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A gene signature consisting 
of ubiquitin ligases 
and deubiquitinating enzymes 
of SKP2 is associated with clinical 
outcome in breast cancer
Lon W. R. Fong1, Jangsoon Lee2, Hui‑Kuan Lin3, Naoto T. Ueno2 & Shuxing Zhang1*

The ubiquitination of SKP2, an oncoprotein, is controlled by its E3 ligases, including APC/CFZR1 and 
deubiquitinases such as USP10. We identified a two-gene signature for the ubiquitination of SKP2, 
consisting of the copy number of FZR1 compared to the copy number of USP10. The signature 
reflects the level of SKP2 activity, stratifying BC patients into two groups with significantly different 
protein levels of SKP2 ubiquitination substrate p27 (t-test p < 0.01) and recapitulating the expression 
patterns of SKP2 between tumor and normal tissue (Spearman’s ρ = 0.39.) The signature is also 
highly associated with clinical outcome in luminal BC but not other subtypes, characterizing patients 
into two groups with significantly different overall survival times (log-rank p = 0.006). In addition, 
it is dramatically associated with tumor grade (Chi-squared p = 6.7 × 10−3), stage (Chi-squared 
p = 1.6 × 10−11), and the number of positive lymph nodes (negative binomial regression coefficient 
p = 2.0 × 10−3). Our study provides a rationale for targeting the SKP2 ubiquitination pathway in luminal 
BC and for further investigation of the use of ubiquitinase/deubiquitinase genes as prognosis and 
treatment biomarkers.

S-phase kinase-associated protein 2 (SKP2) is part of the Skp1–Cullin–F-box (SCF) complex, an E3 ubiquitin 
ligase. The main targets of SKP2 include proteins such as p27 and p21 that block progression through the cell 
cycle, specifically S phase, G2 phase, and the beginning of the M phase1–12. By ubiquitinating these proteins, the 
SCF complex marks them for degradation by the 26S proteasome. As many of SKP2’s targets halt the cell-cycle 
progression and are therefore tumor suppressors, SKP2 has an oncogenic role in many cancers13–16. Accordingly, 
recent studies have shown SKP2 is a promising target for cancer therapy, and a few studies, including our own, 
have demonstrated successful pharmacological inhibition of SKP2 in preclinical cancer models17–19. Since the 
oncogenic role of SKP2 in breast cancer (BC) in particular is well established20–23, here we focus our study on 
this disease.

Like many proteins, SKP2 can itself be ubiquitinated and thus marked for proteasomal degradation. The 
ubiquitin ligase that targets SKP2 is the anaphase-promoting complex/cyclosome (APC/C), with fizzy-related 
protein homolog (FZR1) the subunit that confers specificity for SKP2 (APC/CFZR1)24,25. Furthermore, SKP2 
has also been shown to be deubiquitinated by ubiquitin-specific peptidase 13 (USP13) and ubiquitin-specific 
peptidase 10 (USP10) in different model systems26–28. Since these proteins control the ubiquitination of SKP2 
and thereby SKP2 protein levels (Fig. 1), we hypothesized that a gene signature consisting of FZR1 and at least 
one of USP10 and USP13 could be used as an approximation for SKP2 ubiquitination and protein levels in BC.

Furthermore, the use of genomic aberrations as prognostic and predictive biomarkers is already standard clin-
ical practice in BC, particularly the use of HER2 amplification status for both prognosis and to predict response 
to anti-HER2 therapy. We therefore further hypothesized that this gene signature could also be prognostic in BC. 
Finally, for the signature we used copy number rather than mRNA levels or mutations. This is for two reasons: 
first, copy number is more stable than mRNA levels, as transcription can be changed in response to external 
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stimuli. Second, copy number was shown in a pan-cancer analysis by Smith and Sheltzer to be more prognostic 
than mutations in cancer driver genes29. Our proposed signatures take into account only two genes: one ubiquitin 
ligase component (FZR1) and one deubiquitinase (USP10 or USP13). The advantage of this signature is that it 
allows for the stratification of patients into three groups easily distinguished by biological characteristics readily 
apparent from the signature (Table 1), a feature decided upon with clinical decision-making in mind.

Neither USP13 nor USP10 has yet been shown either in vitro or in vivo to deubiquitinate SKP2 in BC specifi-
cally; so far, USP10 has only been shown to deubiquitinate SKP2 in chronic myelogenous leukemia and neointima 
formation in vascular smooth-muscle tissue27,28, and evidence supporting the role of USP13 as a deubiquitinase of 
SKP2 has only been obtained from in vitro biochemical assays and in HeLa cells26. Our study therefore provides 
a rationale to further investigate the role of these proteins in BC. If the hypothesis is verified in vitro or in vivo, 
it would indicate that USP13 or USP10 may be a promising therapeutic target in BC. It also raises the possibility 
of using a bioinformatic approach as we have taken here to identify potential deubiquitinases of other proteins 
in other cancers.

In the present study, our goal is to identify gene signatures that could adequately represent target protein 
(SKP2) levels relevant in BC patient survival and clinical treatment. To this end, we first examined genomic and 
proteomic data from the Cancer Genome Atlas (TCGA). Next, we sought to provide evidence that our signature 
was acting through the proposed mechanism. Finally, we tested our hypothesis that the gene signature could be 
prognostic in BC by determining the extent to which our gene signature was associated with clinical outcome.

Figure 1.   A schematic illustration of the regulation of SKP2 ubiquitination by APC/C (E3 ubiquitin ligase) and 
USP10/USP13 (deubiquitinating enzymes), and SKP2-mediated ubiquitination of p27.

Table 1.   A summary of our SKP2 ubiquitination signature.

SKP2 ubiquitination signature 
group

FZR1 copy number vs USP10/
USP13 copy number Expected SKP2 protein levels Expected p27 protein levels

High FZR1 > USP10/USP13 Low High

Intermediate FZR1 = USP10/USP13 Intermediate Intermediate

Low FZR1 < USP10/USP13 High Low
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Results
Identification and validation of a gene signature to approximate SKP2 ubiquitination and pro‑
tein levels.  Two ubiquitin-specific peptidases (USPs), USP10 and USP13, have been shown to deubiquit-
inate SKP2, but neither of them has been reported with this function in BC specifically. Meanwhile, APC/CFZR1 
is the only E3 ubiquitin ligase experimentally verified to ubiquitinate SKP2, and it has been demonstrated to do 
so in BC cells30. We therefore set out to identify whether one of these USPs, or possibly both, deubiquitinates 
SKP2 in BC. To do this, we created two separate gene signatures putatively representing levels of SKP2 ubiquit-
ination: one consisting of FZR1 and USP10, and the other consisting of FZR1 and USP13. We then used each of 
these gene signatures to stratify patient samples from TCGA into two groups: patients with higher FZR1 copy 
number than the particular USP (USP10 or USP13) were categorized as “high SKP2 ubiquitination”, and patients 
with higher copy numbers of the particular USP than FZR1 were categorized as “low SKP2 ubiquitination” 
(Table 1). Copy-number comparisons were performed using the copy-number levels provided by cBioPortal, 
which assigns a level (− 2, − 1, 0, 1, 2) to a gene based on its putative copy-number alteration (deep deletion, 
shallow deletion, diploidy, low-level gain, and high-level amplification, respectively). For example, a patient with 
a USP10 or USP13 copy-number level of 0 and an FZR copy-number level of -1 would be classified as “low SKP2 
ubiquitination”.

Next, we examined the SKP2 downstream targets using our gene signature. Both p27 and p21 are known 
substrates of SKP2 and have been reported to be inversely correlated with SKP2 levels3,6,31–33, making them an 
ideal proxy for the SKP2 level or activity; they are among the most well-documented targets of SKP2 in the 
literature, an important consideration for validating our signature. However, the association of p21 with breast 
cancer prognosis is ambiguous and p27 has been more intensively studied3,6,31–33. Therefore, we focused on p27 
and compared its protein levels between the two groups, assuming that if a gene signature actually reflected levels 
of SKP2 ubiquitination, the group of patients it classifies as having high SKP2 ubiquitination would have higher 
levels of p27, and on the other hand the group classified as having low SKP2 ubiquitination would have lower 
p27. Our reasoning is as follows: higher ubiquitination of SKP2 should lead to increased degradation and lower 
levels of SKP2; decreased SKP2 should in turn lead to higher levels of p27, since p27 is a target for ubiquitination 
by SKP23,6,31–33. Of course, we would expect the opposite for lower ubiquitination of SKP2 (Table 1). As illustrated 
in Fig. 2, a signature consisting of FZR1 and USP10 stratified luminal BC patients into groups of different levels 
of p27 and in the expected pattern (i.e., the high-ubiquitination group having the highest p27 levels and the low-
ubiquitination group having the lowest levels), although this pattern was just above the threshold for significance 
at a cutoff of p = 0.05 (one-way ANOVA p = 0.059, F = 2.85, group DOF = 2, residuals DOF = 626). The signature 
consisting of FZR1 and USP13, meanwhile, did not display the expected pattern in any of the subtypes tested, 
nor did a negative control consisting of FZR1 and USP14, a deubiquitinase whose knockdown was shown not 
to decrease SKP2 levels (Table S1)27.

To further demonstrate that our SKP2 ubiquitination signature can be used to characterize changes in SKP2 
protein levels, we determined the extent to which our SKP2-ubiquitination signature can be employed to predict 
the same downstream effects in terms of alterations in gene expression as SKP2 expression levels change. To this 
end, we calculated the changes in the expression of all measured genes between two groups of BC patients: those 
classified by our signature as having high SKP2 ubiquitination and those having low SKP2 ubiquitination. These 
changes were represented as log fold changes (LFCs). We then did the same for those with high SKP2 expression 
and those with normal or low SKP2 expression. We expect that if changes in SKP2 levels is truly the mechanism 
underlying our SKP2 ubiquitination signature, there should be a correlation between the two vectors of LFCs 
produced above. As seen in Fig. 3, the highest Spearman correlation between the two sets of changes in gene 
expression occurs in luminal BC, in line with the patterns of differential p27 protein levels as shown in Fig. 2.

Assessment of the clinical relevance of SKP2 ubiquitination signature.  We next sought to deter-
mine the ability of our SKP2 ubiquitination signature to correlate with BC patient clinical outcome. First, we 
determined the extent to which our signature can stratify patients into groups of significantly different survival 
times. To this end, we used the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) 
data set as provided by cBioPortal34–36; this data set contains information on both overall survival and copy-
number alterations for 1981 of 2173 patients. Using our SKP2 ubiquitination signature, we divided patients into 
high- and low-SKP2 ubiquitination groups as detailed in the previous section. We graphed the survival curves 
of the two groups using the Kaplan–Meier method and determined the significance of the survival differences 
using the log-rank method. Since SKP2 is an oncoprotein, we expected the high-SKP2 ubiquitination group to 
have better survival. As shown in Fig. 4a (see Table S2 for descriptive statistics), the patterns mirror those seen in 
comparing the p27 levels between the two groups, with significant survival differences as expected seen in lumi-
nal patients (log-rank-test p = 0.006) and no significant differences in survival seen in HER2 or TNBC patients 
(log-rank-test p = 0.73 and p = 0.1, respectively).

Since the luminal subtype showed the most significant differences in survival between the high- and low-SKP2 
ubiquitination groups, we asked next whether our SKP2 ubiquitination signature would be able to distinguish 
survival outcomes in hormone therapy in luminal-subtype BC patients. To do this, we downloaded the GSE17705 
dataset from the NCBI’s Gene Expression Omnibus (GEO) repository consisting of ER+ BC patients treated with 
tamoxifen37. Since this data set has gene-expression but not copy number-alteration data, we divided patients 
into high- and low-SKP2 ubiquitination groups in the following way: patients with FZR1 expression less than 
or equal to the median FZR1 expression of the data set and USP10 expression greater than the median USP10 
expression of the data set were classified as “low SKP2 ubiquitination”. Patients with USP10 expression less than 
or equal to the median USP10 expression of the data set and FZR1 expression greater than the median FZR1 
expression of the data set were classified as “high SKP2 ubiquitination”. All other patients were classified as 
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“intermediate SKP2 ubiquitination”. As shown in Fig. 4b (see Table S3 for descriptive statistics), our signature 
indeed distinguishes patients by survival outcome (log-rank-test p = 0.036).

Taking one step deeper, we examined how our signature is associated with stage, tumor grade, and number of 
axillary lymph nodes positive for cancer-cell invasion (i.e., positive lymph nodes). For stage and tumor grade, we 
hypothesized that higher stage and grade would be associated with lower levels of SKP2 ubiquitination as classi-
fied by our signature. For the number of positive lymph nodes, we expected that patients classified as having lower 
levels of SKP2 ubiquitination would have more positive lymph nodes than patients classified as having higher 
levels of SKP2 ubiquitination. For these analyses, we used TCGA BC data as accessed through the cBioPortal web-
site. Chi-squared tests were used to determine the association between stage/grade and our SKP2-ubiquitination 
signature, and negative binomial regression was used to determine the association between number of positive 
nodes and our SKP2-ubiquitination signature. As seen in Figs. 5 and 6, the proportion of patients with a given 
stage/grade differs significantly among signature groups in luminal BC (Chi-square p = 0.0067 and p = 1.6 × 10−11, 
respectively) but not in HER2 BC (Chi-square p = 1 and p = 0.18, respectively) or TNBC (Chi-square p = 0.56 and 
p = 0.39, respectively). The relationship between our SKP2-ubiquitination signature and stage/grade in luminal 
BC follows the expected pattern, with the low-ubiquitination group having higher proportions of patients with 
higher-grade or higher-stage tumors.

The relationship between our SKP2-ubiquitination signature and number of positive lymph nodes again fol-
lowed the expected pattern in luminal BC but not in HER2 BC or TNBC. Because the counts of positive lymph 
nodes follow a positively skewed distribution but the variance is unequal to the mean (Fig. 7), we fit a negative 
binomial regression model to the counts. The input variable is the SKP2-ubiquitination signature, and the output 

Figure 2.   Selection of genes as SKP2 ubiquitination signature. Analyses were performed on the data set in 
aggregate (n = 873) and on three major subtypes separately: luminal (n = 629), HER2 (n = 36), and triple-negative 
BC (TNBC) (n = 92). Comparison of p27 protein levels between SKP2 ubiquitination groups as defined by our 
signature (copy number). Luminal BC was defined as being estrogen receptor (ER)-positive (ER+); HER2 BC 
was defined as being HER2-positive (HER2+) and ER- and progesterone receptor (PR)-negative (ER−, PR−); 
TNBC was defined as being ER−, PR−, and HER2−. Immunohistochemical staining was used to determine the 
status of each marker. p-values shown are for one-way ANOVA.
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variable is the count of patients with a certain number of positive lymph nodes. As exhibited in Table 2, the coef-
ficients for the input variable when the SKP2-ubiquitination signature is intermediate- or low-ubiquitination 
are positive and significant (Wald p = 5.2 × 10−11 and p = 6.5 × 10−3, respectively). This indicates that the count of 
patients with higher numbers of positive lymph nodes is expected to be higher in patients with an intermediate- 
or low-ubiquitination signature than in patients with a high-ubiquitination signature, as we expected.

Using SKP2 ubiquitination signature to discover potential treatments for luminal breast can‑
cer.  Since our SKP2 ubiquitination signature was shown to be significantly associated with differences in 
clinical outcome in luminal BC, we wanted to determine if our signature (or more specifically, its downstream 
effects) could be used to identify treatments for luminal BC from FDA-approved drugs. To do this, we again used 

Figure 3.   Correlation between Skp2 ubiquitination levels and SKP2 mRNA levels. Correlation between (1) the 
log fold changes (LFCs) of the genes differentially expressed between the high- and low-SKP2 ubiquitination 
groups (y-axis) and (2) the LFCs of the genes differentially expressed between high and low SKP2 copy 
number (x-axis). Analyses were performed on a dataset in aggregate (n = 728) and on three major subtypes 
separately: luminal (n = 566), HER2 (n = 27), and triple-negative BC (TNBC) (n = 62). Number of genes in each 
dataset = 20,501. Subtypes are defined as in Fig. 2. Spearman’s method was used to calculate the rank correlation. 
The results of the limma linear-model fits, including all 20,501 genes, can be found in Supplementary File S1.
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Figure 4.   (a) Differences in overall survival between the SKP2 ubiquitination groups. Analyses were performed 
on the data set in aggregate (n = 1981) and on three major subtypes separately: luminal (n = 1527), HER2 
(n = 134), and TNBC (n = 320). Subtypes are defined as in Fig. 2. The Kaplan–Meier method was used to graph 
the survival curves, and the log-rank test was used to calculate the significance in difference in survival between 
ubiquitination groups. (b) Distant recurrence-free survival differences between SKP2 ubiquitination-signature 
groups in ER+ BC patients treated with tamoxifen (n = 298).
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the SKP2 ubiquitination signature to stratify patients into two groups of high- and low-SKP2 ubiquitination, 
then used the limma algorithm to identify the genes that were differentially expressed between the two groups38. 
We input this list of genes to the Connectivity Map’s (CMap)39 repurposing function via the DrInsight pack-
age and identified drugs that produce either a similar or an opposite perturbational gene signature (Fig. S1)40. 
Table 3 shows the drugs predicted by CMap to yield either the desired transcriptional perturbation (negative) 
or the opposite perturbation (positive). Of the seven of these drugs predicted to have the desired transcriptional 
perturbation in a luminal BC cell line (MCF7), two have been shown to downregulate SKP2 and stabilize p27 in 
BC cell lines (sirolimus and vorinostat), and one has been shown to induce G1 arrest in BC cell lines independ-
ent of DRD2 (thioridazine)41–43. Interestingly, one drug predicted to produce a positive perturbation profile 
(i.e., lead to a transcriptional profile more similar to that of the low-ubiquitination group) is estradiol, the major 
estrogen hormone. As covered in more detail in the “Discussion” section, several studies suggest that SKP2 
plays an essential role in estrogen signaling, which drives malignancies such as luminal BC and endometrial 
cancer44–46.

Figure 5.   The distribution of patients at a given tumor stage by SKP2 ubiquitination group. Analyses were 
performed on the data set in aggregate (n = 1552) and on three major subtypes separately: luminal (n = 1169), 
HER2 (n = 99), and TNBC (n = 233). Subtypes are defined as in Fig. 2. The Chi-square test was used to determine 
the significance of association between ubiquitination group and tumor stage.
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To further assess the potential of the CMap-identified drugs as repurposed therapeutics for ER+ BC, we 
compared the IC50s of these drugs against that of the standard-of-care tamoxifen using data from the Genomics 
of Drug Sensitivity in Cancer (GDSC) database47–49. We identified ER+ BC cell lines per Stemke-Hale et al.50 in 
GDSC and used ANOVA to compare the IC50s of tamoxifen for these cell lines with those of the five CMap-
identified drugs for which data were available in GDSC (fulvestrant, rapamycin, tanespimycin, trichostatin A, and 
vorinostat). As seen in Fig. 8, the mean IC50 of each of these drugs is significantly lower than that of tamoxifen, 
further suggesting that these drugs could be repurposed to treat ER+ BC.

Discussion
In this study, we have developed a gene signature consisting of two genes, USP10 and FZR1, known to control 
the ubiquitination of the oncoprotein SKP2. FZR1, as part of the APC/C ligase complex, ubiquitinates SKP2 
protein and marks it for degradation, while USP10, a deubiquitinase, removes ubiquitin from SKP2. This gene 
signature is presumably highly related to the levels of SKP2 as well as its downstream tumor suppressor targets 

Figure 6.   The distribution of patients with a given tumor grade by SKP2 ubiquitination group. Analyses were 
performed on the data set in aggregate (n = 2072) and on three major subtypes separately: luminal (n = 1560), 
HER2 (n = 126), and TNBC (n = 310). Subtypes are defined as in Fig. 2. The Chi-square test was used to 
determine the significance of association between ubiquitination group and tumor grade.
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such as p27. We therefore expected our signature to be able to stratify patients into groups of high, low, and 
intermediate SKP2 ubiquitination. The high-ubiquitination group is defined as having higher copy numbers of 
FZR1 than USP10 (i.e., higher copy numbers of the ubiquitinase component than the deubiquitinase), the low-
ubiquitination group as the opposite, and the intermediate-ubiquitination group is defined as having similar 
copy numbers of the two genes. By measuring the levels of p27, a protein whose levels are controlled by SKP2, 
we provided indirect evidence that our signature is indeed able to stratify patients into groups of high and low 
SKP2 protein. Although p21 is also a target of SKP2 ubiquitination, we selected p27 for this analysis since the 
association of p21 levels in breast cancer remains ambiguous, possibly due to the involvement of p21 in other 
signaling pathways, while higher levels of p27 are more clearly associated with better prognosis51–56. Indeed, 
p21 levels did not show the same patterns as p27 across all ubiquitin-signature groups (Fig. S2 and Table S4, cf. 
Fig. 2 and Table S1).

Figure 7.   Comparison of the number of positive lymph nodes per patient among the SKP2 ubiquitination 
groups. Analyses were performed on the data set in aggregate (n = 2004) and on three major subtypes separately: 
luminal (n = 1542), HER2 (n = 127), and TNBC (n = 299). Subtypes are defined as in Fig. 2. Negative binomial 
regression was used to model count data. The means and variances of the counts of positive lymph nodes for 
each BC subtype is as follows: All: μ = 2.00; σ2 = 16.84. Luminal: μ = 1.80; σ2 = 14.52. HER2: μ = 3.70; σ2 = 37.77. 
TNBC: μ = 2.27; σ2 = 16.95.
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We anticipate that our signature would also have clinical applicability, as SKP2 protein levels are negatively 
correlated with expression of the tumor suppressor p27 and with survival, and positively correlated with prolifera-
tion. Our study demonstrates this gene signature is indeed associated with survival, stage, grade, and the average 
number of positive lymph nodes in BC, but it is interesting to note that these associations were only present 
in the luminal subtype of BC; the fact that the luminal subtype is by far the most prevalent in the METABRIC 
dataset, accounting for over 75% of the samples (1637/2173), may explain why the patterns seen in the cohort 
as a whole mirror those in the luminal subtype. One possible explanation for this observation is that in breast 
cancer, SKP2-induced G1/S transition and progression through S phase is at least in part mediated by estrogen 
receptor alpha (ERα)44. In particular, the ubiquitination of ERα by SKP2 is important for ERα’s trans-activation 

Table 2.   Coefficients for the negative binomial regression model fit to the count data. Positive coefficients 
indicate a higher expected count value for that factor level (i.e., ubiquitination signature group) compared to 
the baseline factor level (here, high ubiquitination). Significance levels are indicated by asterisks as follows: 
***p < 0.001, **0.001 < = p < 0.01, *0.01 < = p < 0.05, no text: 0.05 < = p < = 1.

Factor level Estimate Std. error z-value p-value Significance

All

High ubiquitination (Intercept) 0.51 0.061 8.4 6.3e−17 ***

Intermediate ubiquitination 0.32 0.091 3.5 5.4e−04 ***

Low ubiquitination 0.39 0.14 2.8 5.3e−03 **

Luminal

High ubiquitination (Intercept) 0.43 0.065 6.6 5.2e−11 ***

Intermediate ubiquitination 0.29 0.11 2.7 6.5e−03 **

Low ubiquitination 0.58 0.19 3.1 2.0e−03 **

HER2

High ubiquitination (Intercept) 1.70 0.31 5.4 7.0e−08 ***

Intermediate ubiquitination − 0.52 0.37 − 1.4 1.6e−01

Low ubiquitination − 0.49 0.45 − 1.1 2.7e−01

TNBC

High ubiquitination (Intercept) 0.58 0.25 2.3000 0.02 *

Intermediate ubiquitination 0.40 0.28 1.4000 0.16

Low ubiquitination 0.00081 0.32 0.0025 1.00

Table 3.   List of drugs identified as reversing the perturbational gene signature (negative perturbation profiles 
and therefore recommended) or promoting the perturbational gene signature (positive perturbation profiles 
and therefore not recommended) between the high- and low-SKP2 ubiquitination signature groups based on 
the differential gene-expression data in Supplementary File S1. Only drugs with a false-discovery rate < 0.05 
were considered. BC cell lines are marked in bold.

Drug Cell line p-value False-discovery rate

Drugs with negative perturbation profiles (recommended drugs)

Trichostatin A MCF7 3.5e−45 1.3e−41

Trichostatin A PC3 8.4e−24 1.5e−20

Sirolimus MCF7 1.0e−15 1.2e−12

LY-294002 MCF7 4.7e−13 4.2e−10

Trichostatin A HL60 1.3e−12 9.0e−10

Fulvestrant MCF7 1.4e−09 8.5e−07

Wortmannin MCF7 6.6e−09 3.4e−06

Tanespimycin HL60 2.1e−08 9.5e−06

Sirolimus PC3 2.2e−07 8.9e−05

LY-294002 PC3 4.0e−07 1.4e−04

Tanespimycin MCF7 8.8e−06 2.9e−03

Vorinostat MCF7 1.2e−05 3.7e−03

LY-294002 HL60 1.5e−05 4.2e−03

Prochlorperazine MCF7 4.7e−05 1.2e−02

Thioridazine MCF7 1.1e−04 2.6e−02

Drugs with positive perturbation profiles

Estradiol MCF7 3.1e−06 0.011
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of its downstream target genes44,46. Moreover, it is interesting to note that in endometrial cancer, a malignancy 
largely driven by estrogen signaling (as is luminal BC), estrogen decreases APC/CFZR1 levels, causing a subsequent 
increase in SKP2-mediated p27 degradation; and SKP2 knockdown or inhibition prevents estrogen-driven p27 
degradation and cell growth45,57. Taken together, these observations suggest that SKP2’s oncogenic activity is 
mediated through ERα and plays a vital role in estrogen signaling in hormone-driven (i.e. luminal) BC and may 
explain why our signature, based on the control of SKP2 protein levels, is less correlated with clinical outcome 
in the ER− subtypes. However, 50–70% of BCs are luminal58, meaning that there is a large patient population in 
which our gene signature may be used for prognosis and treatment.

Although we have shown that our signature is associated with clinical outcome, several further questions may 
arise concerning the rationale for our signature’s use in the clinic. As mentioned earlier, we used copy number 
rather than mRNA levels or mutations based on the following considerations: first, copy number is more stable 
than mRNA levels as transcription can be changed in response to external stimuli. Second, copy number was 
shown in a pan-cancer study to be more prognostic than mutations in cancer driver genes29. To confirm the rela-
tion between copy number and expression in our genes of interest, we examined the expression for SKP2, USP10, 
USP13, and FZR1 in the METABRIC data set and found that expression indeed increases with copy number 
(Fig. S3, Table S5). Our signature takes into account two genes: a ubiquitin ligase component (FZR1) and a deu-
biquitinase (USP10.) While this restriction undoubtedly prevents the signature from comprehensively accounting 
for the SKP2 axis, the simplicity makes it amenable for use by clinicians, allowing for easy stratification of patients 
into three groups distinguished by biological characteristics readily apparent from the signature (Table 1). As our 
results show, the signature does appear to have clinical relevancy. Finally, we examined whether our signature has 
any advantages over the use of SKP2 copy number directly or the use of USP10, USP13, or FZR1 copy numbers 
individually. While SKP2 protein levels have been demonstrated to have prognostic power in BC, to date there 
are no published studies showing that SKP2 copy number is similarly useful as a prognostic biomarker. Indeed, 
our own analyses show that neither copy number nor expression of either SKP2, USP10, USP13, or FZR1 indi-
vidually is as well correlated with clinical outcome as our ubiquitination signature (Figs. S4–S12, Tables S6–S10).

This study also provides a rationale to further pursue several lines of inquiry. First, as demonstrated in our 
results, several FDA-approved drugs show potential as repurposed therapies for ER+ BC. Several of the drugs 
identified here are known to have anti-cancer effects, and one, fulvestrant, is already used to treat hormone 
receptor-positive, HER2-negative metastatic BC in post-menopausal women59, bolstering our confidence in 
the other recommended drugs. It is also interesting to note that the ranking of tamoxifen in the CMap study 
compared to the recommended drugs agrees with its comparative ranking in terms of IC50, in that it is ranked 

Figure 8.   Comparison in ER+ BC cell lines of the IC50 values of the drugs recommended by CMap vs 
tamoxifen. ANOVA was used to detect unequal means within the groups, and Student’s t-test was used to 
determine the significance of between-group differences in IC50 values. Significance levels are indicated by 
asterisks as follows: ***p < 0.001, **0.001 < = p < 0.01, *0.01 < = p < 0.05, no text: 0.05 < = p < = 1.
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lower in both cases (tamoxifen not shown in Table 3 because its false-discovery rate exceeded the cutoff). This 
suggests that the use of gene-perturbation signatures is an effective way to identify potential anti-cancer thera-
peutics. CMap is not limited to breast cancer, therefore it may be worth examining how therapeutics identified 
based on a ubiquitination gene signature work for other cancer types (e.g., tanespimycin for HL60 of leukemia, 
sirolimus for PC3 of prostate cancer). Next, as mentioned before, USP10 has not yet been shown either in vitro 
or in vivo to deubiquitinate SKP2 in BC specifically; so far, it has only been shown to deubiquitinate SKP2 in 
chronic myelogenous leukemia27. Our results therefore provide an impetus to further investigate the role of 
USP10 in BC, especially as a possible therapeutic target. This study also raises the possibility of using a bioin-
formatic approach as we have taken here to identify potential deubiquitinases of other proteins in cancers. It is 
highly worth noting that, although this study focuses on the ubiquitination of a single protein (SKP2) in a single 
cancer type, it has implications for other proteins in other cancer types, since ubiquitination and proteasomal 
degradation is a universal cellular process. Our investigation here lays the groundwork for potential future studies 
of using ubiquitinase and deubiquitinase genes as signatures to stratify patients and predict clinical outcome.

Methods
Programming environment.  All analyses were conducted in R 3.6.3 running on RStudio 1.3.959.

Data curation and processing.  TCGA and METABRIC data were obtained from cBioPortal using the 
R packages CGDSR and TCGA2STAT​34–36,60. The copy-number data as provided by cBioPortal assigns a copy-
number level to each gene based on the copy-number data in the original studies. The cBioPortal copy-number 
levels are as follows: − 2 indicates a deep loss; − 1 indicates a shallow loss; 0 indicates diploidy; 1 indicates a low-
level gain; and 2 indicates a high-level gain. Comparison of copy number in our analyses was performed using 
these levels. The copy-number data for TCGA was generated using the GISTIC algorithm, and the copy-number 
data for METABRIC was generated using the GISTIC2 algorithm, as described previously61,62.

Another data set from the NCBI Gene Expression Omnibus (GEO) website, GSE17705, was used in analysis of 
clinical outcome37, and it contains ER+ patients treated with adjuvant tamoxifen (n = 298). Samples were collected 
by surgical excision and frozen; no information on whether patients were treated with neoadjuvant therapy was 
available. GSE17705 was downloaded from the GEO website as series matrix files and raw microarray CEL files 
(Affymetrix Human Genome U133A Array). The raw CEL files were read into R using the package simpleaffy and 
normalized using the GCRMA method as implemented in the gcrma package. Probesets for the genes studied 
in the analysis of GSE17705 were selected using the Jetset method63.

GDSC data were obtained from https://​www.​cance​rrxge​ne.​org/47–49.
Where appropriate, all data in the original data sets were obtained in accordance with the relevant guidelines 

and regulations and with approval of the respective institutional review boards.

Statistical analysis.  Associations between categorical variables (e.g.,  gene-signature group and clinical 
outcome group) were assessed using the Chi-square test. Correlations between continuous variables were calcu-
lated using Spearman’s rank correlation coefficient. Survival analysis was conducted using the log-rank test, and 
results were graphed using the Kaplan–Meier method. Association between groups and continuous variables 
were assessed using ANOVA. Comparisons of continuous variables between two groups were performed using 
Student’s t-test. Negative binomial regression was used to model count data. The significance of the coefficients 
resulting from negative binomial regression was calculated using the Wald test, as implemented in the MASS 
R package64. The limma algorithm was used to perform differential expression analysis38. Two-tailed tests were 
used where applicable, and results were considered significant at p < 0.05 unless otherwise stated.

Code availability
All scripts used in this analysis are available upon request.
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