern the position, the accuracy of the specialists was low in this study. On the contrary, the 
AI showed considerably high accuracy ranges from 67.7 to 80.6% despite the small amount of study data. The 
course of the IAN predominantly is buccal to the  tooth28, and our data revealed a similar situation. However, 
the total number of cases was small to match the numbers in each group evenly for deep learning. In addition, 
the lack of total number of cases forced the use of a simple deep learning model with a relatively small number 
of parameters to be optimized. Therefore, training AI with more data could produce more accurate results and 
be used more widely in clinical settings.

In this study, bucco-lingual determination (Experiment 2) exhibited superior performance for true contact 
positioning (Experiment 1). The difference in accuracy between the two experiments seems to be a characteristic 
of the data rather than a special technical difference. There might be a particular advantage for AI to be recog-
nized in bucco-lingual classification, or that some of the contact classification data might have characteristics 
that are difficult to distinguish.

There are several studies that have developed Al algorithms that have been able to outmatch specialists in 
terms of performance and accuracy. AI assistance improved the performance of radiologists in distinguishing 
coronavirus disease 2019 from pneumonia of other origins in chest  CT30. Moreover, the AI system outperformed 
radiologists in clinically relevant tasks of breast cancer identification on  mammography31. In the present study, 
the AI exhibited much higher accuracy and performance compared to those of OMFS specialists. To determine 
the positional relationship between M3 and IAN, we performed preliminary tests to determine the most suitable 
AI model using VGG19, DenseNet, EfficientNet, and ResNet-50. ResNet showed higher AUC in Experiment 2 
and comparable AUC in Experiment 1 (Supplemental Tables 1–3). Therefore, it was chosen as the final AI model.

This study has limitations. First, the absolute size of the training dataset was small. Data augmentation by 
image modification was used to overcome the limitation of a small sized dataset. Nevertheless, as shown in 
Table 1, there were cases where training did not proceed robustly. Therefore, the performances of the trained 
models highly depend on the train-test split. This unsoundness of the trained model, which hinders the clinical 
utility of AI models for primary determination in practice, can be alleviated by collecting more data and using 
them for training. Also, the size of deep learning models is an important factor in performance and, in general, 
a large number of instances are required to train a large size deep neural network without overfitting. Thus, not 
only collecting more data but also exploiting external datasets from multiple dental centers can be considered to 
increase the performance of AI models. However, this study is meaningful in that the AI model performed better 
than experts even under these adverse conditions. Second, the images used in this study were cropped without 
any prior domain knowledge such as proper size or resolution to include sufficient information to determine 
true contact or bucco-lingual positional relationship between M3 and IAN. If the domain knowledge is reflected 
to construct a dataset, the performances of AI models can be highly increased. Third, the use of interpretable 
AI  models32, which can explain the reason for the model prediction, can help to identify the weaknesses of the 
trained models. The identified weaknesses can be overcome by collecting data that the models have difficulty in 
classifying. Finally, the various techniques developed in the machine learning society, such as ensemble  learning33, 
self-supervised  learning34, and contrastive  learning35, can be utilized for further improvement of the performance 
of our models even in situations where the total number of cases is insufficient as well.

Conclusions
In this study, we developed and validated a deep learning algorithm that determined positional relationship 
between M3 and IAN canal at a performance level superior to that of experts. Once tested prospectively in 
clinical settings, the algorithm could have the potential to narrow patient access to CBCT or prepare for surgi-
cal extraction.
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