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Predictive classification 
of Alzheimer’s disease using brain 
imaging and genetic data
Jinhua Sheng1,2*, Yu Xin1,2, Qiao Zhang3,4,5, Luyun Wang1,2, Ze Yang1,2 & Jie Yin1,2

For now, Alzheimer’s disease (AD) is incurable. But if it can be diagnosed early, the correct treatment 
can be used to delay the disease. Most of the existing research methods use single or multi-modal 
imaging features for prediction, relatively few studies combine brain imaging with genetic features 
for disease diagnosis. In order to accurately identify AD, healthy control (HC) and the two stages 
of mild cognitive impairment (MCI: early MCI, late MCI) combined with brain imaging and genetic 
characteristics, we proposed an integrated Fisher score and multi-modal multi-task feature selection 
research method. We learned first genetic features with Fisher score to perform dimensionality 
reduction in order to solve the problem of the large difference between the feature scales of genetic 
and brain imaging. Then we learned the potential related features of brain imaging and genetic 
data, and multiplied the selected features with the learned weight coefficients. Through the feature 
selection program, five imaging and five genetic features were selected to achieve an average 
classification accuracy of 98% for HC and AD, 82% for HC and EMCI, 86% for HC and LMCI, 80% for 
EMCI and LMCI, 88% for EMCI and AD, and 72% for LMCI and AD. Compared with only using imaging 
features, the classification accuracy has been improved to a certain extent, and a set of interrelated 
features of brain imaging phenotypes and genetic factors were selected.

Alzheimer’s disease (AD) is a complicated neurodegenerative disease involving a variety of pathogenic factors 
(biological and psychosocial). As the condition worsens, patients often suffer from mental and cognitive disor-
ders, memory decline and behavior changes, which affect people’s normal life ability. Mild cognitive impairment 
(MCI) is a state between normal and dementia which can be considered the early stage of AD. Nearly 10–15% 
of MCI patients are converted into AD patients every year1. Except for a few number of familial cases driven 
by genetic mutations, the main pathogenic factors of AD are still unclear2. In 2017, AD has become the sixth 
leading cause of death in the United States3. According to the International Alzheimer’s Disease (ADI) report 
in 2019, approximately 95% of the public believe that they may suffer from AD in the future4. If the disease can 
be detected early and measures can be taken timely, the onset of AD can be effectively delayed5. Therefore, early 
diagnosis and early intervention are essential for the control of AD.

The increasing development of neuroimaging has brought new vitality to the study of human brain struc-
ture and function. Frequently-used brain imaging techniques include Magnetic Resonance Imaging (MRI)6, 
Diffusion Tensor Imaging (DTI)5, Positron Emission Tomography (PET)7. Many researches focused on how 
to use one of them or combine multiple imaging modalities to classify AD. Li et al.8 designed a powerful deep 
learning system to identify different stages of AD patients based on MRI and PET. Bi et al.9 proposed a random 
support vector machine clustering method to classify AD and HC, with an accuracy rate of 94.44%. At present, 
the accuracy of AD and HC using imaging materials can reach more than 90%, while the accuracy of HC and 
MCI is relatively low. There are two main reasons for low accuracy of early diagnosis. First, cerebral atrophy is 
a gradual process, which is relatively subtle and difficult to detect in the early stages. Second, there is a certain 
overlap in the data space between the normal aging of the brain of normal people with age and the brain atrophy 
of early MCI patients.

In recent years, the integration of brain imaging and genetic data for research has become an active research 
topic10. For genetically complex diseases, at the level of a single nucleotide polymorphism (SNP), it is impos-
sible to determine the main cause of the difference. Brain imaging genomics conducts comprehensive analysis of 
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brain imaging and genomic data to obtain new insights, which have bright prospect for a better understanding 
of disordered brain functions. Through high-throughput genotyping technology, Genome Wide Association 
Studies (GWAS)11 determined the high-density genetic marker SNPs or gene copy number variation of large-
scale population DNA samples at the whole genome level. It is a strong way to identify disease susceptibility 
loci. Researchers used GWAS to analyze SNP data and found that genetic factors play a significant role in the 
development of AD12,13. Dukart et al.14 obtained an accuracy of 76% via Naive Bayes to identify converter and 
stable MCI with glucose positron emission tomography as a single biomarker. The accuracy increased to about 
87% when including further imaging data and APOE information. Dukart’s experimental results indicated that 
adding genetic factors can indeed help image features to improve classification accuracy.

With the rapid development of machine learning and deep learning, people have found that it can be used as 
an auxiliary diagnostic method, such as SVM15 and convolutional neural network16,17. There are several difficul-
ties in the joint study of brain imaging and genetic data for classification and prediction: (1) High-dimensional 
data can cause computational and statistical problems18, and different modalities are heterogeneous; (2) Models 
may encounter multicollinearity problems for potentially correlated high-dimensional genetic variables19; (3) 
High-dimensional genetic data contains a lot of redundant information19.

How to effectively study genetic information and image phenotypes, while fully considering the heterogene-
ity of data and the robustness of the model, is a major challenge in the application of image genetics. In order to 
improve the accuracy of AD diagnosis and make full use of the supplementary information between different 
modalities, we integrate Fisher score and multi-modal and multi-task feature selection to learn brain imaging 
and genetic data. Fisher score was used to pre-reduce high-dimensional genetic features and eliminated genetic 
features with small contributions. Genetic features obtained and brain imaging data were used for multi-task 
joint feature selection. Then, we used linear support vector machine (SVM) to predict healthy controls (HC), 
early MCI (EMCI), late MCI (LMCI) and AD patients. Finally, we systematically evaluated the potential of modal 
combinations and verified the effectiveness of the method. Figure 1 shows the steps of our method.

Results
To avoid the possible impact of different image acquisition equipment and genotyping techniques, data used in 
this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database stage 2. Con-
sidering the category balance problem, we screened 100 subjects with brain imaging and genetic data measured at 
the same age. The study sample (N = 100) included 25 HC subjects, 25 early MCI, 25 late MCI and 25 AD subjects. 
The average age is 73.597 years, and the male to female ratio is 60:40. They have quality-controlled quantitative 
brain imaging data and genetic data. The demographic and clinical characteristics of participants, summarized 
by the diagnosis, are shown in Table 1 below.

Classification performance.  In the experiment, we evaluated the performance of the method in different 
cognitive groups: (1) HC and EMCI, (2) HC and LMCI, (3) HC and AD, (4) EMCI and LMCI, (5) EMCI and AD, 
and (6) LMCI and AD. Due to the limited number of subjects, we used fivefold cross-validation (CV) to evaluate 
model performance20. In fivefold CV, we randomly divided the data set into 5 parts, with 1 part for testing and 
the remaining part was used for training. Repeat this process 5 times so that each part was tested once. In order 
to obtain a more reliable performance estimate, we calculated the average of the test accuracy of 5 tasks as the 
evaluation standard. Table 2 lists the cross-validation accuracy when using different machine learning methods 
for group recognition. We can see that SVM is the relatively most suitable classification algorithm.

Figure 1.   Specific steps of our method.
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We considered the classification performance of three different input biomarker combinations based on 
linear SVM. The three morphological data tested were: (1) SNP, (2) sMRI, (3) sMRI and SNP. Table 3 shows the 
classification performance obtained by three different input biomarkers.

We analyzed the performance of a single mode and compared it with the performance of a multi-mode. We 
can see that the performance of sMRI is far better than SNP, because brain structure changes are a phenotypic 
feature closely related to diagnostic labels. However, including both cerebrum and genetic features as model 
predictors enhanced the performance compared with using either cerebrum or SNP features alone. In most 
tasks, especially MCI recognition, the performance of genetic imaging data was better than that of a single 
modality. For example, the accuracy of using SNP+sMRI in HC and LMCI classification was 4% higher than 
that of sMRI alone; the accuracy of EMCI and LMCI was improved by 6%; the accuracy of LMCI and ADI was 
improved by 2%. However, for tasks such as HC and AD, EMCI and AD, which are relatively simple and have 
great differences in themselves, compared with the performance of a single image modal, the performance of 
multi-modality has not improved, and in some cases it may cause performance degradation. The main reason is 
that in the absence of SNP, the performance of the model has reached a saturated state. At this time, adding SNP 
data will be regarded as noise, which will have a negative impact on the performance of the classifier. Another 
reason is that the sample set we use is relatively small.

Studying the phenotype or SNP feature of each brain region separately will discard the potential correlation 
between the intra-modal features as well as between the features of different modalities. Univariate analysis can 
quickly provide important information between genetic features or imaging features and diseases. In order to 
further study the benefits of genetic and image data fusion learning, we compared with traditional univariate 
feature selection without considering the potential correlation between modalities. LR-RFE21 iteratively elimi-
nates the features with the lowest contribution. It has been used and is expected to detect AD early and predict 
the progress of AD21. KPCA22 believes that the greater the variance of data distributed along a certain feature, 
the more information the feature contains. We used LR-RFE and KPCA to perform feature selection on image 
and genetic information respectively. Five of each imaging gene features were selected and applied to linear 
SVM for diagnosis.

Based on the performance of image features, we show the impact of three methods on classification perfor-
mance after adding genetic features. Figure 2 below shows that the accuracy of traditional feature selection for 
those two modalities has decreased in most classification tasks. It illustrates that overfitting or increased noise 
may occur after adding SNP features. But our method has achieved good performance in all six binary tasks, 
and the performance has been further improved after combining SNP data. Different from traditional univari-
ate feature selection, we studied the correlation between image and genetic data in a public space, considered 
the sparsity between different modalities through G1-norm, and used l2,1-norm regularization to jointly select 
genetic information related to important image data. In the learning process, the differences of different mor-
phological features are fully considered, and different weights were assigned to each feature, which reduces the 
risk of overfitting the training data by the classifier. The results show that the fusion of genetic information can 

Table 1.   Demographic characteristics of subjects.

Diagnostic Male/Female Age (mean[min–max]) Education

Healthy control 15/10 73.44 [65.1–84.9] 17.12

Early mild cognitive impairment 14/11 71.04 [61.9–82.3] 16.04

Late mild cognitive impairment 15/10 73.47 [55.0–91.4] 16.64

Alzheimer’s disease 16/9 76.44 [55.9–90.3] 15.80

Table 2.   Cross validation accuracy in identification of groups using different machine learning methods.

HC vs EMCI (%) HC vs LMCI (%) HC vs AD (%) EMCI vs LMCI (%) EMCI vs AD (%) LMCI vs AD (%)

SVM 82 86 98 80 88 72

KNN 80 86 96 76 82 72

Tree 70 70 92 76 88 74

Ensemble 72 72 94 66 86 74

Table 3.   Classification performance comparison of different modes.

HC vs EMCI (%) HC vs LMCI (%) HC vs AD (%) EMCI vs LMCI (%) EMCI vs AD (%) LMCI vs AD (%)

SNP 50 50 58 52 46 40

sMRI 82 82 98 74 90 70

sMRI + SNP 82 86 98 80 88 72
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indeed take advantage of the complementarity between the modalities and eliminate the redundancy between 
the modalities, thereby obtaining better feature representation and improving classification performance.

Selection of biomarkers.  Finding out the most discriminating brain regions and SNPs is essential for 
the diagnosis of AD. The brain regions and SNP data selected most in the experiment can be used as potential 
biomarkers for clinical diagnosis. In Table 4, we give the brain imaging features that are selected every time in 
fivefold CV, and Fig. 3 shows the distribution of these brain regions in the brain. “HippVol” (hippocampal vol-
ume) plays the significant role in predicting memory performance. “LHippVol” serves as an important potential 
biomarker in the recognition of HC in the three stages of disease, implicating that it is an important indicator 
for cognitive decline and has a potential for early detection of AD. “LAmygVol” (amygdala volume) was also 
selected in the early diagnosis of HC and EMCI. This is because the hippocampus and amygdala are the first to 
form plaques during the development of AD23. Besides, “Precentral” (thickness of precentral), “Lingual” (thick-
ness of lingual), “Cuneus” (thickness of cuneus) and “InfParietal” (thickness of inferior parietal) are also selected 
in other classification groups. Zhang et al.24 used an intrinsic brain-based CAD system to detect 30 brain regions 
related to AD, which was consistent with our results.

In terms of genetic information, the SNPs that have been selected many times for AD and HC classification 
come from the AOPE gene. APOE is related to neuroimaging measurement of diseases, especially the left hip-
pocampus and right hippocampus25, which are the most significant risk factors for AD. In the diagnosis of MCI, 
the SNPs that are selected multiple times come from the CR1 gene and the SORCS1 gene. They are also well-
known candidate genes related to MCI. CR1 mainly affects the development of AD by affecting Aβ deposition, 
brain structure and glucose metabolism during the progression of AD26. During the experiment, many SNPs were 

Figure 2.   Classification performance of different feature selection methods.

Table 4.   Most selected sMRI features for diagnosis.

HC vs EMCI HC vs LMCI HC vs AD EMCI vs LMCI EMCI vs AD LMCI vs AD

ROI
LHippVol
LAmygVol
RPrecentral

LHippVol
LLingual

LHippVol
RHippVol
RCuneus
LInfParietal

RPrecentral RPrecentral LInfParietal

Figure 3.   Brain distribution in the core brain area.
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selected from the same gene, such as SORCS1 gene, CR1 gene and DAPK1 gene. In general, our research results 
are consistent with existing research, and provide help for the clinical diagnosis of AD and further exploration 
of AD treatment strategies.

Discussion
Previous studies mostly used imaging features for disease prediction. Some researchers added APOE genes on 
the basis of imaging to improve performance. For example, Filipovych et al.27 proposed a method to predict 
the conversion of MCI to AD by compounding multiple imaging scores. They used the non-linear mode and 
the linear mode to obtain the subjects’ imaging and genetic scores, and then synthesized the imaging genetic 
scores as the weighted sum of the imaging scores and genetic scores. The accuracy of imaging markers only is 
AUC = 0.746, and the accuracy is improved to AUC = 0.779 after including imaging genetic markers. However, 
Filipovych’s experiment did not consider the correlation between imaging and genetic characteristics, and sim-
ply combined them through scoring. In Table 5, we gave a performance comparison mainly for recent studies 
achieving classification accuracy, sensitivity and specificity.

Although we have achieved good results in six traditional binary classification tasks, there are still some 
limiting factors. To start with, in order to determine a group of subjects that have both the image and heredity 
measured at the same time and fully consider the category balance, we have to discard a large amount of available 
data in the ADNI database, resulting in a very limited sample size for the training and testing data sets. Second, 
we only used two modes to calculate features. In fact, in addition to MRI and SNP data, ANDI has many other 
forms of characteristics, such as PET, demographics, and neuropsychological assessments. These patterns may 
carry important pathological information or provide supplementary information between modalities. Third, since 
the score of each feature of the Fisher Score is calculated independently, the selected feature is sub-optimal, and 
it is not possible to select features with relatively low individual scores but high scores when they are combined. 
Finally, because brain atrophy is a gradual process, it is relatively subtle and difficult to detect in the early stages. 
In the experiment, we did not fully consider the normal shrinkage of some people with age.

We will use new Freesurfer versions with more accurate anatomical measurements in our future work. In our 
future work, we are also committed to the following research: (1). plan to obtain more subjects with more varied 
patterns of data, and explore the impact of identify more characteristic correlations between patterns on disease 

Table 5.   Example studies for outcome prediction via integrating imaging and genomics data.

Sr. no Year Authors Modality Dataset Method Target

Performance

Acc (%) Sens (%) Spec (%)

1 2016 Dukart et al. 12 FDG-PET, AV45-PET, 
sMRI, APOE

708(144AD, 265sMCI, 
177cMCI, 122HC)

Bayesian-Markov-Blan-
ket + Naive Bayes sMCI vs cMCI 86.8 87.5 86.1

2 2016 Peng et al. 28 MRI, PET, SNP 189(49AD, 93MCI, 
47NC) Krenel-learning

AD vs NC 96.1 97.3 94.9

MCI vs NC 80.3 85.6 69.8

3 2017 Singanamalli et al. 29
MRI, CSF, FDG-PET, 
APOE, cognitive 
measures

149(52AD, 71MCI, 
26HC)

Cascaded multi-view 
canonical correlation 
(CaMCCo)

CN 89 59 96

MCI 80 88 80

AD 80 69 88

4 2017 Liu et al. 30
sMRI, APOE, FDG-
PET, cognitive meas-
ures, demographics

426(121AD, 126MCI-c, 
108MCI-nc, 180NC) ICA + Cox model MCI-c vs MCI-nc 84.6 86.5 82.4

5 2018 Ning et al. 31 MRI, SNP 721(138AD, 358MCI, 
225CN) Neural network Conversion from MCI 

to AD – – –

6 2019 Zhou et al. 32 MRI, PET, SNP 347(101AD, 138MCI, 
108NC) Neural network

NC vs MCI vs AD – – –

NC vs sMCI vs pMCI 
vs AD – – –

NC vs MCI – – –

NC vs AD – – –

7 2019 Spasov et al. 33
sMRI, APOE, cognitive 
measures, demograph-
ics

785(192AD, 181pMCI, 
228sMCI, 184 HC)

Multi-tasking neural 
network sMCI vs pMCI 86 87.5 85

8 2020 Brand et al. 34 sMRI, SNP 723(170AD, 352MCI, 
201HC)

Task balanced multi-
modal feature selection AD vs HC/MCI 72.8 – –

9 2020 Bi et al. 35 fMRI, SNP 109(37AD, 37EMCI, 
35HC)

Cluster evolution-
ary random forest 
(CERF) + SVM

AD vs HC 81 – –

EMCI vs HC 80 – –

10 2021 Sheng et al. (this paper) sMRI, SNP 100(25AD, 25LMCI, 
25EMCI, 25HC)

Fisher score + Multi-
task feature selec-
tion + SVM

AD vs HC 98 100 96

AD vs EMCI 88 88 88

AD vs LMCI 72 72 72

LMCI vs HC 86 88 84

LMCI vs EMCI 80 88 72

EMCI vs HC 82 80 84
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diagnosis brain imaging and genetic markers with disease development, (2). in order to fully consider age factor 
and reduce the impact of normal aging on classification performance, we need to add a reasonable age-related 
regression model to the optimization formula to reduce impact to the model from normal aging, (3). we need to 
re-improve the dimensionality reduction method of genetic features to give play to genetic information in AD 
diagnosis, and (4). more challenging and clinically diagnostic multi-classification tasks.

Conclusion
There is a certain overlap in the data space between early brain atrophy of patients and normal aging of the brain 
of healthy people, which leads to low accuracy of many computer-aided diagnosis methods. In this article, both 
image and genetic features are considered as candidate features for classification. By effectively integrating con-
sistent brain imaging and genetic features through methods such as pre-dimensionality reduction and feature 
selection, patients with EMCI, LMCI and AD can be more accurately identified from HC. A set of characteristics 
related to imaging phenotypes and genetic factors were selected, and the selected risk characteristics were basi-
cally consistent with existing research. We selected 5 brain imaging and 5 genetic features for disease process 
diagnosis through the feature selection program, and achieved good classification accuracy. Although the SNP 
feature has a weak predictive ability for the development of AD, it can help the imaging mode to improve per-
formance together.

Material and methods
Data collection and sharing for this project was funded by the Alzheimer’s Disease Neuroimaging Initiative 
(ADNI) (http://​adni.​loni.​usc.​edu). Informed consent was obtained from the volunteer in accordance with the 
institutional review board policy. All methods were carried out in accordance with relevant guidelines and 
regulations. All experimental protocols were approved by the institutional review board (IRB) at Hangzhou 
Dianzi University (IRB-2020001).

Data preprocessing.  FreeSurfer is suite of tools that provide extensive and automated analysis of cerebrum 
region36. It can conveniently process brain MRI images, and generate high-precision gray and white matter 
segmentation planes and gray matter and cerebrospinal fluid segmentation planes. Based on these two surfaces, 
the thickness of the cortex at any position and other surface data characteristics such as cortical outer surface 
area, curvature, Gray matter volume, etc., these parameters can be mapped to the surface of the cerebral cortex 
obtained by the white matter expansion algorithm for visual display. FreeSurfer version 5.3 was used to extract 
66 cortical thickness measurements and 29 volume measurements for each baseline MRI scan. Those measure-
ments were pre-adjusted to eliminate the effects of the baseline age, gender, handedness, education, and intrac-
ranial volume (ICV). We used the above 95 regions of interest in the experiment.

The genotyping data were genotyped by the Human 610-Quad BeadChip and preprocessed according to 
standard quality control and imputation procedures. The value of SNP is 0, 1, or 2, which indicates the number 
of minor alleles. Most of the SNPs may have nothing to do with the pathogenesis of AD, and only a small part 
of them are high risk factors for AD and are related to changes in certain brain regions. We only used SNP data 
belonging to the top 40 AD candidate genes listed in the AlzGene database (www.​alzge​ne.​org) to screen out 
916 SNP features. We finally obtained 95 + 916 = 1011 candidate features, which come from the two modalities 
of each subject.

There are differences in the size of each person’s brain. MaxMin-normalization related to extreme values. 
Unstable data sets and extreme maximum/minimum values may lead to data congestion after scaling. Based on 
this consideration, we adopted two different normalization approaches. We standardized the MRI data according 
to formula (1), and normalized the SNP data according to formula (2).

where x = 1
N

∑N
i=1 xi ε is a very small positive number to avoid situations where the denominator approaches 

zero.

Preprocessing of genetic data.  The dimensionality of SNP features is generally high and most gene vari-
ants account for less than 1% of the measurement variance, so our genetic data is a high-dimensional sparse 
matrix. This is fatal for many machine learning models, especially models with gradient descent as the optimi-
zation algorithm. If it is directly used for joint learning with image data, a large amount of irrelevant genetic 
information may have a negative impact on the final selected feature subset. Therefore, before using genetic data 
for joint feature learning, we need to perform simple pre-dimensional reduction processing on genetic data to 
reduce the dimensionality to a level similar to image features. Feature selection can be divided into three types: 
filtering, wrapping and embedded37. In this paper, a filtering feature selection method independent of the clas-
sifier was used. This type of method usually selects a subset of features that are highly related to the category. 
Filtered feature selection methods are often used in the preprocessing of original data, which can better filter 
non-critical features, retain the main structural features with high correlation as much as possible, and finally 
reduce the dimensionality of feature set attributes.

(1)x̃ =
x − xmin

xmax − xmin + ε

(2)x̃ =
x − x

√

1
N−1

∑N
i=1 (xi − x)2 + ε

http://adni.loni.usc.edu
http://www.alzgene.org
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The value and distribution of data do not want to change here, so that methods such as PCA and LDA are 
abandoned. After comparing the performance of Fisher score, mutual information, F-tests and minimum redun-
dancy maximum relevance, we chose Fisher score. Fisher score38 is an effective feature selection criterion, which 
has the advantages of simple calculation, time saving, and high accuracy. Its main method is to find a subset of 
features according to Fisher’s linear discriminant, so that the selected features are different in the data space. The 
distance between data points of a class is as large as possible, and the distance between data points in the same 
class is as small as possible. Given a data set of N samples containing c classes, define the inter-class divergence 
Sb (xi) of the ith feature and the intra-class divergence St (xi) of the ith feature of the kth sample as

where nk is the number of samples of class k, µi is the mean value of the ith feature of the whole sample, and xkij 
is the mean value of the ith feature of the jth sample in the k-class sample. When the inter-class divergence is as 
large as possible, the intra-class divergence is as small as possible, and the Fisher score of the ith feature can be 
expressed as follows

The greater the Fisher Score value, the stronger the ability to distinguish features. After calculating the Fisher 
Score of each feature, we sort the scores in descending order and select the highest m genetic factors as the genetic 
input for the next step of learning.

Multimodal joint feature selection.  Two modes contain unique information and have a certain poten-
tial connection, both modes are expected to help the diagnosis of AD. Joint multimodal learning can help dis-
cover more powerful features than when learning alone. Multi-task learning is a sub-field of machine learning, 
which uses the commonalities and differences between different tasks to improve the generalization ability and 
prediction accuracy of the model39,40. When the square of the l2-norm is used as a loss function, it is insensitive to 
smaller outliers and sensitive to larger outliers, while the l1-norm as a loss function is just the opposite. Recently, 
many multi-task learning methods use group sparsity l2,1-norm to couple cross-task features together for joint 
feature selection41.

In the feature selection process, each category was as a separate task. Assuming that the data set 
X = [x1,x2,…,xN] ∈ Rd×N contains M modalities, the label set Y = [y1,y2,…,yN] ∈ Rc×N, and the label adopts binary 
representation, that is, only one element in each row is 1, and the other elements is 0.

Through l2,1-norm, we can make the model better handle outliers and reduce the burden of tuning. Therefore, 
we used l2,1-norm to select features for multiple tasks. The expression of l2,1-norm is

where wij is the weight coefficient of the ith feature for category j.
Because the characteristics of different modalities have different effects on the task, such as SNP data, their 

individual characteristics or overall characteristics are weaker than image characteristics. Compared with the 
intuitive changes in the volume of brain partitions, genetic data is more forward-looking. If genetic data and 
image data are directly combined for traditional feature selection, it is very likely that most or all of the selected 
features are image data, as shown in Fig. 4 28. In the process of feature selection, if we do not impose proper 
constraints on our loss function, it may happen that even high-risk genetic features have generally low weights. 
However, l2,1-norm is an excessively strong group sparsity constraint, which may cause the modal to be discarded 
and ultimately affect the classification result. Wang et al.42 proposed a new group l1-norm (Group1-norm), which 
strengthened the sparsity between different modes by using l2-norm in each mode and using l1-norm between 
modes. Group1-norm is defined as

Adding l2,1-norm and G1-norm to the loss function, we can finally express as the following form

where γ1, γ2 > 0 is the regularization parameter. The relative importance of features is represented by the sum of 
absolute values of w. We normalize the weights of the selected features, and perform element-wise product of 
the original feature data and the weights.

(3)Sb(xi) =
∑c

k=1
nk

(

µk
i − µi

)2

(4)St(xi) =
∑nk

j=1

(

xkij − µk
i

)2

(5)F(xi) =
Sb(xi)

∑c
k=1 nkS

k
t (xi)

=

∑c
k=1 nk

(

µk
i − µi

)2

∑c
k=1 nk

∑nk
j=1

(

xkij − µk
i

)2

(6)�W�2,1 =

d
∑

i=1

√

√

√

√

N
∑

j=1

w2
ij =

d
∑

i=1

�wi:�2

(7)�W�G1
=

c
∑

i=1

M
∑
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∥
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