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Decoding Individual differences 
and musical preference 
via music‑induced movement
Yudhik Agrawal1*, Emily Carlson2, Petri Toiviainen2 & Vinoo Alluri1

Movement is a universal response to music, with dance often taking place in social settings. Although 
previous work has suggested that socially relevant information, such as personality and gender, are 
encoded in dance movement, the generalizability of previous work is limited. The current study aims 
to decode dancers’ gender, personality traits, and music preference from music‑induced movements. 
We propose a method that predicts such individual difference from free dance movements, and 
demonstrate the robustness of the proposed method by using two data sets collected using different 
musical stimuli. In addition, we introduce a novel measure to explore the relative importance of 
different joints in predicting individual differences. Results demonstrated near perfect classification 
of gender, and notably high prediction of personality and music preferences. Furthermore, learned 
models demonstrated generalizability across datasets highlighting the importance of certain joints 
in intrinsic movement patterns specific to individual differences. Results further support theories of 
embodied music cognition and the role of bodily movement in musical experiences by demonstrating 
the influence of gender, personality, and music preferences on embodied responses to heard music.

Humans appear to have a remarkably fine-tuned and robust ability to discern information about others based 
on bodily movement. For example, Troje, Westhoff and  Lavrov1 showed that participants could easily learn to 
identify different individuals from point-light recordings of their gait, even scoring three-times above chance 
when recordings were rotated and manipulated to remove information about size and speed. In a follow up 
study, Westhoff and  Troje2 additionally used a Fourier Transform to remove the most prominent frequencies 
from point-light stimuli, and found that identification was still above chance, and that participants were easily 
able to generalize information learned from different viewing angles. Being able to identify an individual from 
limited perceptual information has clear evolutionary advantages, particularly in the uniquely social context of 
early human cultures, where identifying group members and non-members could be necessary for  survival3. 
Along these same lines, it could also be considered adaptive for other information, such as gender, mood state, 
or individual characteristics such as personality, to be encoded in and identifiable from a person’s bodily move-
ment. Barclay and  Cutting4 demonstrated that, on average, observation of just two step cycles was sufficient for 
participants to correctly identify gender from point-light displays while  Koppensteiner5 has shown that even 
limited movement information from the head and hands can be used by observers to judge extraversion and 
neuroticism. Thoresen, Vuong and  Atkinson6 found that observers made reliable judgements about personality 
from gait cues, although these judgements did not always align with the self-reported personalities of the walkers.

While it is not yet clear exactly which features of human movement allow for such information to be decoded, 
computational analysis of complex movement offers a way to explore how information about individual differ-
ences are encoded in subtle ways (e.g., how different joints move in relation to another in a particular dimension) 
that make it difficult to identify with the naked eye. Computational analysis of gait has been used to identify 
 individuals7, to classify walkers according to  gender8,9, and to identify individual differences of  personality10,11 
and  emotion12.

Although gait is probably the most common means of studying individual characteristics as they relate to 
features of bodily movement, a paradigm in which participants perform free, spontaneous dance movements 
offers the potential advantage of greater individual variability of movement as well as theoretical connections to a 
range of psychological and social functions. Music and dance are found in every known human culture and play 
important roles in social contexts, and in most cultures represent largely inseparable  phenomena13.  Cross14–16 has 
suggested that music and dance, by virtue of their capacity to express non-specific but individually interpretable 
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meaning, which he terms ’floating intentionality,’ may have played a role for early humans in negotiating times 
of intra- and inter-group uncertainty, such as the changes marked by wedding or coming-of-age ceremonies. 
Christensen, Cila-Conde and  Gomila17 have proposed six different neural and bio-behavioral functions of human 
dance, including communication, self-intimation, and social cohesion.

A number of studies have explored perception of individual characteristics from dance movement. For exam-
ple, Van Dycke et al.18 found that, when presented with side-by-side avatars of dancers expressing happiness or 
sadness, participants could correctly identify which emotion was being expressed. Much of the research into 
perception of dance movement has focused on gender, both in terms of the perception of gender from dance 
movement and, drawing on hypotheses that one of the evolutionary roles of dance has been sexual selection, 
the perception of attractiveness and other qualities related to mate-selection from dance. Pollick et al.19 have 
shown that gender can be accurately percevied from point-light displays of dance movement. Hufschmidt et al.20 
found that both children and adults could accurately identify dancer gender from avatar movements, while 
Weege et al.21 found that female raters found the movements of male dancers with greater hand-grip strength to 
be more attractive. While it is not yet clear which movement features raters use to identify gender, differences 
in movement may arise from differences in average body structure and joint flexibility between genders. Fink 
et al.22 have hypothesized that, on an individual level, dance movements serve to signal information related to 
mate selection, while on a group level, dance movement serves such functions as coalition signaling and sup-
porting group coordinated action.

Computational analysis of individual differences in dance movement has begun to provide insights into how 
such information is encoded in kinematic features. Carlson et al.23 found that individual movement signatures 
from participants moving spontaneously to music (i.e., as one might in a club or party setting), as captured by 
the three-dimensional co-variance of movement between joints, could be used to accurately classify individual 
dancers at a rate of 94%, suggesting that dance movements may be highly individualized. However, research 
has also shown correlations between dancers’ personality traits and features of their free dance movements, 
suggesting that such group-level individual differences are also encoded in dance movements. Luck et al.24 used 
principal component analysis to identify five components of free dance movement, showing that neuroticism, 
for example, was negatively correlated with global movement (movement of the whole body across the dance 
floor) but positively correlated with local movement (movement within the body), while Openness was positively 
correlated with local movement, and extraversion was positively correlated with all five components, suggest-
ing extraverted participants tend to move more in general. Carlson, Burger and Toiviainen found that dancers’ 
self-reported trait empathy related to how much dancers changed their movement in response to different dance 
 partners25. These studies suggest that it should be possible to predict participants’ personalities from their dance 
movements, although prediction (as opposed to correlation) has not yet been done.

Although Carlson et al.23 were able to identify individuals via dance movement with high accuracy, in the 
same study their attempt to classify which of the eight genres the participants were dancing to resulted in an 
accuracy of only 23 percent. One explanation for this may be that individual factors, such as personality and 
dancers’ preferences for some genres over others, had a greater influence on their movements than did the spe-
cific characteristics of the musical stimuli. Research into how music preference is embodied in dance, however, 
is limited. Luck et al.26 found that participants’ preferences for different excerpts resulted in a U-shaped curve 
on a number of kinematic features, suggesting that both low and high preference for particular musical excerpts 
resulted in more movement. However, further research is needed to explore the interaction of preference and 
movement on the level of musical genres, which, despite being a fuzzy  concept27, are nevertheless a common way 
music preferences are discussed and related to individuals’ self-concepts and judgements of  others28,29. Previ-
ous work additionally provides broad support for the existence of relationships between music preferences and 
individual differences, including personality trait empathy, and trait  systemizing28,30. In light of the transitivity 
property which states that if A relates to B, and B relates to C, then A relates to C. In our case A refers to move-
ment, B refers to Personality, and C refers to Music Preferences. If movement patterns have been associated with 
personality traits, and personality traits with music preferences, then we could assume that movement patterns 
would be associated with music preferences. A potential mechanism by which this may occur is that listening to 
music of a preferred genre leads to the recruitment of cognitive faculties related to greater attention to and emo-
tional involvement with the music, which in turn results in potentially identifiable implicit movement patterns.

The current study aims to address these many potential influences on an individual’s music-induced move-
ments, by using free dance movement to predict dancers’ gender, personality traits, and music preference. To 
this end, we use data sets from Carlson et al.31 and Luck et al.24 and employ machine learning techniques to 
predict Gender, Personality, and musical preferences from music-induced movement. We follow Carlson et al.23 
in making use of co-variance between joints as a kinematic feature, as Troje, Westhoff and  Lavrov1 and Westhoff 
and  Troje2 have suggested that phase relationships between joints may have perceptual validity as a feature used 
in perceiving human movement. We aim to assess the robustness of our proposed machine learning architecture 
by comparing its accuracy on the two different data sets, allowing us to explore the degree to which findings 
generalize. Additionally, we attempt at proposing a Joint Importance profiles which is novel measure to evaluate 
the importance of specific joints and their relative movement in characterising personality and music preferences.

In light of previous studies, we investigate the following hypotheses:

• We expect, based on previous research showing that gender can accurately be classified from gait, that it will 
be possible to accurately classify gender from free dance movement as well.

• Since personality traits are stable, we can expect the findings to generalise to other datasets if we are able to 
capture them well enough for one. We also expect, based on previous research, that personality will be pos-
sible to predict from joint co-variance. Given that joint co-variance relates to local movement (as opposed to 
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global movement across a dance floor), in light of findings from Luck et al.24, our predictions may be more 
accurate for neuroticism and less accurate for conscientiousness and extraversion as they were found to be 
positively correlated with global movement.

• Due to evidence of relationships between personality and musical preferences, we additionally expect that 
music preferences may also be predicted using participants’ free dance movements.

Results
Gender classification. The results for Gender classification on Dataset-1 and Dataset-2 can be found in 
Table 1.

As can been seen from Table 1, clearly position data gives a higher accuracy than velocity data for both the 
datasets. We achieved slightly higher accuracy for the second dataset, which can be attributed to the fact that 
Dataset-2 is almost twice as big compared to Dataset-1.

Personality prediction and joint importance. Overall, Bayesian Regression demonstrated superior 
performance over Principal Component Regression, hence we only report those results. Moreover, Bayesian 
Regression provides confidence bounds for our prediction which enable us to evaluate the uncertainty of the 
predictions. The results for personality prediction on Dataset-1 and Dataset-2 using Bayesian Regression can be 
found in Table 2. The results using Principal Component Regression can be found in supplementary material. 
Moreover, using position data as input features provided superior prediction when compares to velocity data. 
Hence we report here detailed results of Bayesian Regression based on position data.

Bayesian Regression performed considerably well for both the data sets as evidenced by the high proportion 
of variance explained, that is, average R2 score of 76.3% and 89.0% across all traits for Dataset-1 and Dataset-2 
respectively using the position data. On the other hand, using velocity data resulted in a lower average R2 score 
of 44.4% and 39.0% for Dataset-1 and Dataset-2 respectively. Furthermore, the considerably low RMSE values 
when compared to the range of personality values (i.e., 1.0–5.0) reflects high model accuracy. The average RMSE 
scores for Dataset-1 and Dataset-2 using the position data was found out to be 0.31 and 0.21 respectively, which 
was considerably smaller than the avg. RMSE scores of 0.47 and 0.53 using the velocity data for Dataset-1 and 
Dataset-2 respectively.

For evaluating Joint Importance we used learned weights of the model using position data across the different 
prediction tasks. In order to get an overview of the relative importance of joints, we averaged those joints which 
occur in pairs (e.g., L and R shoulder, L and R knees, etc.), thus reducing the total number of joints to 12. This is 
referred to as the Joint Importance profile. Figure 1a,b display relative personality-wise Joint Importance for Data-
set-1 and Dataset-2 respectively. The black line plotted in each sub-figure indicates the mean of Joint Importance 
across personality traits for the respective data set. The farther away from the mean the Joint Importance value 
is, the more important that joint is in characterizing that trait.

Altogether the results characterizing an individual personality trait is dominated by the limbs than the core of 
the body. As seen from the Fig. 1a,b, Extraversion and Conscientiousness show some similarity across the data-
sets, reflecting the importance of specific joints. This is reflected in the Spearman correlation between the Joint 
Importance profiles across datasets: only Conscientiousness exhibited significant correlation ( r = .73 , p < .01 ) 
while Extraversion demonstrated borderline significance ( r = .52, p = .08 ). For Extraversion, the ’Head’, ’Hips’, 
’Shoulder’, ’Elbow’, and ’Knee’ are consistently more important across datasets. Similarly for Conscientiousness, 
the ’Head’, ’Shoulder’, and ’Knee’ are consistently more important.

Generalization of trait‑wise movement patterns. To investigate consistency of movement patterns 
for individual traits across data sets, we perform Agglomerative Hierarchical clustering on the Joint Importance 
profiles. Agglomerative Hierarchical clustering allows to cluster the profiles in a hierarchical manner by captur-
ing inherent similarities. We apply the commonly used ward’s linkage method to compute the distance between 

Table 1.  Gender classification results using position data and velocity data for five personality traits using 
SVM classification on both the datasets.

Classification accuracy (in %) Dataset-1 Dataset-2

Position 96.53 98.76

Velocity 84.59 86.33

Table 2.  Prediction results using position data for five personality traits using bayesian regression on both the 
datasets.

Openness Conscientiousness Extraversion Agreeableness Neuroticism

RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2

Dataset-1 0.20 0.78 0.32 0.76 0.38 0.74 0.25 0.78 0.38 0.76

Dataset-2 0.19 0.90 0.22 0.90 0.25 0.88 0.17 0.89 0.24 0.88
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the clusters, as it tends to produce homogeneous cluster and yields compact spherical clusters when compared to 
other  approaches32. Figure 2 shows the dendrogram of the learned Joint Importance profiles of different personal-
ity traits across data sets.

(a) Dataset-1

(b) Dataset-2

Figure 1.  Relative importance of Joints of the five personality traits (Openness, Conscientiousness, 
Extraversion, Agreeableness, and Neuroticism) using the Position Data. The black line indicates the mean 
importance of the corresponding joint marker. The red dotted line in the top left sub-figure indicates the 
standard deviation about the mean.
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As seen in Fig. 2, traits Extraversion, Conscientiousness, and Agreeableness, demonstrate high inherent simi-
larity in Joint Importance profiles suggesting that individual prediction models are similar. In other words, this 
implies that there exist trait-specific movement patterns. On the other hand, Openness and Neuroticism cluster 
together suggesting similarities in their overall movement patterns. However, agglomerative clustering only 
reveals similarities at a cluster level but not how each of the elements within a cluster relate to each other. Hence, 
we perform Multidimensional Scaling (MDS), a common technique that is used to visualize interrelationships 
within high-dimensional data in a lower dimensional space. We perform MDS by creating the dissimilarity matrix 
based on the Euclidean distance between the Joint Importance profiles and projecting them onto a 3-dimensional 
space. Figure 3 provides the 3D representation of Joint Importance profiles similarity as a result of MDS revealing 
high trait-wise similarity across data sets.

Prediction of music preference. As was the case in personality prediction models, Bayesian Regression 
outperformed Principal Component Regression; thus, we report the results using Bayesian Regression. In addi-
tion, using position data as input features provided superior prediction when compares to velocity data. The 

Figure 2.  Dendrogram of the learned Joint Importance profiles for Personality traits in different datasets. 
Number {1, 2} in the subscript denotes the dataset number. Each color represents cluster at some level.

Figure 3.  Multi-dimensional scaling (MDS) results for the learned joint importance profiles for personality traits 
on both the data sets. Number {1, 2} in the subscript denotes the dataset number.
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results of music preference prediction using Bayesian regression for Dataset-1, with position data as input fea-
tures, can be found in Table 3.

From Table 3, we can see that the Bayesian regression model was able to predict musical preferences with 
high accuracy. The range for R2 score varies between 72% and 85% for different genres with an avg. R2 score of 
77.5% using the position data. Additionally, the low RMSE values ranging from 0.49 to 0.96 when compared to 
the range of self-reported music preference values (i.e., 1.0–7.0) demonstrates high model precision.

Figure 4 displays Spearman Correlations between Joint Importance profiles that contribute to the prediction 
of Musical Preferences. Based on our hypothesis, we expected to see similar Joint Importance profiles for genres 
that are jointly preferred per trait. As can be seen in Fig. 4, highest positive Spearman correlation was observed 
between the Joint Importance profiles of Jazz and Blues (r = 0.60), Soul and Funk (r = .7), Pop and Rock (r = 
0.62), and Rock and Oldie (r = 0.66), supporting our hypothesis. Additionally, we also observe highest negative 
correlations between the Joint Importance profiles of Rock and Jazz (r = − 0.75), and Metal and Rap (r = − 0.75), 
Funk and Pop (r = − 0.68), Blues and Country (r = − .6), and Pop and Soul (r = − 0.58).

In order to better capture the intrinsic similarities in Joint Importance profiles, we performed agglomerative 
hierarchical clustering on the learned Joint importance profiles for different genres. The clustering was performed 
using the same approach as explained in the section above. Figure 5 represents the dendrogram of hierarchical 
clustering on the Joint Importance profiles.

We observe from Fig. 5, the similar genres such as Funk & Soul, and Blues & Jazz, cluster together early in the 
hierarchy tree. This clustering pattern reveals similar genres being merged in the beginning suggesting similar 
overall movement patterns for those genres.

We further compare the similarities between the self-reported participants’ ratings of the Music preferences 
with learned Joint Importance profiles. Figure 6 represents the dendrogram of hierarchical clustering on the self-
reported ratings. Comparing this with Fig. 5, we see that self-reported ratings revealed an intrinsic structure 
fairly similar to those of movement patterns. In particular, we find two broad clusters. In the first cluster, we 
observe that similar clustering for the genres Funk and Soul, and Blues, Jazz and Reggae. In the other cluster, 
the genres Rock, Pop, Metal and Country exhibited high similarity. The one exception was that of the genres 
Dance and Rap showing high similarity in Joint Importance profiles but father away in terms of user preference.

Discussion
Our results showed that we could successfully predict dancers’ gender, personality traits, and music preferences 
from their music-induced movement. Our model was able to classify gender with near perfect accuracy/high 
precision and the regression model was able to predict personality and music preferences with high accuracy. 
These results provide broad support for the influence of gender, personality, and music preferences on embodied 

Table 3.  Prediction results using position data for twelve STOMP based musical preference (Blues, Country, 
Dance, Funk, Jazz, Metal, Oldies, Pop, Rap, Reggae, Rock, and Soul) using bayesian regression on Dataset-1.

Metric Blues Country Dance Funk Jazz Metal Oldies Pop Rap Reggae Rock Soul

R2 0.81 0.73 0.84 0.72 0.77 0.84 0.75 0.85 0.72 0.73 0.79 0.77

RMSE 0.58 0.96 0.63 0.65 0.72 0.85 0.63 0.53 0.94 0.81 0.49 0.72

Figure 4.  Spearman correlations between Joint importance profiles for different Musical Preferences.
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responses to heard music, corroborating ideas of embodied music cognition and the role of bodily movement 
in musical experiences. These results provide support for the hypothesis that socially relevant information is 
encoded in dance movement, in line with previous research showing human ability to perceptually decode 
personality and gender from bodily movement. The encoding of multiple types of socially relevant information 
in dance movements makes sense in light of the fact that dance typically occurs in social settings and often in 
contexts which include strangers as well as acquaintances (e.g., a wedding, party, or night club). In such set-
tings, the ability to decode such information on the bases of limited, embodied interactions might be adaptive 
as it allows some initial social judgements to be made quickly without the need for conversation or extended 
behavioral interactions.

In addition to the above findings, we devised a novel measure to evaluate the importance of specific joints 
and their relative movement in characterizing particular personality traits and music preferences. This measure 
allows us to better understand how socially relevant information is encoded in dance with a degree of detail that 
is unlikely to be available to conscious observation; that is, we may be able to perceive personality or trait empathy 
based on how another person moves, but are unlikely to be able to consciously identify all of the relevant move-
ment features which contribute to our impression. Our results are the first to our knowledge to demonstrate the 
generalization of an analytical architecture across two dance-movement data sets collected using two different 
sets of musical stimuli. Although neither data set used in our analysis is large enough to make a commercial or 
industrial grade model, we were able to utilize two data sets of modest size to expand theoretical understand-
ing and provide support for the robustness of our computational model. It is notable that neither data set was 
collected with the express purpose of allowing for such information to be decoded. While some bias may be 
introduced due to the fact that both data sets were collected in the same location (albeit several years apart), both 
were also collecting using a naturalistic paradigm, giving us reason to be optimistic that at least some aspects of 
the current results may generalize further.

As hypothesized, we were able to predict gender with near perfect accuracy of 96.53% and 98.76% for Data-
set-1 and Dataset-2 respectively. As  Troje33 was able to achieve high accuracy of gender minimal information, 
such as a single eigenpostures or as few as four principal components, it is not surprising that we were able to 

Figure 5.  Dendrogram for Joint importance profiles across STOMP music preferences.

Figure 6.  Dendrogram of the self-reported ratings for STOMP music preferences.
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achieve such high accuracy. Identifying gender with such high accuracy from music-induced movement suggests 
that there are gender specific movements to music. These gender differences may be the result of sociocultural 
influences as well as differences in natural movement patterns influenced by gender-specific joint flexibility.

Our Bayesian regression model for prediction of personality demonstrated an average R2 score of 76.3% 
and 89.0% across all traits for Dataset-1 and Dataset-2 respectively using the position data. Previous studies 
have shown Extraversion to be positively related to global movement as opposed to Neuroticism which relates 
negatively to global  movement24. As hypothesized, given that joint co-variance is related to local movement, 
Neuroticism was found to have slightly better classification accuracy than Extraversion. The current findings 
are especially interesting in light of the findings of Carlson et al.23, who used covariance matrices derived from 
motion capture data in an analysis in which individual dancers were correctly classified using SVM classification 
with an accuracy of over 80 percent, suggesting that covariance between markers encodes individual differences 
both on the level of individual identity and on group-level features such as personality.

The proposed novel measure to evaluate the importance of specific joints and their relative movement in 
characterizing individual traits demonstrated that the limbs of the body to have more significance in predicting 
individual traits than the core body. The ’Finger,’ ’Elbow,’ and ’Knees’ were found to have the greater impact on 
Joint Importance, while the ’Root,’ ’Neck,’ and ’Torso’ had an insignificant impact. This is consistent with the fact 
that gestures are necessary for  communication34. Extraversion and Conscientiousness have some similarities in 
terms of Joint Importance profiles across data sets, indicating the importance of specific joints. ’Head, Shoulder, 
and Knee’ play a crucial role in characterizing Conscientiousness, and these joints were consistently more impor-
tant across data sets. For Extraversion, the ’Head,’ ’Hips,’ ’Shoulder,’ ’Elbow,’ and ’Knee’ are consistently more 
important across the data sets. Luck et al.24 discovered a link between Extraversion and head movement speed, 
confirming the current theory that the head is particularly important in determining Extraversion. Carlson et al.35 
found that in relation to Extraversion, the core body was more significant in responsiveness to musical tempo 
than Conscientiousness, which is partly confirmed by the marginally higher importance of the finger and wrist 
markers in our analysis but partly refuted by the importance of the shoulder marker in Extraversion. Overall, 
the disparity in results may be due to the current study’s use of position data rather than velocity or acceleration 
data. As a result, the specific markers relevant to predicting individual traits sometimes contradict and largely 
corroborate previous research.

Agglomerative clustering and dendrogram plots of the Joint Importance profiles for personality provided 
evidence for the ability of our regression model to generalize across data sets by demonstrating that the weights 
learned by different models are similar. We have further shown the generalization by visualizing the learned 
profiles using Multi-Dimensional Scaling (MDS) based on Euclidean distance. The five mini clusters formed 
for each personality trait from the different data sets provides further corroboration that the weights learned by 
different model for two data sets are similar. As hypothesized, we were able to successfully predict the personality 
values for the second data set, which further demonstrates the robustness of our model. We were able to achieve 
higher accuracy for the second data set, which can be attributed to that set’s larger sample size. While we did not 
use a single model to train and evaluate the different data sets, due to the dissimilarities of genres and participant 
demography, our model nevertheless showed similarities between the two data sets.

Related to prediction of STOMP-based Music Preferences, our regression model performed considerably 
well, demonstrating an average R2 score of 77.5% with the score varying from 71.9% for Funk to 85.3% for Pop 
at the higher side for Music Preferences. To a great extent, the Joint Importance profile learned from the model 
using the position data and participants’ self-reported ratings of music preference show similar clustering pattern. 
From Figs. 5 and 6 it is clearly visible that music preferences like Funk and Soul, and Blues, Jazz and Reggae are 
clustered similarly in both dendrograms in one of the higher-level clusters. In the another higher-level cluster, 
there were also similar clustering between Rock, Pop, Metal and Country, as well as between Dance and Rap. This 
is a notable finding, as self-reported music preferences are made consciously using verbal representation, which 
 Leman36 has argued are problematically distant from direct (embodied) engagement with music. That we could 
find similarities in clustering between reported preferences and movement patterns suggests that, despite being 
at a far remove from conscious, verbal descriptions, embodied responses to specific, heard music can indeed be 
seen to encode music preferences at the genre level.

Another observation related to this point from Fig. 5 is that Oldie and Country both belong to the “Upbeat 
and Conventional” factor as suggested by Rentfrow and  Gosling28, and clustering via Joint Importance represents 
a closer relationship for these compared to self-reported ratings; that is, in this case, movement patterns were 
more closely associated with Rentfrow and Gosling’s model than were verbal self-reports. This may be due to 
similarity of movement in response to acoustic similarities between these genres. This result may also reflect dif-
ferences in participants’ perceptions of genre compared to industry-standard labeling, which have been shown to 
be ambiguous and inconsistent, as well as subject to cultural differences in the distinction between more granular 
 categories27. Overall, these results indicate a relationship between embodied responses to music to specific stimuli 
and more general music preferences that is detectable despite the many other factors that may have influenced 
dancers’ movements, including specific musical features. Taken together with our results regarding personality, 
this analysis demonstrates that abstract psychological and psychosocial concepts such as personality and prefer-
ence are indeed evidenced by concrete features of complex dance movement, corroborating the idea of dance as 
a useful paradigm in exploring how socially relevant information is encoded in human movement.

The achieved prediction accuracy using covariance of position data as input features was about twice as high 
when compared to features extracted from velocity data. One possible explanation is that position data captures 
individual bodily structure and differences in joint flexibility which might give rise to certain kinds of move-
ment patterns. The methods developed in the current study provide a functional basis from which to continue 
this work.
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To conclude, this study represents an early step to making this approach applicable to personalized gesture-
based retrieval systems. With recent development in the field of 3D human pose prediction, which can predict 
the human body joint coordinates from a monocular video, it can be applied to monocular video taken by devices 
such as a cell phone camera. This would then allow future recommendation systems to take embodied processes 
into account, resulting in better and more responsive personalized experiences. Future research could help clarify 
the relationship between the current results and those movement features which are perceptually relevant to 
judgements of gender, personality and music preference. While analysis showed interpretable relationships within 
and between sets of Joint Importance profiles, further research is needed to determine whether, how, and in what 
contexts this encoded information may be decoded by human observers. Such research may have particular 
relevance to our understanding of social perception of human movement, and may further understanding and 
treatment of disorders involving social deficits, such as  autism19,37.

Methods
Data sets. We used two data sets in our study. They comprised spontaneous movement data of participants 
moving to musical stimuli representing different genres. The data were obtained via Motion Capture systems. A 
brief overview of both the data sets is provided in Table 4.

Dataset‑1. The first dataset is from the study by Carlson et al.31 comprising data from 58 university students 
(41 females; mean age = 26.8 years, std = 4.7 years). Participant gave written consent and participation was 
completely voluntary. All experiments were performed in accordance to the guidelines and regulations of the 
National Advisory Board on Research Ethics in Finland (TENK). Ethical permission was not needed for this 
kind of research, according to the aforementioned guidelines and regulations.

Thirty-six individuals reported having received formal musical training, while twenty participants reported 
having received formal dance training. The stimuli comprised sixteen 35-second excerpts from eight genres, in 
randomized order: Blues, Country, Dance, Jazz, Metal, Pop, Rap, and Reggae. Participants were asked to listen to 
the music and move as freely as they desired that felt natural with regards to the stimuli presented. Additionally, 
participants were encouraged to dance if they wanted to, but staying within the marked capture space. The aim 
of these instructions was to create a naturalistic setting, such that participants would feel free to behave as they 
might in a real-world situation.

Participants’ movements were recorded using a twelve-camera optical motion-capture system (Qualisys Oqus 
5+), tracking at a frame rate of 120 Hz, the three-dimensional position of 21 reflective markers attached to each 
participant (see Fig. 7a). The MATLAB Motion Capture (MoCap)  Toolbox38 was used to analyze this data. Data 
were first trimmed to the duration of each stimulus and, Following this, to simplify analysis and reduce redun-
dancy, the original markers were transformed to yield a secondary set of markers subsequently referred to as 
joints, the locations of which are depicted in Fig. 7b.

The locations of joints B, C, D, E, F, G, H, I, M, N, O, P, Q, R, S, and T are identical to the locations of one of 
the original markers, while the locations of the remaining joints were obtained by averaging the locations of two 
or more markers; Joint A: midpoint of the two back hip markers; J: midpoint the shoulder and hip markers; K: 
midpoint of shoulder markers; and L: midpoint of the three head markers. The data were then transformed to a 
local coordinate system, in which the location of each joint was expressed in relation to the root joint (Fig. 7b, 
marker A), which is defined as the origin, and the line connecting the hip markers as the mediolateral axis, allow-
ing for comparison between dancers regardless of their orientation within the original mocap space. Further, 
using the MoCap Toolbox, the instantaneous velocity of each marker in each direction was calculated by time 
differentiation followed by the application of a 2nd-order Butterworth filter with a cutoff frequency of 24Hz.

Dataset‑2. For the second data set, sixty-four participants took part in the motion capture data collection in 
a study by Luck et al.24. Four participants were excluded from further analysis due to incomplete data. Thus, 
60 participants were retained (43 females; mean age = 24 years, std = 3.3 years). They were recruited based on 
a database of 952 individuals that contained their scores of the Big Five  Inventory39. The aim of the original 
study involved recruiting high- and low-scoring individuals for each of the five dimensions. Six participants had 
received formal music education, while four participants had a formal background in dance. All participants 
gave their informed consent prior to their inclusion in the study and were free to discontinue the experiment at 
any point. Ethical permission for this study was not needed, according to the guidelines stated by the University 
of Jyväskylä’s (Finland) ethical board.

Table 4.  Dataset comparison.

Dataset-1 Datatset-2

Participants 58 60

Gender 41 Females, 17 Males 43 Females, 17 Males

Age Mean: 26.8 years, Std: 4.7 years Mean: 24 years, Std: 3.3 years

Personality (BFI) ✓ ✓

Music preferences (STOMP-R) ✓ ✗
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Participants were presented with 30 randomly ordered musical stimuli. Among the 30 musical stimuli, five 
stimuli belonged to each of the following popular music genres: Jazz, Latin, Techno, Funk, Pop, and Rock. All 
stimuli were 30 seconds long, non-vocal, and in 4/4 time, but differed in their rhythmic complexity, pulse clarity, 
and tempo. As described for Dataset-1, the participants were directed to move freely to the music.

A similar process was followed as described in section Dataset-1 to transform the the 28-marker data into 
a set of 20 secondary markers, referred to hereafter as joints, displayed in Fig. 8. The locations of joints C, D, E, 
G, H, I, M, N, P, Q, R, and T are identical to the locations of one of the original markers, and the locations of 
the remaining joints were obtained by averaging the locations of two or more markers. Data were trimmed and 
transformed to a local coordinate system. The kinematic variables, position and velocity were estimated using 
the Savitzky-Golay smoothing FIR  filter40 with a window length of seven samples and a polynomial order of two. 
These values were found to provide an optimal combination of precision and smoothness in the time derivatives.

Personality and music preferences measure. The Big Five Inventory (BFI) was used to capture the five personal-
ity dimensions, namely, Openness, Conscientiousness, Extraversion, Agreeableness, and  Neuroticism41. This 
data is available for both the data sets. Music Preferences for the participants were measured for the Dataset-1 
using a revised and updated version of the “Short Test Of Music Preferences” (STOMP)28, that is, the STOMP-
Revised (STOMP-R)42. This version includes genres not found in the original STOMP, thus providing a broader 
initial pool of genres from which to choose. Genres that were not suitable for dancing (e.g., Classical, Opera) 
were eliminated. After careful considerations regarding the “Danceability” of stimuli belonging to genres and 
several other  factors43 the total of 48 tracks from 12 genres were considered in the online listening experiment. 
Participants rated their liking for the heard stimuli on a seven-point Likert scale. Participants could listen to an 
excerpt more than once. After rating all 48 excerpts, participants then completed a version of the STOMP-R 
including only the 12 genres used in the experiment.

Figure 7.  Dataset-1: Marker and joint locations (a) Anterior view of the marker locations a stick figure 
illustration; (b) Anterior view of the locations of the secondary markers/joints used in animation and analysis of 
the data.

Figure 8.  Dataset-2: Anterior view of the location of the markers attached to the participants’ bodies; Anterior 
view of the locations of the secondary markers/joints used in the analysis.
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Movement features. The pipeline for movement feature extraction is illustrated in Fig. 9. Using the MoCap 
 Toolbox38, we derived the position and instantaneous velocity for the set of 20 markers as specified in sections 
Dataset-1 and Dataset-2. We calculated the marker by marker covariance matrix for each participant, for each 
of the stimuli, for position and velocity data separately. The covariance between all the marker time series data 
(position or instantaneous velocity) in each direction (X, Y, and Z) for each stimuli measures the degree to which 
the movement of any two markers in any direction covaried with each other across the entire stimulus. We used 
 correntropy44, a non-linear measure to calculate covariance between the marker time series xi and xj , given by:

where ||xi − xj||2 is the L2-norm between xi and xj , σ is a constant set at 12.0 (based  on23), and T is the length of 
the time-series. The L2-norm is normalized according to the length of the time-series to take account of different 
lengths of stimuli. Since the number of joints is 20 and each joint has three coordinates, the dimension of the 
covariance matrix K turns out to be 60× 60 . Owing to the symmetric property of K, the lower triangular part 
excluding the diagonal elements was vectorised to produce a feature vector of length 1770 for each participant 
and for each stimulus. The features extracted for Position and Velocity data were used to train the classification 
and regression models.

Classifying gender from movement. In order to identify gender from movement, we used Linear Sup-
port Vector Machines (SVM), a classification technique that identifies the optimal solution for separating the 
classes in some hyperspace. SVM creates the largest possible buffer space between the two classes which is 
defined as the Optimal Separating Hyperplane, or OSH. The OSH minimises the risk of incorrectly classifying 
any new  data45. The Euclidean Distance or L2-norm was used as a penalty measure to identify the optimal class 
boundary. The tolerance of 1e−5 was used as the stopping criteria.

Predicting individual differences from movement. In order to predict personality and STOMP-
related music preferences from movement patterns we used Bayesian Regression and Principal Component 
Regression (PCR). In Bayesian Regression the weights are treated as random variables belonging to an underly-
ing distribution. By comparison, Linear Regression uses fixed weights. The predictions generated by Bayesian 
regression are not estimated to be a single value, but are assumed to be drawn from a probability distribution. 
Depending on the data set and its size, we can be more or less certain about the model weights. Thus, the pre-
dictions of the model also belong to a distribution, providing confidence bounds for our predictions, allowing 
a better representation of the uncertainty of a model’s predictions. PCR, on the other hand, is similar to linear 
regression with the independent variables of predictors represented as linear combinations of feature vectors.

We compared the aforementioned models and Bayesian Regression was superior so we only report results 
with that. Moreover, Bayesian Regression provides confidence bounds for our prediction which enable us to 
evaluate the uncertainty of the predictions. We used the Python based scipy  toolkit46 to perform our analyses.

To evaluate the accuracy of the models, we use variance explained (i.e., R2 ) and Root-mean-square-error 
(RMSE) as performance measures. RMSE estimates the deviation of an observed value from our model’s predic-
tion, and has the useful property of being in the same units as the variable being predicted. The R2 is a measure 
of variance explained in the data and represents goodness-of-fit.

RMSE and R2 are estimated as an average of 5-fold cross-validation. To this end, we split the data randomly 
in 5 equal chunks, where each chunk is used as a testing set at some point. In the first iteration of 5-fold cross-
validation, the first chunk (that is, 20 percent of total data) was used to evaluate the model while the remaining 80 

(1)K(xi , xj) = e
−�xi−xj�

2

2

2σ2T2

Figure 9.  Overview of our feature extraction pipeline. Given the position of joints across time frames in 3D 
Euclidean space (a), we apply pairwise correntropy between time series xi and xj and calculate the K-matrix (b). 
Then, taking the lower triangular part of the symmetric covariance matrix, we get the feature vectors (c).



12

Vol:.(1234567890)

Scientific Reports |         (2022) 12:2672  | https://doi.org/10.1038/s41598-022-06466-3

www.nature.com/scientificreports/

percent of the data was used to train the model. This process was repeated 5 times such that all data was used at 
least once as the testing set. This process helps in obtaining a more generalized estimate of classification accuracy.

Key movement patterns associated with predicting individual differences. The prediction pipe-
line and Joint Importance Vector evaluation is illustrated in Fig. 10. In order to identify the key movement patterns 
associated with predicting individual differences, we propose a novel Joint Importance metric. Joint Importance is 
a measure of the contribution of each of the joints in predicting each class (e.g., how important the shoulder or 
elbow joint is in predicting a given personality trait or genre preference). In the training phase, for each iteration 
of the 5-fold cross-validation, we obtain a trained model with weights associated with each of the 1770 input 
feature vector as mentioned above. Each of these 1770 elements is associated with pairwise correlation of joints 
in each of the three dimensions in Euclidean space. We first map the 1770 weights to the respective joint pairs. 
Then, for each joint, we find the joint importance by summing the absolute weights of those associated with 
the respective joint across all the 5 iterations. We sum the absolute weights because the magnitude preserves 
the importance of that joint-pair correlation. This process results in the Joint Importance vector of length 20. In 
order to visualize and compare Joint Importance across classes, we perform Min-Max Normalization. Min-Max 
Normalization is a standard procedure where the minimum value is transformed to 0, while the maximum gets 
set to 1. The pseudo-code to get the Joint Importance is provided in supplementary material.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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