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Experimental study on the bearing 
capacity of PZ shape composite 
dowel shear connectors 
with elliptical holes
Pingming Huang, Junlong He*, Fanlei Kong*, Kuihua Mei & Xiaolong Li

The push-out test was carried out in order to study the shear performance of perfobond ribs (PBL) 
and puzzle (PZ) shape composite dowel shear connectors which are used in corrugated steel–concrete 
composite bridge decks. By considering the influencing factors of transversal reinforcement, elliptical 
holes and bonding friction forces, eight specimens were designed and prepared. The load–slip 
curves were obtained, and the static mechanical properties, including bearing capacity, slip, shear 
stiffness, and ductility factor, were analyzed. The formula of bearing capacity and load–slip curve 
were proposed. The results showed a clear deformation of the transversal reinforcement of both the 
two types of shear connectors. The dominating failure mode of both the shear connectors was the 
double plane shearing of the concrete dowel. The load–slip curves of the two types of shear connectors 
followed the same trend. The PZ shape composite dowel performed better in ultimate bearing 
capacity, ductility, and shear stiffness than the PBL shear connector. Elliptical holes in a PZ shape 
composite dowel significantly increased the ultimate bearing capacity. The shear stiffness increased 
with transversal reinforcement and reduced with elliptical holes. For PBL shear connectors, the strain 
change in the C1 area near the loading point was most apparent. While, the A1 and B1 areas were 
stress concentration locations for PZ shape composite dowel shear connectors. The two formulas were 
in good agreement with the test results.

Recently, steel–concrete composite bridge decks have become more widely used. Figure 1 shows a new kind 
of steel–concrete composite bridge deck slab. It is composed of corrugated steel sheets, concrete, and shear 
 connectors1–3. Corrugated steel sheeting can be prefabricated and serve as stay-in-place (SIP) steel forms when 
concrete is casted on-site. Compared with reinforced concrete bridge decks, it has the advantages of high bearing 
capacity and fast  construction4,5.

The steel and concrete members in the composite structure work together through the shear connector. 
Perfobond rib connector (PBL) is the most commonly used shear connector for creating a composite action. Di 
studied the mechanical properties and bearing mechanism of the large PBL connectors with strong  confinement6. 
The results showed a difference of 191% in the shear stiffness of connectors with different shapes. The interaction 
effects in a PBL within a connector group was investigated by Guan and practical formulas were proposed for 
the PBL group  prediction7. In another study, Yang studied the mechanical properties of PBL shear connectors 
under different bearing types. By taking the contribution of end concrete into account, the authors presented a 
formula for bearing capacity  calculation8. Zhang evaluated the fatigue life of the PBL shear connector group and 
reported that the degree of fatigue damage in each layer of the shear connector is sensitive to the upper load  level9. 
However, PBL shear connectors are not suitable for this type of bridge deck, due to their structural limitations.

Puzzle (PZ) shape composite dowel is a half-open shear connector. During construction, the transversal 
reinforcement is easy to install and put into the designated position. Moreover, its bearing capacity is better than 
the PBL shear connectors, and exhibiting good anti-fatigue performance as  well10–13. Researchers have carried 
out a series of static tests and theoretical studies on PZ shape composite dowel shear connectors in recent years. 
Shear design approaches for pry-out failure have been proposed by  Classen14,15, while other researchers have 
focused on modeling the steel failure in thin UHPC elements 16. Lorenc conducted full-scale push-out tests to 
study how the steel thickness, grade, and dowel size can affect the bearing capacity 17. The results proved the 
plastic deformation of steel dowel to be the main factor causing concrete failure. Finite element (FE) method 
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is also used to analyze the failure mechanism of shear  connectors18. Lacki optimized the shape of composite 
dowel shear connector used in a composite  structure19. A parametric study of steel–concrete composite beam 
with composite dowel connectors was done by Derlatka and the best solution for composite dowel beam was 
selected from seven variants. Additionally, using the FE method makes it possible to investigate the influence of 
mechanical loads on the strains and stresses in the floor  beam20.

However, PZ shape composite dowel shear connectors are mainly used in prefabricated composite beams in 
some European  countries21–26, and these research studies are also based on composite beams. The related research 
and practical applications of corrugated steel–concrete composite bridge decks have not well-documented. Due 
to the large size and thickness of the shear connectors in composite beams and the effect of stirrups, the standard 
calculation of bearing capacity is not applicable to this composite bridge deck.

This study mainly aimed to evaluate the applicability of PZ shape composite dowel shear connectors with 
small size and weak constraints in corrugated steel–concrete composite bridge decks. This paper empirically 
studied the shear behavior of the connectors with elliptical holes, and applied push-out tests to investigate the 
static performance of PZ shape composite dowel shear connectors. Accordingly, several groups of PBL shear 
connectors were compared. The effects of different parameters such as transversal reinforcement, elliptical holes, 
and bonding friction on the bearing capacity, slip, shear stiffness, ductility, and strain of shear connectors were 
also investigated. Considering the practical engineering applications, the bearing capacity and load–slip formulas 
of PZ shape composite dowel shear connectors with elliptical holes were devised, which provides a foundation 
for the design of shear connectors in corrugated steel–concrete composite bridge deck. This research can pave 
the path for the generalization and application of PZ shape composite dowel shear connectors in China.

Experimental program
Design of specimens. In this paper, eight specimens were designed for push-out tests. The main param-
eters of each specimen are shown in Tables 1 and 2. In the specimens, the thickness of corrugated steel sheeting 
is 6 mm, the shear connector thickness is 14 mm, and the materials for both are Q345 qE. The concrete dowel 

Figure 1.  Schematic diagram of corrugated steel–concrete composite bridge decks.

Table 1.  Parameters of PBL shear connector specimens.

Specimen Hole diameter (mm) Concrete strength (MPa) Diameter of transversal reinforcement (mm)

PBL-1 50 54.3 –

PBL-2 50 53.6 16

PBL-3 50 54.1 16

Table 2.  Parameters of PZ shape shear connector specimens.

Specimen Concrete strength (MPa)
Diameter of transversal 
reinforcement (mm)

Ellipse dimensions (a and 
b) (mm) Steel dowel base height (mm)

PZ-1 53.8 2d16 30/15 90

PZ-2 52.7 – 30/15 90

PZ-3 53.1 2d16 – 90

PZ-4 54.2 2d16 – 120

PZ-5 53.5 2d16 40/20 120
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transversal reinforcement is a HRB400 bar with a diameter of 16 mm. The strength of the concrete is C50 grade. 
A single layer of reinforced mesh is arranged 30 mm away from the upper surface of the concrete. The reinforce-
ment is HRB400 grade. The diameter of the reinforcement is 12 mm. The spacing between the reinforcement is 
100 mm. In Table 2, a and b refer to the major and minor semi-axes of the ellipse, respectively. Geometry of the 
PBL and PZ shape composite dowel shear connectors are shown in Fig. 2. Structural dimensions of the push-out 
specimens are shown in Fig. 3.

During the production of the specimen, a foam plate with a pad length of 50 mm at the bottom of the shear 
connector was used to eliminate the pressure effect of the concrete. With the exception of PBL-2, all other speci-
mens were smeared with butter on the contact surface between the shear connector and concrete to eliminate 
the influence of a bonding force between the steel plate and concrete. Figure 4 shows the specimens before 
casting concrete.

Measurement content and point arrangement. The measured parameters included the strain of the 
surface concrete, shear connector, and transversal reinforcement; the relative slip of the concrete and shear con-
nector; and the load value. Figure 2 shows strain gauge layout. In this figure, A1-3, B1-3, C1 and D1-3 are the 
numbers of strain gauges. The relative slip was obtained by using two displacement transducers, and the strain 
was obtained via the static and dynamic data acquisition systems. The acquisition frequency was 1 Hz. Load 
values were obtained directly from the computer.

Test program. The loading device for this test is an electro-hydraulic servo press controlled by a 200 t 
microcomputer. Figure 5 schematically shows the load setup. The specimens were first placed on the loading 
device platform and then were subjected to the load by the upper beam. Figure 6 shows the loading setup. The 
test was preloaded three times before formal loading to eliminate inelastic deformation and to verify normal 
operation of the acquisition system. Formal loading was divided into two stages: load control and displacement 
control. The loading rate is 2 kN/s under load control. The loading rate is 0.2 mm/s under displacement control.

The mechanical properties of the main materials were tested before the push-out test. Tables 1 and 2 show 
the strength of the concrete, and the test results of the transversal reinforcement and steel plate are presented 
in Table 3.

Results and discussion
Failure mode. At initial loading, there was no obvious slip. With the increase of load, the displacement 
transducers showed slip of the steel plate and concrete, but the specimens showed no obvious visible changes. 
After loading to the limit load of 80%, the slip visibly increased. Firstly, several vertical micro-cracks were 
observed at the bottom of the specimen, which extended from the inside of the specimen. Subsequently, the 
crack continued to expand and gradually widened. At the same time, cracks appeared on the sides and top of 
the concrete. Finally, the top and bottom cracks were connected vertically. The failures exhibited are all concrete 
shear failure. The concrete at the bottom of the specimens had different degrees of spalling. The sound of con-
crete cracking was noted during testing. For the specimens without transversal reinforcement, the load changed 
clearly in the descending section. Figure 7 shows an example of the concrete cracks in a specimen during testing.

Figures 8 and 9 illustrate some examples of deformed specimens with PBL and PZ shape shear connectors 
after breaking, respectively. It can be seen from the figures that no clear deformation or failure was observed at 
the round holes of the PBL shear connector. Similarly, the steel dowels and elliptical holes of the PZ shape com-
posite dowel shear connector showed no obvious deformation. However, the transversal reinforcement of the 
two shear connectors was clearly deformed, but it was not cut. This is because the specimen has large slip, so the 
transversal reinforcement was squeezed to the edge of the round hole and steel dowel, and the concrete and dowel 
bear the shear force together. By comparing the two different shear connectors, since in the PBL connectors, the 
transversal reinforcement was closer to the round holes, the deformation of the transversal reinforcement in the 
PBL shear connector was more obvious than that of the PZ shape one. Double plane shearing of the concrete 
dowel was the dominant failure mode in both connector types.

Figure 2.  Geometry of PBL and PZ shear connectors.
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Load–slip curves and static mechanical property indexes. The load–slip curves and static mechani-
cal property indexes of the test specimens are shown in Fig. 10 and Table 4, respectively. The main static mechan-
ical property indexes of shear connectors are as follows: bearing capacity limit value Pu, characteristic bearing 
capacity PRk, bearing capacity design value PRd, limiting slip δu, design slip δd, shear stiffness Ks, and ductility 
factor Dc. Pu is the maximum bearing capacity of the shear connector. PRk is 0.9 Pu, and PRd is PRk divided by 
the factor of γv, where γv = 1.25. δu is the maximum value of the slip amount corresponding to PRk, δd is the slip 
amount corresponding to PRd. Ks is the slope of the line between the origin and PRd on the load–slip curves. Dc 

(a) Schematic diagram of specimens

(b) Top view

(c) Front view

P

Figure 3.  Structural dimensions of push-out specimens.
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is the ratio of δu to δd 27. The values in Table 4 have been converted to the corresponding test values of a single 
hole and a single steel dowel.

Ultimate bearing capacity. The ultimate bearing capacity of PBL-3 increased by 72.0% compared with 
that of PBL-1, and the ultimate bearing capacity of PZ-1 increased by 60.3% compared with that of PZ-2. The 

Figure 4.  Specimens before casting concrete.

Figure 5.  Schematic diagram of the load setup.
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Figure 6.  Load setup of specimens.

Table 3.  Test results of material properties.

Material Yield strength (MPa) Ultimate strength (MPa)

Steel plate (Q345Qe) 422.6 524.1

Transversal reinforcement (HRB400) 446.0 604.8

Figure 7.  Concrete cracks in a specimen during testing.
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only difference between PBL-3 and PBL-1 is that PBL-3 has transversal reinforcement. Likewise, the only differ-
ence between PZ-1 and PZ-2 is that PZ-1 has transversal reinforcement. It can be seen that transversal reinforce-
ment can significantly improve the bearing capacity of the specimen.

The ultimate bearing capacity of PBL-2 was 19 kN higher, or about 9% higher, than that of PBL-3. Therefore, 
the presence of a bonding force and friction force between the steel plate and concrete creates a measurable dif-
ference in shear properties. However, due to the complex working mechanisms and unpredictable performance 
of the bonds, it is usually considered as a safety measure and is not included in the calculation of the ultimate 
bearing capacity.

In order to compare the ultimate bearing capacity of PZ and PBL shear connectors, the shear connectors 
were converted into lengths of 400 mm. The ultimate bearing capacity of PZ-3 is 65.6 kN higher, or 11% higher, 
than that of PBL-3. The comparison between PZ-1 and PZ-3 shows that the ultimate bearing capacity of ellipti-
cal hole is about 95 kN. Thus, it can be shown that the ultimate bearing capacity of PZ-2 is about 188.8 kN if no 
elliptical hole is opened. When an elliptical hole is not opened, and the length of shear connector is 400 mm, the 
ultimate bearing capacity of PZ-2 increases by 28.4 kN, or 8.1%, when compared with that of PBL-1. Therefore, 
the ultimate bearing capacity of the PZ shear connector is higher than that of PBL shear connector, with or 
without transversal reinforcement penetration.

The ultimate bearing capacity of PZ-3 increased by 14.4 kN, or 0.04%, when compared with PZ-4. This shows 
that the ultimate bearing capacity decreases slightly with the increase of steel dowel height. The ultimate bearing 
capacity of PZ-1 increased by 95.2 kN, or 28.6%, compared with that of PZ-3, and the ultimate bearing capacity 
of PZ-5 increased by 126.5 kN, or 38.0%, compared with that of PZ-3. It can be seen that the bearing capacity 
can be improved by opening elliptic holes in the composite dowel shear connector.

Shear stiffness and ductility. It can be seen from Table 4 that the shear stiffness of the PZ shear connec-
tors is greater than that of PBL shear connectors. By comparing PBL-3 with PBL-1, and PZ-1 with PZ-2, it is 
shown that transversal reinforcement can effectively improve the shear stiffness of shear connectors. The shear 
stiffness of PZ-5 is smaller than that of PZ-1. The shear stiffness of PZ-1 and PZ-5 are both smaller than that of 
PZ-3 and PZ-4. The results show that the shear stiffness of shear connectors will be reduced by opening elliptical 
holes, while the reduction degree with large holes is greater than that with small holes. Although opening ellipti-

Figure 8.  A specimen with PBL shear connector after breaking.
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cal holes can increase the bearing capacity of PZ shape composite dowel shear connectors, it can also reduce the 
shear stiffness. Therefore, the balance between the two should be fully considered in the design of shear connec-
tors, and the size of elliptical holes cannot be increased without limit.

Ductility factor is also an important index to reflect the shear connector performance. Shear connectors 
should have good ductility when they are broken. In EN 1994-1-1, a minimum deformation capacity of 6 mm is 
demanded for ductile shear  connectors28. The δu values for PBL-1 and PZ-2 specimens were below 6 mm, while 
it was above 6 mm for the other specimens. It is worth noting that the transversal reinforcement was the dif-
ference between specimens PBL-1 and PZ-2 and other specimens where these two samples had no transversal 
reinforcement. Therefore, it can be concluded that transversal reinforcement enhanced the ductility of shear 
connectors. Additionally, the ductility factor of PZ shear connectors was shown to be higher than that of PBL 
shear connectors, resulting in a higher ductility of PZ shear connectors.

Load–strain curves. The concrete surface showed no obvious visible strain. This is due to the gap between 
the top of the shear connector and the concrete surface, between which there are structural bars. The failure 
mode is not concrete pry-out. Therefore, the load–strain curves of the concrete are not listed in this paper. Fig-
ure 11 shows the load–strain curves of the steel dowels and the transversal reinforcement load–strain curves are 
depicted in Fig. 12.

As can be seen in Fig. 11, the load–strain curves of the two types of shear connectors have a linear relationship 
with the initial loading. For the PBL-1 specimen, when the load value was 490 kN, or about 0.7 Pu, the microstrain 
values at point C1 and C3 were about 303 and 110, respectively. The value at point C1 was about 2.8 times that 
of point C3. Regarding the PBL-2 specimen, the microstrain value at point C1 was about 1020, which was about 
three times that of point C3, with a value of 340, when the load value was 920 kN, or about 0.7 Pu. Likewise, 
at a load of 840 kN, or about 0.7 Pu, for the PBL-3 specimen, the microstrain value at point C1 (approximately 
1140) was about three times that of point C3 (approximately 380). It can be concluded that for all the three PBL 
shear connectors, the most changes appeared in C1, which was the closest to the loading point, while the C3, 
the farthest area from the loading point, experienced the least significant changes. In all measuring points of PZ 
shear connectors, the A and B areas were under compressive and tensile stresses, respectively. The strain change 

Figure 9.  A specimen with PZ shear connector after breaking.
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is the most obvious at A1 and B1 (lower part of the steel dowel). The strain increases rapidly with the increase of 
load. A1 and B1 are regions of stress concentration. The strain changes at A3 and B3 are relatively insignificant.

As shown in Fig. 12, the transversal reinforcement strain was negligible during the initial loading. D1 was the 
closest to the loading point among all strain measuring points, followed by D2 and D3. It can be claimed that as 
the load increases, the concrete pins are gradually crushed, and the transversal reinforcement begins to take the 
load, resulting in a sharp increase in the strain. The results showed a gradual bend of the transversal reinforce-
ment. For the PBL-2 specimen at a load of 920 kN, the microstrains at points D1, D2, and D3 were 880,655 and 
435, respectively. Moreover, when the load of PBL-3 was 840 kN, the microstrain values of 660,490, and 320 were 
measured at points D1, D2, and D3, respectively. The load–strain curve of D1 had a more significant change 
than other measured points. This showed that the concrete tenon at D1 was crushed first, and the transversal 

(a) Load-slip curves of PBL shear connectors

(b) Load-slip curves of PZ shear connectors
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Figure 10.  Load–slip curves of specimens.

Table 4.  Static mechanical property indexes of tested shear connectors.

Specimen Pu (kN) δu (kN) PRk (kN) PRd (kN) δd (kN) Ks (kN  mm−1) Dc

PBL-1 116.4 4.817 104.8 83.8 0.667 125.6 7.2

PBL-2 219.2 8.233 197.3 157.8 0.725 217.6 11.4

PBL-3 200.2 7.393 180.2 144.1 0.761 189.4 9.7

PZ-1 428.3 10.786 385.5 308.4 0.546 564.8 19.8

PZ-2 283.8 4.359 255.4 200.3 0.379 528.5 11.5

PZ-3 333.1 7.873 299.8 239.8 0.403 595.0 19.5

PZ-4 318.8 9.451 286.9 229.5 0.393 584.0 24.0

PZ-5 459.7 7.938 413.7 331.0 0.643 514.8 12.3
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reinforcement was stressed earlier. Comparing the PBL-2 and PBL-3 specimens, the PBL-3 showed higher values 
of initial strain of the transversal reinforcement. The adhesion and friction between the concrete and the steel 
plate at the initial loading stage play an important role in resisting the load. As the PBL-2 was not coated with 
butter, lower values of strain were observed. For specimens with PZ shape composite dowel shear connectors, 
when the load value was 0.7 Pu, the microstrain value of point D1 was about four times that of point D2. The 
transversal reinforcement close to the loading point was mainly used to bear the load while providing a pinning 
force was the primary use of the transversal reinforcement far away from the loading point.

Design recommendations
Shear bearing capacity. Studies have shown three types of possible failure modes in PZ shape composite 
dowel shear connectors under  load29–31. Different failure modes have different calculation formulas for bearing 
capacity.

For small openings between the dowels and large steel plate thicknesses, the dominating failure mode is the 
double plane shearing of the concrete dowel. Therefore, the main parameters for the load-bearing capacity are 
the shear area of the concrete dowel and the shear strength of the concrete. With large openings, the two shear 
planes merge together, which is taken into account by a geometry-dependent reduction factor ηD. The bearing 
capacity is expressed by:

(1)psh,k = ηD · e2x ·
√

fck · (1+ ρD)

(a) PBL-1                         (b) PBL-2                        (c) PBL-3

(d) PZ-1                         (e) PZ-2                         (f) PZ-3

 (g) PZ-4                          (h) PZ-5
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Figure 11.  Load–strain curves of steel dowels.
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where ηD = 2 − ex/400, ρD = (Es · Ab)/(Ecm · AD) , Ab is the cross-sectional area of transversal reinforcement, AD is 
the shear area of concrete dowel (AD = 0.13ex

2), Es is the elastic modulus of transversal reinforcement, Ecm is the 
elastic modulus of concrete, and fck is compressive strength of concrete.

According to the experimental results, the failure mode of PZ shape composite dowel shear connectors in this 
test is concrete shear failure. Since this test design is with a single dowel, the factor ηD is not considered in the 
formula. According to Formula (2), the characteristic bearing capacity is Psh,k = 329.7 kN. Using PZ-3 and PZ-4 
as examples, according to the test results, the characteristic bearing capacities of PZ-3 and PZ-4 are 299.8 kN and 
286.9 kN, respectively. The values calculated by the theoretical formula are larger than the experimental results.

The thickness and spacing of steel dowels are large in prefabricated composite beams. The influence of stirrups 
in composite beams on bearing capacity is also significant. The bearing capacity depends on the structure. The 
theoretical formula for prefabricated composite beams does not apply to composite bridge decks. Therefore, it 
is necessary to establish a formula for calculating the bearing capacity of PZ shape composite dowel shear con-
nectors with elliptic holes in corrugated steel–concrete composite bridge decks.

The bearing capacity of PZ shape composite dowel shear connectors with elliptical holes is mainly depend-
ent on the composite dowel and concrete tenon with elliptical holes. The bearing capacity can be expressed by:

Refer to the existing formula for the bearing capacity of composite dowels (pc), we introduce a reduction 
factor ϕc . According to the characteristic bearing capacity of PZ-3 and PZ-4, the value of ϕc is 0.889. Then the 
bearing capacity of the composite dowel part is:

According to the  literature32, the bearing capacity of the concrete tenon (pe) can be expressed by:

where Ae is the area of the elliptical opening. Ae = πab , where a and b are the long and short semi-axes of the 
elliptical hole. ϕe is the influence coefficient. According to the PZ-1 and PZ-3 tests, the characteristic bearing 
capacity of small elliptical holes can be calculated as 86 kN. According to the PZ-4 and PZ-5 tests, the charac-
teristic bearing capacity of large elliptical holes can be calculated as 127 kN. By substituting into Formula (6), 
the value of ϕe is 4.738. Therefore, bearing capacity of the concrete tenon is

In summary, the bearing capacity formula of PZ shape composite dowel shear connectors with elliptical holes in corrugated steel–concrete composite bridge decks is:

(2)psh,k = pc + pe

(3)pc = 0.889e2x ·
√

fck(1+ ρD)

(4)pe = 2ϕeAe

√

fck

(5)pe = 9.476Ae

√

fck

(6)psh,k = 0.889e2x ·
√

fck(1+ ρD)+ 9.476πab
√

fck

(a) PBL-2                          (b) PBL-3                         (c) PZ-1

(d) PZ-3                          (e) PZ-4                         (f) PZ-5
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Figure 12.  Load–strain curves of transversal reinforcement.
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According to the proposed theoretical calculation formula, the shear capacity of four tested specimens with 
perforated transversal reinforcement was calculated. The comparison between the calculated results and the test 
results is shown in Fig. 13. The errors between calculation and tested values were less than 5%, suggesting good 
agreement between theoretical and experimental values.

Load–slip curve. The load–slip curves of the PZ-1, PZ-3, PZ-4, and PZ-5 specimens were treated as being 
dimensionless, which are shown in Fig. 14.

It can be seen from Fig. 14 that there are two distinct areas in the dimensionless load–slip curves: rising and 
falling sections. The logarithmic function can be used to describe both the rising and the falling parts. The fitting 
curve can be expressed by:

The linear regression method was used to fit the dimensionless load–slip curves of PZ-1, PZ-3, PZ-4, and 
PZ-5 specimens, and to understand the load–slip relationship of the shear connector in the two areas. Given 
this, the a and b variables were calculated as follows: in the ascending section a = 0.339 and b = 0.810, and for 
the descending section a = − 0.078 and b = 1.041. Therefore, the calculation formula of the load–slip curve of PZ 
shape composite dowel shear connector is described as:

where Pu is the ultimate bearing capacity and Su is the corresponding slip amount under the ultimate bearing 
capacity.

Figure 15 compares the fitted curve and the curve obtained from the test results. It can be seen from Fig. 15 
that, the curve fitted according to the proposed formula is in good agreement with the one obtained from the test 
results. However, the calculated stiffness of the plastic region falls slightly below the measured one. Therefore, 

(7)P/Pu = a ln(S)+ b

(8)P/Pu =

{

0.339 ln(S)+ 0.810 0 < S ≤ Su
−0.078 ln(S)+ 1.041 S > Su
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Figure 13.  Comparison results of calculated and tested values.
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the load–slip curve proposed in this study accurately reflects the overall characteristics of the load–slip curve of 
the PZ shape composite dowel shear connectors.

Different mechanical features of a shear connector, such as the bearing capacity, shear stiffness and defor-
mation capacity can be obtained from the load–slip curve, and is the most important mechanical feature of the 
shear connector. Transversal reinforcement and concrete tenons determine the bearing capacity of a PZ shape 
composite dowel shear connector. The bearing capacity provided by concrete tenon is affected by various fac-
tors such as dowel size, concrete strength and constraint state. In contrast, for the transversal reinforcement, the 
bearing capacity varies significantly under different constraints. PZ shape composite dowel shear connectors are 
known to have a complex bearing mechanism. The calculated values for the bearing capacity are quite different, 
with the measured ones in the push-out test, due to the different factors considered by researchers. The theoretical 
formulas in this work are applicable to the PZ shape composite dowel shear connectors with small size and weak 
constraints in the corrugated steel–concrete composite bridge deck. However, as the experiments were performed 
only once, there was no test redundancy. Further studies with more tests are required to achieve reliable results.

Conclusion
The push-out tests of PBL and PZ shape composite dowel shear connectors with elliptical holes in corrugated 
steel–concrete composite bridge decks were conducted, and their mechanical behavior was also studied. Based 
on the test results in this paper, several conclusions can be drawn and are summarized as follows.

(1) The two exhibited failure forms were shear failure of concrete and ductile failure of shear connectors. In the 
case of failure, there was no significant strain change in the steel dowel and elliptical hole of the PZ shape 
shear connector or the round hole of the PBL shear connector. But there was obvious deformation in the 
transversal reinforcement in both designs.

(2) Both types of shear connectors had the same load–slip tendency. Transversal reinforcement is an important 
factor affecting bearing capacity and shear stiffness. The ultimate bearing capacity of shear connectors can 
be significantly increased by opening elliptical holes. But this will also reduce the shear stiffness. The shear 
connector height has little effect on the bearing capacity.
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Figure 15.  Comparison of load–slip curves between the test results and the fitting formula.
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(3) In corrugated steel–concrete composite bridge decks, PZ shape composite dowel shear connectors are 
superior to PBL shear connectors in bearing capacity, shear stiffness, and ductility. Due to the structural 
characteristics of the PZ shape shear connector, it is easy to penetrate the transversal reinforcement.

(4) The comparative analysis of the existing theoretical calculation results and experimental results shows 
that the theoretical calculation results are slightly higher. The calculation formula of PZ shape composite 
dowel shear connectors in composite beams in European technical standards is not applicable to composite 
bridge panels. In this paper, based on the existing research and considering engineering practice, a formula 
for calculating the bearing capacity of PZ shape composite dowel shear connectors with elliptic holes in 
corrugated steel–concrete composite bridge decks was proposed. Based on the characteristics of load–slip 
curves obtained from experiments, two formulas were proposed for the load–slip curves and were used 
to fit a curve to the experimental data. The results calculated by the formulas agreed well with the experi-
mental results. These two formulas may be used to guide the design of shear connections in corrugated 
steel–concrete composite bridge decks.

In the present paper, an experimental study was done on the behavior of PZ shape composite dowel shear 
connectors, yet the theoretical investigations were limited. A further detailed analysis of the FEM simulations 
will be presented in a separate study.
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