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An improved farmland fertility 
algorithm for many‑objective 
optimization problems
Yanjiao Wang1, Peng Gao1* & Ye Chen1,2

Recent studies on many‑objective optimization problems (MaOPs) have tended to employ some 
promising evolutionary algorithms with excellent convergence accuracy and speed. However, 
difficulties in scalability upon MaOPs including the selection of leaders, etc., are encountered because 
the most evolutionary algorithms are proposed for single‑objective optimization. To further improve 
the performance of many‑objective evolutionary algorithms in solving MaOPs when the number of 
the objectives increases, this paper proposes a many‑objective optimization algorithm based on the 
improved Farmland Fertility algorithm (MOIFF). In MOIFF, a novel bio‑inspired meta heuristic method 
proposed in 2018, called Farmland Fertility algorithm (FF), is employed to serve as the optimization 
strategy. In order to handle MaOPs effectively, FF has been tailored from the following aspects. An 
individual fitness assessment approach based on cumulative ranking value has been proposed to 
distinguish the quality of each individual; a novel method based on individual cumulative ranking 
value to constitute and update the global memory and local memory of each individual is proposed, 
and a hybrid subspace search and full space search method has been designed to update individuals 
in the stages of soil optimization and soil fusion. In addition, adaptive environmental selection has 
been proposed. Finally, MOIFF is compared with four state‑of‑the art many‑objective evolutionary 
algorithms on many test problems with various characteristics, including the DTLZ and WFG test 
suites. Experimental results demonstrate that the proposed algorithm has competitive convergence 
and diversity on MaOPs.

Many-objective optimization problems (MaOPs), multi-objective optimization problems (MOPs) with more than 
three objectives, have been attracting considerable attention in many fields. On the one hand, many real-world 
applications can be modeled as MaOPs, such as parameter  estimation1,2, engine  calibration3, and community 
 detection4. On the other hand, MOPs have not been well solved when the number of objectives increases. To over-
come this challenge, lots of many-objective evolutionary algorithms which adopted an evolutionary algorithm, 
have been proposed to improve the performance in solving MaOPs. However, nearly all evolutionary algorithms 
solve single-objective optimization problems. Many-objective evolutionary algorithms (MaOEAs) must add other 
many-objective processing approaches, including Pareto-based approaches, decomposition-based approaches, 
and indicator-based approaches. Many-objective evolutionary algorithms contain two following major parts: 
the evolutionary algorithm and many-objective processing approach.

In recent years, many promising many-objective evolutionary algorithms have been proposed. Bader et al. 
proposed the hypervolume (HV) estimation algorithm (HypE)5. Yang et al. proposed a grid-based evolutionary 
algorithm (GrEA)6, which introduces the concepts of grid dominance and grid differentiation, and evaluated 
the relationships among individuals in the grid environment. Yuan et al. proposed a new theta-dominance7, 
in which the right-to-use weight vector divides each solution into a niche and completes the evaluation and 
selection of the solution in each niche. Zhang et al. proposed a many-objective optimization algorithm based 
on an improved r-dominance8, which adopts the dynamic value strategy of the non-r-dominance threshold 
with nonlinear reduction based on r-dominance. Cheng et al. proposed a reference vector-guided evolutionary 
 algorithm9, which introduces a new aggregation function APD to judge the merits and demerits of the solution 
by the angle between the solution and the associated weight vector. Zhu et al. presented a new linear weighted 
minimal/maximal dominance (LWM-dominance) and a new many-objective optimization algorithm based on 
LWM-dominance10. Sun et al. proposed an inverted generational distance (IGD) indicator-based evolution-
ary  algorithm11. Dabba et al. applied the artificial fish swarm optimization algorithm to solve the  MaOPs12. 
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Zhao et al. developed a decomposition-based many-objective artificial bee colony algorithm with reinforcement 
 learning13. Wu et al. introduced a novel many-objective Brain Storm optimization  algorithm14. Zhang et al. 
proposed a hybrid multi-agent Coordination Optimization Algorithm (MCO)15 that, applies a coordination 
mechanism to accelerate convergence. Guo et al. presented a many-objective optimization with an improved 
shuffled frog leaping  algorithm16. Liu et al. proposed a novel multi-objective optimization algorithm based on 
Bacterial Foraging  algorithm17. Uzman et al. developed a many-objective hybrid Bacterial Foraging  algorithm18 
and a multi-objective artificial butterfly optimization  algorithm19. Li et al. proposed a many-objective optimiza-
tion algorithm based on the R2 indicator and objective space  partition20. This algorithm, uses a double-layer 
file correction strategy to provide each solution a different priority when selecting the candidate solutions, in 
order to give priority to the discrete solutions, and was proved to solve seriously missing diversity. In order to 
understand the composition of the above representative many-objective evolutionary algorithms more clearly, 
we summarize these algorithms in Table 1.

The following conclusions could be drawn from the above literature. Compared with Pareto-based approaches 
and indicator-based approaches, decomposition-based approaches are more widely used in handling MaOPs. In 
addition, most MaOEAs are proposed by improving many-objective processing approaches or adopting some 
evolutionary strategies proposed recently with excellent performance. MaOEAs adopting evolutionary strate-
gies with excellent convergence accuracy and speed, such as Bat Evolution Strategy and Cuckoo Strategy, have 
better convergence and diversity than those with classical evolutionary strategies, such as GA, PSO, and ABC. 
MaOEAs with some improved many-objective processing approach and a novel excellent evolutionary strategy 
simultaneously are likely to achieve the promising performance.

Table 1.  Representative many-objective evolutionary algorithms.

Many-objective processing approaches Evolution strategy
Many-objective evolutionary 
algorithm Number of objectives References

Pareto-based approaches

Pareto-dominance

GA NSGAII21 2, 3 Deb et al.21

Random Frog Hopping 
Algorithm MOSFLA16 2, 3, 5 Guo et al.16

Chimpanzee Algorithm MOBO22 2, 3 Amit Kumar Das et al.22

Grid-dominance GA GRID6 4, 5, 6, 8, 10 Yang et al.6

r-Dominance PSO r-MOPSO8 3, 5, 10 Zhang et al.8

theta-Dominance SBX operator and variation θ-DEA7 3, 5, 8, 10, 15 Yuan et al.7

LWM-dominance GA LWM-NSGAII10 5, 10, 15, 20 Zhu et al.10

Decomposition-based 
approaches

Weighted sum approach, 
Weighted Tchebycheff 
approach, Penalty-based 
boundary intersection

GA MOEA/D23 2, 3, 4 Zhang et al.23

APD Function GA RVEA9 3, 6, 8, 10 Cheng et al.9

Weighted sum approach

Artificial Fish Swarms Algo-
rithm (AFSA) MOAFS12 5, 6 Ali Dabba et al.12

Butterfly Optimization Algo-
rithm (BOA) MOABO19 2, 3, 10 Rodrigues et al.19

Reference point-based method
Artificial Bee Colony Algo-
rithm (ABC) MaOABC/D-LA13 3, 5, 10, 15 Zhao et al.13

Bat Algorithm (BA) MaOBAT18 2, 3, 5, 7, 10 Perwaiz et al.18

Penalty-based boundary 
intersection

Brain Storm Optimization 
Algorithm (BSO) MaOBSO14 5, 10 Wu et al.14

Reference point + Pareto-
dominance Cuckoo Search (CS) HMaOCS24 2, 3, 4, 6, 8, 10 Cui24

Indicator-based approaches

HV indicator GA HypE5 2, 3, 5, 7, 10, 25, 50 Bader et al.5

IGD indicator GA MaOEA/IGD11 8, 15, 20 Sun et al.11

IGD indicator collaborative optimization 
control MoMCO15 3, 5, 8, 10 Zhang et al.15

ε+ indicator Bacterial Foraging Algorithm HMOBFA17 3, 5, 8 Liu et al.17

R2 indicator PSO R2-MOPSO-II20 3, 5, 8, 10, 15 Li et al.20
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To improve the performance of MaOEAs in solving MaOPs when the number of the objectives increases, we 
proposed a many-objective optimization method based on an improved Farmland Fertility algorithm (MOIFF). 
Our main innovation and contributions in this paper can be summarized as follows.

(1) Farmland Fertility algorithm (FF) as a novel bio-inspired meta heuristic method proposed in 2018, is 
employed to serve as the optimization strategy of MOIFF. FF performs better than many well-known 
meta-heuristic methods (including GA, DE, PSO, and ABC) in terms of convergence accuracy, stability, 
and speed FF. An improved FF algorithm (IFF) has been proposed in  202025. However, FF and IFF are 
designed for solving complex single-objective optimization problems. In order to handle MaOPs effectively, 
FF has been tailored from the following aspects in this study: First, we propose a novel individual fitness 
assessment approach based on the cumulative ranking value to distinguish the advantages and disadvan-
tages of each individual in MaOPs. Second, according to the characteristics of MaOPs, we proposed a novel 
method based on individual cumulative ranking value to constitute and update the global memory and 
local memory of each individual, and propose a hybrid search mode combining subspace search and full 
space search to update individuals at the stages of soil optimization and soil fusion.

(2) The experimental results have proved the dual aggregation functions-based environmental selection is a 
representative and promising many-objective processing approach. However, satisfactory diversity is hard 
to obtain, since offspring individuals are selected randomly and some holes may appear in Pareto front 
(PF). We propose a novel adaptive environmental selection method to address these issues. It not only 
avoids the blindness of random selection but also satisfies the requirements of convergence and diversity 
of MaOEAs at different stages of algorithm evolution.

Finally, the proposed MOIFF is compared with four state-of-the art many-objective evolutionary algorithms 
on many test problems with various characteristics, including DTLZ and WFG test suites. Experimental results 
demonstrate that the proposed algorithm has competitive convergence and diversity on MaOPs.

The rest structure of the paper is organized as follows: “Methods” introduces the relevant theoretical knowl-
edge, including the basic principles of the original FF and a representative many-objective processing approach; 
“Proposed method” describes the innovation, the principle, procedures, and detailed operations of our proposed 
MOIFF; “Results and discussion” compares the performance of MOIFF against four state-of-the art many-
objective evolutionary algorithms; “Conclusions” concludes the full text and points out the issues to be studied 
in future.

Methods
Farmland fertility algorithm. In the real world, farmers apply different fertilizers to farmlands with dif-
ferent soil qualities. By simulating the above behavior, Farmland Fertility algorithm (FF) has been proposed to 
handle single-objective optimization problems. In FF, the fertilization schemes and soil qualities of farmlands 
are equivalent to individuals and their fitness values, respectively. The section of the farmland with the worst soil 
quality selected the best fertilization scheme, and for the other sections of the farmland, the fertilization schemes 
are randomly selected. Finally, the soil quality of farmland can be effectively improved through continuous 
improvements in fertilization schemes. The pseudo-code of FF is shown in Algorithm 1.
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A representative many‑objective processing approach. In 2019, Zhang et  al. proposed a novel 
many-objective processing approach in decomposition-based coevolutionary algorithm (DECAL), named dual 
aggregation functions-based environmental selection, which consists of two following aggregation functions 
with complementary strengths: the volume (VOL) function and the KNEE function. Where VOL function is 
strong at facilitating the convergence of individuals, while KNEE function is designed to maintain the diver-
sity of the population. Unlike the most commonly used PBI approach, the VOL function and the KNEE func-
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tion proposed in DECAL are parameter-free, and more importantly, obtain better convergence and diversity in 
MaOPs. For the above reasons, we adopt the dual aggregation functions-based environmental selection pro-
posed in DECAL as the many-objective processing approach of our MOIFF. The pseudo-code of DECAL is 
shown in Algorithm 2.
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Proposed method
We proposed a many-objective optimization algorithm based on an improved Farmland Fertility algorithm 
(MOIFF) to improve the convergence and diversity of MaEAs. FF is employed to serve as the main evolutionary 
strategy of MOIFF, and dual aggregation functions-based environmental selection with the VOL and KNEE 
functions is improved as the multi-objective processing approach of MOIFF. The basic procedure of the pro-
posed MOIFF is similar to those of most decomposition-based MaEAs. The pseudo-code of MOIFF is shown 
in Algorithm 3.

Figure 1.  Principle and effect of the novel individual fitness assessment approach based on cumulative ranking 
value.

Figure 2.  Schematic of the neighbor population.
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Novel individual fitness assessment approach based on cumulative ranking value. To evalu-
ate effectively the quality of individuals in MaOPs, we proposed a novel individual fitness assessment approach 
based on cumulative ranking value. The main motivation is as follows. For decomposition-based MaEAs, indi-
viduals associated with the same weight vector can be compared in performance. Suppose that all the individuals 
in MaOPs are associated with the same weight, then, they can be compared. However, decomposition-based 
approaches commonly contain some evenly spread weight vectors, and almost all individuals are associated with 
different weight vectors. The performance of each individual should be evaluated by all weight vectors instead of 
one. In addition, at the beginning of iteration, MaEAs should facilitate the convergence of individuals; at the end 
of iteration, attention should be shifted to diversity.

Basing from the above motivation, we proposed the following method to evaluate the quality of each indi-
vidual for MaOPs. Step 1: At the beginning of the iteration, for each individual, calculate the VOL function value 
on each weight vector by using to Eq. (10); at the end of iteration, calculate the KNEE function value by using 
Eq. (11). Step 2: Sort the individuals associated with the same weight vector with respect to the VOL function or 
the KNEE function. Thus, each individual will be assigned to N ranking values, where N is equal to the size of 
a set of weight vectors. Step 3: For each individual, accumulate all ranking values as its novel assessment fitness 
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value, recorded as s_sort(i). Obviously, the smaller the cumulative sorting value s_sort(i) of an individual, the 
better the individual.

Figure 1 displays an example of handling two-objective DTLZ1 to further illustrate the effectiveness of the 
above fitness assessment approach based on cumulative ranking value. The final distribution of the solutions 
shows that the individuals with the first five cumulative ranking values are distributed close to the true Pareto 
front (PF); the larger the cumulative ranking value of the individual is, the father away from the true PF. The 
above finding shows that our proposed novel individual fitness assessment approach based on the cumulative 
ranking value is effective.

Mechanism of updating global memory and local memory. The decomposition-based MaEAs 
decompose a many-objective optimization problem into a number of single-objective sub-problems by an even 
set of weight vectors. Each sub-problem is defined by a weight vector, and if weight vectors are adjacent to each 
other, the optimal solutions of the sub-problems associated with them are also very close. Therefore, with the 
extension of evolution, the individuals associated with neighborhood weight vectors are similar to some extent. 
Obviously, each individual and its neighboring individuals form a region naturally; thus, dividing each individ-
ual into regions like FF is not necessary. However, a new mechanism must be proposed to compose and update 
local memory and global memory in MaOPs. Basing from the above analysis, we proposed the following mecha-
nism based on individual cumulative sorting values to compose and update local memory and global memory.

(1) Mechanism of composing and updating global memory
  At each iteration, MGlobal individuals with the smallest s_sort value in the current population are selected 

and stored them in the global memory directly.
(2) Mechanism of composing and updating local memory
  Unlike FF, each local memory is assigned to each individual rather than each region in MOIFF. That is, 

the number of local memory is equal to the number of individuals. The local memory of each individual 
is updated with the help of its neighbor population (shown in Fig. 2) as follows. First, for each individual 
Xi, the weight vector associated with it is determined, and then the T weight vectors closest to the associ-
ated weight vector are selected as the neighbor weight vectors. Second, individuals associated with each 
neighbor weight vector are identified to form the neighbor population of Xi. Finally, MLocal individuals with 
the smaller cumulative sorting values in the neighbor population of Xi are selected as the local memory of 
Xi directly.

In Fig. 2, dotted lines represent the true PF; w1, w2, and w3 represent the different weight vectors; and x1, 
x2, x3, and x4 represent four individuals in the current population, where x1 is associated with vector w1, x2 
and x3 with weight vector w2, and x4 with weight vector w3. For the individual x1, w2 and w3 are the neighbor 
weight vectors of the associated weight vector w1 with it. Individuals x2 and x3 are associated with weight vec-
tor w2, and x4 is associated with weight vector w3. Individuals x2, x3, and x4 compose the neighbor population 
of individual x1.

New individual‑updating mechanism for soil optimization. To handle MaOPs, we propose a novel 
individual-updating mechanism for soil optimization in view of the characteristics of decomposition-based 
MaEAs, described as Eq. (13). The main motivations and ideas are as follows: to facilitate the convergence and 
promote the diversity of MOIFF, individuals with the poorer convergence should learn from the excellent indi-
viduals in the neighborhood, and the others should explore new locations by further communication with other 
individuals different from itself.
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where Xi_ML(best) and Xi_ML(others) represent the best individual and another random individual besides the best 
individual in Xi’s local memory, respectively; and k is a constant, generally, k = 4.

The above individual-updating mechanism proposed for soil optimization has the following advantages. 
On the one hand, the N/k individuals with poor convergence and diversity learn from the excellent individu-
als in their local memory randomly, which provides the direction of evolution within the neighborhood and 
maintains the diversity of the whole population. On the other hand, others learn from other random individual 
besides themself, which favors exploration of new locations, and can make some weight vectors without associ-
ated individuals may be associated with some individuals. Therefore, the diversity of MOIFF will be improved.

A new individual‑updating mechanism for soil fusion. As shown in Eq. (5), in the soil fusion stage 
of FF, all individuals only learn from the best individual in the global memory or local memory, which improves 
the convergence speed of FF to a certain extent. Unfortunately, it is unsuitable for decomposition-based MaEAs. 
Therefore, we propose a new individual-updating method for soil fusion, described as Eqs. (14) and (15). The 
main motivations and ideas are as follows: in the soil fusion stage, only the individual in the global memory and 
the best individual in each local memory are exploited many times rather than all the individuals, and minor 
perturbations are made around them. However, considering that the number of these individuals is small, i.e., 
the evolutionary information is very limited, and each individual has carried some evolutionary information 
related to the convergence of corresponding sub-problems during iterations. Therefore, each excellent individual 
should be updated by the minor perturbations around themselves and add some evolutionary information of 
other individuals.

where, XMG(random) represents a random individual selected from global memory, Xi_ML(best) represents the 
best individual stored in  Xi’s local memory, CR is the crossover probability, and generally, CR ∈ [0.6, 0.8].

Adaptive environmental selection. As described in Algorithm  2, dual aggregation functions-based 
environmental selection in DECAL consists of the two following steps: Step 1, for each weight vector, select the 
individual with the best VOL function value and the individual with the best KNEE function value from all the 
associated individuals with it respectively; Step 2, for each weight vector, randomly select one from the individu-
als identified in step 1 as an individual of the offspring population. Obviously, some weight vectors may not be 
associated with any individual. Therefore, the number of individuals in the offspring population may be smaller 
than the initial size of individuals, and satisfactory diversity is hard to obtain because some holes may appear in 
PF. In addition, the random selection in step 2 has a certain blindness, which does not satisfy the requirements of 
convergence and diversity of many-objective optimization algorithms at different stages of algorithm evolution.

To address these above issues, this article proposes a new adaptive environment selection, as shown in 
Algorithm 4.

(13)Xinew =

{

α × (−1+ 2× rand)× (Xi − Xi_ML(best))+ Xi , s_sort(Xi) ∈ N/k
β × rand × (Xi − Xi_ML(others))+ Xi , else,

(14)Xinew =

{

XMG(random)× randn, Q > rand
Xi_ML(best)× randn, else,

(15)Xinew,j =

{

Xinew,j , CR > rand
Xi,j , else,
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As shown in Algorithm 4, the adaptive environment selection proposed in this paper has the following advan-
tages: First, when the size of the offspring population is less than the initial setting number of weight vectors, we 
will select some individuals into the offspring population, and vice versa. Finally, the size of the offspring popula-
tion obtained by adaptive environment selection is equal to the initial setting number of weight vectors, which 
further guarantees that the PF is even distributed; Second, at the begging of iterations, the offspring population 
obtained by adaptive environment selection contains many individuals with better VOL fitness. At the end of 
iterations, the offspring population contains many individuals with better KNEE fitness. It not only avoids the 
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blindness of random selection but also satisfies the requirements of convergence and diversity of many-objective 
optimization algorithms at different stages of algorithm evolution.

Hybrid subspace‑full space search mode. For MaOPs, at the begging of iteration, the set of all the solu-
tions is commonly far from PS. If each individual performs a complete search in the D-dimensional search space, 
called the full-space search mode, then the individual can obtain some promising evolutionary directions from 
such huge searching space. As the iteration progresses, the individuals are gradually close to the true PS. At this 
moment, some individuals have achieved the global optimum in most dimensions, whereas only a few dimen-
sions are far from the global optimum. In this case, if individuals still adopt the full-space search mode of FF to 
evolve, the good dimensions may change greatly, which may cause the population to deviate from the excellent 
evolution directions, and the convergence of algorithm may be slow or fail to obtain the true PF. The current 
individuals are better suited for small-scale searches. Thus, the above-mentioned issues can be easily addressed, 
if individuals do not adopt the full-space search mode but only search on a dimension, called subspace search. In 
summary, the full-space search mode refers to all dimensions of an individual being updated in accordance with 
the established search strategy in the stages of soil optimization and soil fusion, and the subspace search mode 
means that during the stages of soil optimization and soil fusion, only one dimension of an individual is updated 
in accordance with the established search strategy, while the other dimensions are unchanged.

The subspace search mode updates only one dimension of individual at one iteration. Thus, if individuals 
adopt the subspace search mode to update themselves for many iterations, the convergence of the algorithm 
may be slow down instead. Therefore, when the subspace search mode does not obtain a better PF, the full space 
search mode should be used again for further search. That is, the full space search mode and subspace search 
mode should alternate. Basing from the above ideas, we propose a hybrid subspace-full space search mode. The 
conversion condition between the subspace and full-space search mode are as follows.

Conversion condition between subspace and full‑space search modes. As shown in “Novel individual fitness 
assessment approach based on cumulative ranking value”, for each weight vector, the associated sub-problem is 
solved better, as the smallest s_sort associated with it (denoted as pbest) is smaller. As the iteration progresses, 
the change in pbest can be used to judge whether the evolution slow down, fail to update the individual into a 

Table 2.  Population size setting.

Number of objectives M Population size N

3 91 (H = 12)

5 210 (H = 6)

8 156 (H1 = 3, H2 = 2)

10 275 (H1 = 3, H2 = 2)

15 135 (H1 = 2, H2 = 1)

Table 3.  Maximum number of fitness estimations for different test problems.

Problem M = 3 M = 5 M = 8 M = 10 M = 15

DTLZ1 36,400 126,000 117,000 275,000 202,500

DTLZ2 22,750 73,500 78,000 206,250 135,000

DTLZ3 91,000 210,000 156,000 412,500 270,000

DTLZ4 54,600 210,000 195,000 550,000 405,000

DTLZ5 54,600 210,000 187,200 168,000 270,000

DTLZ6 36,800 73,500 117,000 224,000 270,000

DTLZ7 54,600 210,000 195,000 550,000 405,000

WFG1-WFG9 92,000 212,100 156,000 276,100 136,000

Table 4.  Setting of parameters in each algorithms.

MaOEAs Parameters

NSGAIII Pc = 1.0, Pm = 1/V, ηc = 20 , ηm = 20

MOEA/D T = 20, δ = 0.9

RVEA α = 2 , fr = 0.1

MOIFF T = N/4, CR = 0.8, α = 0.6 , β = 0.4
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Text suite M NSGAIII MOEA/D RVEA ARMOEA MOIFF

DTLZ1

3 2.07E−02 
(2.99E−04) + 

2.10E−02 
(4.73E−04) + 

2.07E−02 
(1.86E−04) + 

2.08E−02 
(2.27E−04) + 3.08E−02 (6.00E−02)

5 5.27E−02 
(4.60E−05)−

5.28E−02 
(8.10E−05)−

5.27E−02 
(2.80E−05)−

5.27E−02 
(5.62E−05)− 2.42E−02 (4.39E−02)

8 1.06E−01 
(2.94E−02)−

9.63E−02 
(3.28E−04)− 9.71E−02 (2.71E−04)- 9.90E−02 

(5.84E−04)− 2.45E−02 (2.10E−02)

10 1.15E−01 
(2.37E−02)−

1.09E−01 
(1.85E−04)−

1.08E−01 
(2.90E−04)−

1.12E−01 
(1.21E−03)− 9.14E−02 (4.82E−02)

15 2.04E−01 
(2.37E−02) + 

1.64E−01 
(7.84E−03) + 

1.77E−01 
(5.60E−03) + 

1.70E−01 
(1.54E−02)− 2.49E−01 (1.13E−02)

DTLZ2

3 5.45E−02 
(1.45E−05)−

5.45E−02 
(3.84E−06)−

5.46E−02 
(1.60E−04)−

5.46E−02 
(7.97E−05)− 2.43E−02 (9.89E−03)

5 1.65E−01 
(2.72E−05)−

1.65E−01 
(9.43E−06)−

1.65E−01 
(2.28E−05)−

1.65E−01 
(8.57E−05)− 4.60E−02 (8.90E−03)

8 3.37E−01 
(6.22E−02)−

3.15E−01 
(3.34E−05)−

3.15E−01 
(1.41E−04)−

3.26E−01 
(1.90E−03)− 9.83E−02 (9.74E−02)

10 4.93E−01 
(8.03E−02)−

4.22E−01 
(1.69E−04)−

4.20E−01 
(4.72E−04)−

4.27E−01 
(2.47E−03)− 1.59E−01 (1.16E−01)

15 7.50E−01 
(5.07E−02)−

6.23E−01 
(7.47E−04)−

6.24E−01 
(4.18E−03)−

6.11E−01 
(3.01E−03)− 1.39E−01 (1.40E−01)

DTLZ3

3 5.48E−02 
(3.04E−04) + 

5.49E−02 
(6.97E−04) + 

5.48E−02 
(3.88E−04) + 

5.49E−02 
(4.29E−04) + 1.19E−01 (2.50E−01)

5 1.65E−01 
(3.05E−04)−

1.65E−01 
(2.15E−04)−

1.65E−01 
(7.46E−05)−

1.66E−01 
(3.26E−03)− 7.27E−02 (3.70E−02)

8 5.51E−01 
(5.16E−01)−

3.89E−01 
(1.88E−01) = 

3.16E−01 
(4.96E−04) = 

3.45E−01 
(7.68E−03) = 2.83E−01 (1.84E−01)

10 6.50E−01 
(6.61E−01)−

4.22E−01 
(1.06E−03)−

4.20E−01 
(7.19E−04)−

4.29E−01 
(4.27E−03)− 2.25E−01 (1.79E−01)

15 1.99E + 01 
(1.42E + 01)−

9.40E−01 
(2.98E−01)−

6.23E−01 
(1.26E−03)−

6.14E−01 
(8.73E−03)− 5.12E−01 (9.88E−02)

DTLZ4

3 2.79E−01 
(2.66E−01)−

3.55E−01 
(3.25E−01)−

7.07E−02 
(8.75E−02) = 

2.60E−01 
(2.86E−01)− 2.19E−01 (2.57E−01)

5 1.73E−01 
(4.37E−02)−

3.18E−01 
(1.58E−01)−

1.65E−01 
(6.97E−06)−

1.73E−01 
(4.20E−02)− 1.62E−01 (2.07E−01)

8 3.74E−01 
(1.00E−01) = 

4.82E−01 
(9.67E−02)−

3.23E−01 
(2.80E−02) = 

3.23E−01 
(1.52E−03) = 2.94E−01 (1.76E−01)

10 4.38E−01 
(4.80E−02)−

5.19E−01 
(6.77E−02)−

4.21E−01 
(4.41E−04)−

4.27E−01 
(2.48E−03)− 1.62E−01 (1.40E−01)

15 7.31E−01 
(5.09E−02)−

6.84E−01 
(3.13E−02)−

6.25E−01 
(1.63E−03)−

6.07E−01 
(2.42E−03)− 3.21E−01 (1.11E−01)

DTLZ5

3 1.24E−02 
(1.56E−03) + 

3.39E−02 
(1.83E−05)−

7.03E−02 
(8.02E−03)−

5.42E−03 
(1.25E−04) + 2.96E−02 (4.26E−03)

5 9.03E−02 
(3.22E−02) = 

2.27E−02 
(4.54E−06) + 

1.99E−01 
(1.90E−02)−

5.50E−02 
(7.22E−03) + 8.29E−02 (1.94E−02)

8 3.59E−01 
(9.03E−02)−

2.59E−02 
(6.37E−06) + 

3.60E−01 
(4.04E−02)−

1.04E−01 
(2.51E−02) + 1.22E−01 (2.69E−02)

10 5.02E−01 
(1.27E−01)−

1.99E−02 
(1.02E−05) + 

3.08E−01 
(3.64E−02)−

9.14E−02 
(1.39E−02) + 1.49E−01 (3.10E−02)

15 2.51E−01 
(5.64E−02)−

9.57E−02 
(5.05E−06) + 

3.06E−01 
(9.70E−02)−

1.12E−01 
(1.98E−02) + 2.16E−01 (5.19E−02)

DTLZ6

3 2.00E−02 
(2.70E−03) + 

3.39E−02 
(2.04E−05) + 

8.53E−02 
(1.60E−02)−

5.00E−03 
(6.98E−05) + 4.74E−02 (9.10E−03)

5 1.66E−01 
(7.91E−02)−

2.26E−02 
(1.71E−04) + 

1.50E−01 
(2.38E−02)−

7.12E−02 
(2.11E−02) + 7.78E−02 (1.19E−02)

8 6.59E−01 
(3.43E−01)−

2.53E−02 
(5.79E−04) + 

2.92E−01 
(6.01E−02)−

1.07E−01 
(2.23E−02) + 1.43E−01 (1.86E−02)

10 2.66E + 00 
(1.15E + 00)−

1.90E−02 
(4.56E−04) + 

2.40E−01 
(5.44E−02)−

1.03E−01 
(2.37E−02) + 1.42E−01 (1.90E−02)

15 4.90E + 00 
(1.15E + 00)−

9.57E−02 
(2.53E−06) + 

1.87E−01 
(1.18E−02)−

1.04E−01 
(2.35E−02) + 1.82E−01 (7.98E−02)

Continued
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better one, and fall into a local optimum. Considering the above, we take the change in pbest as the conversion 
condition between the subspace search mode and full-space search mode as follows: First, initialize parameters 
including c = 0, c1, and c2, where c1 is used to determine whether pbest has changed before and after the itera-
tion, and c2 is used to determine the number of iterations that pbest remains unchanged. Second, for each weight 
vector, calculate the Euclidean distance Dis(i) between pbesti obtained at this iteration and the last iteration and 
then calculate the mean (denoted as average_Dis) of all Dis(i), as shown in Eq. (16). If average_Dis is less than 
c1, then c = c + 1; otherwise, c = 0. When c is equal to c2, the search mode is converted, i.e., the full space search 
mode is converted to the sub-space search mode, and vice versa.

where, pbestdi (j) represents the j-th dimension of the smallest s_sort associated with the i-th weight vector (Wi) 
at the d-th iteration.

Description of subspace search mode. When the subspace search mode is adopted, if the updated dimension 
is selected in accordance with the order of dimensions, it can better guarantee that each dimension can search 
more finely during the limited iterations compared with the updated dimension selected randomly. Therefore, 
in our proposed subspace search mode, when converting to the subspace search mode, the updated dimension 
of each individual is selected in accordance with the order of dimensions at each iteration, which is similar to 
the method proposed  in25, detailed as follows. At the last iteration, dimension d is selected to update, and at this 
iteration, dimension d + 1 is selected to update. When all the dimensions have been updated by adopting the sub-
space search mode, unlike the method proposed  in25, even if they fail to meet the conversion condition between 
the subspace and full-space search modes, all individuals adopt the full-space search mode in the next iteration.

Suppose that the flag-th dimension needs to be updated, the subspace search modes for soil optimization 
and soil fusion are as follows.

The subspace search mode for soil optimization and soil fusion is shown in Eq. (17).

At the stage of soil fusion, to guarantee that the new offspring individuals are different from themselves and 
facilitate convergence, each individual performs the crossover operation between the disturbed individual and 
the disturbed selected excellent individual, as shown in Eq. (18).

Complexity analysis. Given an MaOP with M objectives in a D-dimensional decision space. Assume that 
the population size of each swarm is NP. the time complexity of our proposed MOIFF is dominated by the opera-
tors in the for loop (lines 08–19 in Algorithm 3). In each iteration, determining the search mode (line 08) requires 
O(D × NP) time. Calculating he assessment fitness values of individuals (line 09) costs O(NP+M × NP2

) time. 
Updating the global memory and local memory (line 10) takes O(MGlobal+MLocal) time, where MGlobal and 
MLocal represent the size of the global memory and the local memory. The soil optimization component (line 11) 
requires O(D × NP) time. The component of line 12 costs O(M × NP2

) time. Adaptive environment selection 
(line 14) requires O(NP2) time. The soil fusion takes O(D × NP) time. Therefor, the overall time complexity of 
our proposed MOIFF is O(M × NP2

).

(16)averageDis = mean





N
�

i=1

�

�

�

�

D
�

j=1

(pbestdi (j)− pbestd−1
i (j))2



,

(17)Xinew,flag =

{

α × (−1+ 2× rand)× (Xi,flag − Xi_ML,flag (best))+ Xi,flag , s_sort(Xi) ∈ N
/

k
β × rand × (Xi,flag − Xi_ML,flag (others))+ Xi,flag , else.

(18)Xinew,flag =

{

XMG,flag (random)× randn, Q > rand
Xi_ML,flag (best)× randn, else.

Table 5.  Average and standard deviation of the IGD values obtained by the five algorithms on the DTLZ test 
suite with different numbers of objectives.

Text suite M NSGAIII MOEA/D RVEA ARMOEA MOIFF

DTLZ7

3 9.79E−02 
(8.05E−02) + 

1.51E−01 
(4.39E−03) = 

1.07E−01 
(2.76E−03) = 

3.06E−01 
(2.33E−01) = 2.80E−01 (2.66E−01)

5 2.79E−01 
(1.02E−02) + 

5.76E−01 
(1.72E−01)−

5.02E−01 
(7.27E−03)−

2.60E−01 
(4.14E−03) + 3.46E−01 (3.90E−02)

8 7.81E−01 
(2.26E−02) + 

1.86E + 00 
(2.16E−01)−

1.89E + 00 
(9.58E−02)−

1.00E + 00 
(5.71E−02) = 9.86E−01 (1.17E−01)

10 9.68E−01 
(7.45E−02) + 

3.01E + 00 
(3.61E−01)−

2.67E + 00 
(1.71E−01)−

1.49E + 00 
(1.43E−01) + 2.11E + 00 (3.86E−01)

15 7.34E + 00 
(1.05E + 00)−

2.77E + 00 
(2.93E−01) = 

6.07E + 00 
(8.95E−01)−

5.03E + 00 
(9.02E−01)− 4.59E + 00 (2.58E + 00)

+/=/− 9/2/24 12/3/20 3/4/28 14/4/17
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Text Suite M NSGA-III MOEA/D RVEA ARMOEA MOIFF

DTLZ1

3 8.40E−01 
(1.85E−03)−

8.38E−01 
(2.55E−03)−

8.40E−01 
(1.51E−03)−

8.40E−01 
(1.57E−03)− 9.60E−01 (3.48E−02)

5 9.80E−01 
(1.77E−04)−

9.80E−01 
(1.87E−04)−

9.80E−01 
(1.44E−04)−

9.80E−01 
(1.53E−04)− 9.98E−01 (1.89E−03)

8 9.88E−01 
(4.43E−02)−

9.97E−01 
(1.34E−04)−

9.98E−01 
(5.52E−05)−

9.98E−01 
(6.10E−05)− 1.00E + 00 (1.99E−04)

10 9.96E−01 
(1.73E−02) = 

1.00E + 00 
(2.73E−05) = 

1.00E + 00 
(1.56E−05) = 

1.00E + 00 
(2.10E−05) = 9.99E−01 (6.63E−04)

15 9.87E−01 (1. 
69E−02) = 

1.00E + 00 
(2.73E−04)−

1.00E + 00 
(1.26E−05) + 

1.00E + 00 
(5.47E−05) + 1.00E + 00 (2.07E−04)

DTLZ2

3 5.59E−01 
(7.35E−05)−

5.59E−01 
(6.76E−05)−

5.59E−01 
(2.95E−04)−

5.59E−01 
(1.84E−04)− 9.26E−01 (2.96E−03)

5 8.12E−01 
(4.27E−04)−

8.12E−01 
(4.57E−04)−

8.12E−01 
(3.97E−04)−

8.12E−01 
(3.82E−04)− 9.90E−01 (9.91E−04)

8 9.14E−01 
(2.81E−02)−

9.24E−01 
(2.69E−04)−

9.24E−01 
(2.41E−04)−

9.25E−01 
(4.83E−04)− 9.99E−01 (2.27E−03)

10 9.30E−01 
(4.26E−02)−

9.70E−01 
(1.85E−04)−

9.70E−01 
(1.82E−04)−

9.71E−01 
(1.94E−04)− 1.00E + 00 (1.05E−03)

15 8.55E−01 
(6.01E−02)−

9.91E−01 
(1.30E−04)−

9.90E−01 
(2.21E−03)−

9.91E−01 
(5.50E−04)− 1.00E + 00 (1.80E−05)

DTLZ3

3 5.55E−01 
(2.89E−03)−

5.54E−01 
(4.35E−03)−

5.55E−01 
(3.15E−03)−

5.55E−01 
(3.39E−03)− 8.81E−01 (1.33E−01)

5 8.11E−01 
(2.35E−03)−

8.10E−01 
(1.88E−03)−

8.12E−01 
(6.77E−04)−

8.11E−01 
(1.77E−03)− 9.89E−01 (2.41E−03)

8 7.65E−01 
(3.12E−01)−

8.22E−01 
(2.30E−01)−

9.22E−01 
(1.70E−03)−

9.26E−01 
(2.85E−03)− 9.96E−01 (4.74E−03)

10 8.40E−01 
(2.80E−01)−

9.70E−01 
(6.71E−04)−

9.70E−01 
(3.72E−04)−

9.71E−01 
(3.71E−03)− 1.00E + 00 (4.97E−04)

15 0.00E + 00 
(0.00E + 00)−

5.18E−01 
(4.41E−01)−

9.91E−01 
(1.33E−04)−

9.82E−01 
(5.05E−03)− 1.00E + 00 (6.70E−05)

DTLZ4

3 4.56E−01 
(1.26E−01)−

4.13E−01 
(1.65E−01)−

5.52E−01 
(3.95E−02)−

4.64E−01 
(1.38E−01)− 8.76E−01 (6.36E−02)

5 8.09E−01 
(2.03E−02)−

7.43E−01 
(8.12E−02)−

8.13E−01 
(4.30E−04)−

8.09E−01 
(1.69E−02)− 9.80E−01 (1.99E−02)

8 8.97E−01 
(4.70E−02)−

8.68E−01 
(4.18E−02)−

9.22E−01 
(5.72E−03)−

9.25E−01 
(3.41E−04)− 9.97E−01 (3.98E−03)

10 9.63E−01 
(2.13E−02)−

9.43E−01 
(2.42E−02)−

9.70E−01 
(1.97E−04)−

9.70E−01 
(1.84E−04)− 1.00E + 00 (2.08E−04)

15 8.97E−01 
(4.70E−02)−

9.70E−01 
(1.43E−02)−

9.90E−01 
(1.48E−03)−

9.91E−01 
(1.42E−04)− 1.00E + 00 (1.80E−05)

DTLZ5

3 1.94E−01 
(1.11E−03)−

1.82E−01 
(1.05E−05)−

1.56E−01 
(6.29E−03)−

1.99E−01 
(1.16E−04)− 7.26E−01 (3.45E−03)

5 1.14E−01 
(4.05E−03)−

1.27E−01 
(3.49E−04)−

1.06E−01 
(2.79E−03)−

1.14E−01 
(1.83E−03)− 6.55E−01 (7.12E−03)

8 2.88E−02 
(3.24E−02)−

1.04E−01 
(3.84E−04)−

9.09E−02 
(4.36E−05)−

9.17E−02 
(2.41E−03)− 6.23E−01 (6.25E−03)

10 1.33E−02 
(2.64E−02)−

1.00E−01 
(3.87E−04)−

9.09E−02 
(8.85E−05)−

8.86E−02 
(1.67E−03)− 6.24E−01 (6.73E−03)

15 9.04E−02 
(3.03E−03)−

9.44E−02 
(2.27E−04)−

9.09E−02 
(2.42E−04)−

9.12E−02 
(5.54E−04)− 6.01E−01 (9.33E−03)

DTLZ6

3 1.90E−01 
(1.48E−03)−

1.82E−01 
(1.26E−05)−

1.46E−01 
(1.10E−02)−

2.00E−01 
(6.13E−05)− 7.18E−01 (5.37E−03)

5 9.76E−02 
(1.78E−02)−

1.27E−01 
(1.78E−03)−

8.67E−02 
(3.39E−02)−

1.09E−01 
(5.81E−03)− 6.61E−01 (4.19E−03)

8 5.14E−02 
(4.35E−02)−

1.04E−01 
(2.93E−04)−

9.39E−02 
(1.42E−03)−

9.24E−02 
(1.37E−03)− 6.19E−01 (5.69E−03)

10 3.03E−03 
(1.63E−02)−

9.99E−02 
(2.35E−04)−

9.23E−02 
(7.82E−04)−

9.18E−02 
(7.95E−04)− 6.14E−01 (6.80E−03)

15 0.00E + 00 
(0.00E + 00)−

9.44E−02 
(3.15E−04)−

8.95E−02 
(8.17E−03)−

9.15E−02 
(6.17E−04)− 5.88E−01 (1.77E−02)

Continued
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Results and discussion
Test problems. In the empirical studies, two well-known test suites for many objective optimizations, the 
DTLZ test  suite26 and the WFG test  suite27 are chosen. To obtain a full comparison, all test instances in DTLZ 
and WFG are considered in this paper. All these test problems are scalable to any number of objectives, where 
M ∈ {3, 5, 8, 10, 15} in this paper. According  to26, the number of decision variables V = M + k − 1 for the DTLZ 
test suit, where M represents the number of objectives, k = 5 for DTLZ1, and k = 10 for DTLZ2-7. For all WFG test 
problems, the number of decision variables is set as V = r + l, where the position-related variable r = 2 × (M − 1) 
and the distance-related variable l = 20, as suggested  in27.

Algorithm and parameter. In order to verify the validity of MOIFF proposed in this paper, we consider 
four state-of-the-art many-objective evolutionary algorithms, including NSGA  III28, MOEA/D23,  RVEA9, and 
 ARMOEA29. To ensure the fairness of the comparison, the population size and the termination condition of 
each algorithm are consistent on the same test instance. The population size N is equal to the size of the refer-
ence vectors, which are used for different numbers of objectives and are summarized in Table 2, where H1 and 
H2 are the number of divisions of the boundary layer and inside layer, respectively. The termination condition of 
each algorithm is the maximum number of fitness estimations (MFE), summarized in Table 3. In addition, other 
parameters used in each algorithm are summarized from the original literature, as shown in Table 4.

Results on DTLZ test suite. In this section, we conduct three experiments to verify the validity of MOIFF 
proposed in this paper on the DTLZ test suite. The first one is verification of the effectiveness of MOIFF in con-
vergence accuracy. The second one is verification of the effectiveness of MOIFF in convergence speed. The third 
one is verification of the effectiveness of MOIFF in convergence stability.

(1) Verification of the effectiveness of MOIFF in convergence accuracy

In our empirical studies, IGD and HV are employed to evaluate the performance of each algorithm simul-
taneously. Each algorithm runs 30 times independently on each test instance to avoid the unfavorable effect 
of the algorithm evaluation caused by the randomness of a single operation. Tables 5 and 6 show the average 
and standard deviation of the IGD and HV values over 30 independent runs for the five compared MaOEAs, 
respectively, where the best average among the five compared MaOEAs is highlighted in bold. In addition, to 
test the differences for statistical significance, the Wilcoxon rank sum test with a 5% significance level is per-
formed between MOIFF and each of the compared algorithms over each test instance. Symbols “+”, “−” and “=” 
indicate that the compared algorithm performs significantly better than, worse than, and equivalent to MOIFF 
in the corresponding column, respectively. The Friedman rank-sum test is performed on the data of Tables 5 
and 6 to analyze the overall average performance of these above algorithms. The results are shown in Table 7, 

Table 6.  Average and standard deviation of the HV values obtained by the five algorithms on the DTLZ test 
suite with different numbers of objectives.

Text Suite M NSGA-III MOEA/D RVEA ARMOEA MOIFF

DTLZ7

3 2.68E−01 
(1.02E−02)−

2.47E−01 
(6.21E−03)−

2.65E−01 
(1.76E−03)−

2.49E−01 
(2.38E−02)− 4.10E−01 (7.32E−02)

5 2.53E−01 
(4.72E−03)−

1.47E−01 
(1.26E−02)−

2.20E−01 
(2.89E−03)−

2.54E−01 
(1.81E−03)− 4.41E−01 (1.24E−02)

8 2.01E−01 
(4.29E−03)−

4.17E−03 
(1.52E−02)−

1.55E−01 
(2.37E−02)−

1.87E−01 
(2.88E−03)− 3.47E−01 (8.37E−03)

10 1.87E−01 
(7.01E−03)−

7.97E−06 
(2.37E−05)−

1.45E−01 
(2.95E−02)−

1.67E−01 
(8.07E−03)− 3.13E−01 (6.30E−03)

15 1.40E−01 
(1.04E−02)−

2.46E−04 
(1.27E−03)−

1.20E−01 
(5.26E−03)−

7.16E−02 
(1.62E−02)− 1.67E−01 (1.87E−02)

+/=/− 0/2/33 0/1/34 1/1/33 1/1/33

Table 7.  Friedman-test of 5 algorithms.

Algorithm

IGD HV

Avg.rank Rank Avg.rank Rank

NSGA-III 3.73 5 2.00 5

MOEA/D 2.97 3 2.34 4

RVEA 3.29 4 2.67 3

ARMOEA 2.79 2 3.11 2

MOIFF 2.23 1 4.87 1
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Table 8.  The response time of the five algorithms on the DTLZ test suite with different numbers of objectives 
(/s).

Text Suite M NSGA-III MOEA/D RVEA ARMOEA MOIFF

DTLZ1

3 1.76 6.68 1.53 25.44 19.37

5 9.15 27.40 8.13 545.94 130.42

8 7.71 23.37 6.52 391.99 149.63

10 21.16 60.25 14.22 1415.25 777.34

15 18.25 41.07 12.98 808.41 299.35

DTLZ2

3 1.25 4.15 1.08 25.31 11.75

5 6.19 16.32 4.76 375.87 63.92

8 7.39 15.95 5.32 385.87 47.32

10 16.19 50.63 13.39 1718.32 219.84

15 16.10 27.61 8.45 647.24 310.61

DTLZ3

3 5.10 16.79 4.64 74.94 27.67

5 15.99 46.65 14.12 699.76 136.36

8 14.66 30.19 10.83 651.96 86.70

10 40.22 101.73 28.01 2895.24 387.07

15 30.07 54.81 22.56 1530.45 133.54

DTLZ4

3 5.05 4.79 4.37 141.00 17.57

5 20.25 50.41 15.79 1342.95 138.55

8 12.79 20.25 11.12 1322.76 106.81

10 58.17 129.12 43.42 5216.51 516.42

15 47.73 82.76 38.18 3000.08 265.89

DTLZ5

3 4.90 10.62 3.74 130.104 17.86

5 19.03 47.09 11.53 1555.28 150.56

8 18.65 38.83 12.17 1508.99 98.48

10 18.33 40.56 10.48 1666.67 152.47

15 33.11 56.77 25.17 2369.89 137.23

DTLZ6

3 3.68 7.23 2.77 13.85 11.15

5 6.69 16.21 5.05 566.72 50.24

8 12.98 24.55 9.04 980.66 44.76

10 26.48 52.01 16.99 2361.61 205.54

15 39.34 55.88 22.78 2420.85 134.48

DTLZ7

3 4.67 10.19 3.94 96.75 18.18

5 18.62 45.16 12.74 1585.89 140.21

8 19.51 40.86 13.60 1912.30 101.58

10 62.77 127.04 36.07 6179.27 500.29

15 53.54 79.87 32.27 4160.32 204.15

(a) M=5 (b) M=10 (c) M=15
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Figure 3.  The convergence process curves of IGD values obtained by five algorithm on DTLZ2.
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where “avg.rank” represents the average rank of each algorithm, “rank” is the overall rank of five algorithms in 
average performance.

Basing from the IGD results of DTLZ test instances shown in Table 5, we can find that the proposed MOIFF 
shows the best overall performance on DTLZ2 and DTLZ4 problems, compared with the four other MaOEAs. 
For the DTLZ1 problem, MOEA/D obtains the smallest IGD value on the fifteen-objective test instance, RVEA 
performs best on the three-objective test instance, while MOIFF works best on the five-, eight-, and ten-objective 
test instances. For DTLZ3, MOIFF has obvious advantages over the four other algorithms on the remaining test 
instances, and MOIFF is slightly worse than the four other algorithms on the three-objective test instance. For 
DTLZ5, NSGA-III achieves the best results on the three-objective test instance, whereas MOEA/D works best 
on the five-, eight-, ten-, and fifteen-objective test instances. The overall performance of MOIFF is significantly 

Figure 4.  The convergence process curves of HV values obtained by five algorithm on DTLZ2.
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Figure 5.  The convergence process curves of IGD values obtained by five algorithm on DTLZ3.
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Figure 6.  The convergence process curves of HV values obtained by five algorithm on DTLZ2.
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Table 9.  The success rate of the five algorithms on the DTLZ test suite with different numbers of objectives 
(/%).

Text suite M Convergence accuracy NSGA-III MOEA/D RVEA ARMOEA MOIFF

DTLZ1

3 e−3 0 0 0 0 70.00

5 e−3 0 0 0 0 76.67

8 e−2 86.67 100 100 96.67 100

10 e−2 0 0 0 0 86.67

15 e−2 100 100 100 100 100

DTLZ2

3 e−2 100 100 100 100 100

5 e−2 0 0 0 0 100

8 e−2 0 0 0 0 93.33

10 e−2 0 0 0 0 10.00

15 e−2 0 0 0 0 63.33

DTLZ3

3 e−3 0 0 0 0 6.67

5 e−2 0 0 0 0 73.33

8 e−2 0 0 0 0 20.00

10 e−2 0 0 0 0 43.33

15 e−1 0 46.67 100 100 100

DTLZ4

3 e−3 0 0 0 0 46.67

5 e−2 0 0 0 0 76.67

8 e−2 0 0 0 0 36.67

10 e−2 0 0 0 0 70.00

15 e−2 0 0 0 0 6.67

DTLZ5

3 e−3 6.67 0 0 100 6.67

5 e−2 73.33 100 0 100 80.00

8 e−2 0 100 0 46.67 13.33

10 e−2 0 100 0 53.55 10.00

15 e−2 0 100 0 33.33 3.33

DTLZ6

3 e−3 0 0 0 100 0

5 e−2 23.33 100 0 86.67 93.33

8 e−2 0 100 0 50.00 0

10 e−2 0 100 0 53.33 0

15 e−2 0 100 0 50.00 0

DTLZ7

3 e−2 93.33 0 0 36.67 13.33

5 e−1 100 100 100 100 100

8 e−1 100 0 0 50.00 43.33

10 e−1 66.67 0 0 30.00 0

15 e + 0 100 100 100 100 100

(a) DTLZ2 M=5 (b) DTLZ2 M=10 (c) DTLZ2 M=15
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Figure 7.  The box plots of HV values obtained by five algorithm on DTLZ2 over 30 runs.
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outperformed by NSGA-III and ARMOEA. For DTLZ6, the performance obtained by each algorithm is similar 
on all DTLZ5 instances. For DTLZ7, MOEA/D obtains the smallest IGD value on the fifteen-objective test 
instance, ARMOEA performs best on the five-objective test instance, and NSGA-III works best on the remaining 
test instances. According to the Table 7, the overall performance of MOIFF is significantly outperformed by the 
other competitors in terms of IGD is the best.

The HV results of DTLZ test instances are listed in Table 6. MOIFF can achieve the best results on all DTLZ 
instances except for ten- and fifteen-objective DTLZ instances. According to Table 7, we can see that, compared 
with the competitors, the overall performance of MOIFF over all test instances in terms of HV is the best.

(2) Verification of the effectiveness of MOIFF in convergence speed

To compare the complexity of each algorithm more intuitively, Table 8 records the random respond time of 
each algorithm on each test instance, where the parameters of each algorithm are set as above.

Seen from the Table 8, we can find that RVEA needs the shortest run time on each test instance, the respond 
time of ARMOEA is longest on each test instance, and MOIFF needs the longer run time than NSGA-III and 
MOEAD on each test instance.

In order to intuitively compare the convergence process of each algorithm, Figs. 3, 4, 5 and 6 shows the itera-
tive process curves of each algorithm, where parameters of each algorithm are set as above. We can find that 
MOIFF is excellent in the convergence speed.

(3) Verification of the effectiveness of MOIFF in convergence stability

In order to compare the stability of each algorithm, we show the success rate of each algorithm in Table 9, 
where the success rate means the times of each algorithm reaching the preset IGD convergence accuracy in 30 
independent experiments. Form Table 8, we can see that, MOIFF obtains the optimal success rate of 22 out of 
35 test instances, which indicates that MOIFF is excellent in convergence stability.

To further visually compare the stability of each algorithm, Figs. 7 and 8 show the box plots of statistical 
values of IGD and HV obtained by the above five algorithms over 30 runs. Limited to the length of the paper, we 
only select the IGD values obtained by the five algorithms on the DTLZ2 and the HV values obtained by the five 
algorithms on the DTLZ3 to draw the box plots. We can see that MOIFF is the most stable compare to the other 
4 algorithms for HV. For five- and ten-objective DTLZ3, the stability of IGD values obtained by IFF is slightly 
inferior to the other algorithms, but its IGD value is significantly best.

Results on WFG test suite. Comparison results of MOIFF with the four other MaOEAs in terms of IGD 
values on the WFG test suite are listed in Table  10. MOIFF is significantly outperformed by the four other 
MOEAs on the WFG4, WFG5, WFG6, WFG7, WFG8 and WFG9 instances in terms of IGD. For WFG1, RVEA 
obtains the smallest IGD value on the fifteen-objective test instance, ARMOEA performs best on the eight-
objective test instance, and MOIFF works best on the remaining test instances. For WFG2, RVEA performs best 
on the five-objective test instance, and MOIFF works best on the remaining test instances. For WFG3, except 
for the three-objective instance, MOIFF can achieve the best performance on the other test instances. MOEA/D 
could obtain the best results on any test instance.

The HV results of the WFG test instances are listed in Table 11. NSGA-III can obtain the best HV values on 
the three-, five-, and fifteen-objective WFG1 instances; the five-objective WFG2 instance; and the eight-objective 
WFG3 instance. MOEA/D only works best on the ten-objective WFG3 instance. RVEA performs best on the 
fifteen-objective WFG5 instance, and the ten- and fifteen-objective WFG9 instances. ARMOEA works best on 
the eight- and ten-objective WFG1 instances, eight-, ten-, and fifteen-objective WFG2 instances, fifteen-objective 

(a) DTLZ3 M=5 (b) DTLZ3 M=10 (c) DTLZ3 M=15
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Figure 8.  The box plots of IGD values obtained by five algorithm on DTLZ3 over 30 runs.
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Table 10.  Average and standard deviation of the IGD values obtained by the five algorithms on the WFG test 
suite with different numbers of objectives.

Text suite M NSGA-III MOEA/D RVEA ARMOEA MOIFF

WFG1

3 1.48E−01 (3.61E−03) + 2.42E−01 (7.46E−03)− 1.74E−01 (1.24E−02) + 1.48E−01 (2.84E−03) + 2.29E−01 (2.92E−02)

5 3.63E−01 (3.59E−03) + 7.03E−01 (1.50E−02) + 3.67E−01 (4.56E−03) + 3.70E−01 (3.14E−03) + 7.78E−01 (1.52E−01)

8 8.78E−01 (2.33E−02) + 1.48E + 00 (5.59E−02) + 9.79E−−01 (3.64E−02) + 8.72E−01 (1.89E−02) + 2.76E + 00 (5.26E−01)

10 9.54E−01 (1.62E−02) + 1.69E + 00 (6.97E−02) + 1.06E + 00 (2.41E−02) + 1.02E + 00 (2.85E−02) + 2.61E + 00 (4.60E−01)

15 2.14E + 00 (4.13E−01) + 2.96E + 00 (2.43E−01) + 1.77E + 00 (8.15E−02) + 1.80E + 00 (4.60E−02) + 6.86E + 00 (8.41E−01)

WFG2

3 1.64E−01 (9.43E−04) + 2.36E−01 (1.52E−02) = 1.81E−01 (4.47E−03) + 1.64E−01 (1.13E−03) + 2.45E−01 (1.37E−02)

5 3.91E−01 (1.57E−03) + 7.82E−01 (1.35E−01)− 3.81E−01 (6.84E−03) + 3.92E−01 (1.98E−03) + 5.90E−01 (2.75E−02)

8 1.03E + 00 (2.03E−01) + 1.70E + 00 (1.78E−02)− 9.89E−01 (3.46E−02) + 9.44E−01 (9.27E−03) + 1.27E + 00 (8.74E−02)

10 1.33E + 00 (1.86E−01) + 1.83E + 00 (1.24E−02)− 1.06E + 00 (3.26E−02) + 1.01E + 00 (1.59E−02) + 1.50E + 00 (8.08E−02)

15 2.13E + 00 (1.39E−01) + 2.55E + 00 (1.84E−02) + 1.87E + 00 (6.72E−02) + 1.72E + 00 (3.47E−02) + 3.66E + 00 (2.36E−01)

WFG3

3 1.02E−01 (1.02E−02) + 1.57E−01 (1.12E−03) = 2.22E−01 (1.23E−02)− 1.15E−01 (7.74E−03) + 1.53E−01 (1.45E−02)

5 4.37E−01 (4.08E−02)− 8.03E−01 (3.75E−01)− 4.38E−01 (9.30E−03)− 4.49E−01 (3.56E−02)− 2.75E−01 (5.93E−02)

8 1.28E + 00 (5.07E−01)− 3.62E + 00 (1.69E−01)− 2.11E + 00 (2.57E−01)− 1.81E + 00 (1.12E−01)− 7.93E−01 (1.74E−01)

10 1.94E + 00 (4.25E−01)− 1.83E + 00 (1.24E−02)− 3.08E + 00 (3.85E−01)− 2.45E + 00 (8.92E−02)− 7.86E−01 (1.12E−01)

15 3.73E + 00  (1.54E + 00)− 9.15E + 00 (2.29E−01)− 6.82E + 00 (1.33E + 00)− 5.59E + 00 (9.67E−02)− 1.82E + 00 (2.84E−01)

WFG4

3 2.21E−01 (7.18E−05)− 2.54E−01 (4.08E−03)− 2.28E−01 (3.34E−03)− 2.21E−01 (9.66E−05)− 5.63E−02 (1.39E−02)

5 9.68E−01 (4.56E−04)− 1.57E + 00 (3.65E−01)− 9.67E−01 (5.65E−04)− 9.67E−01 (3.79E−04)− 1.41E−01 (1.58E−02)

8 2.99E + 00 (1.04E−01)− 6.47E + 00 (3.36E−01)− 2.97E + 00 (9.52E−03)− 2.96E + 00 (3.20E−03)− 6.56E−01 (3.35E−01)

10 4.55E + 00 (1.77E−02)− 8.44E + 00 (4.12E−01)− 4.45E + 00 (2.65E−02)− 4.55E + 00 (9.26E−03)− 8.11E−01 (2.18E−02)

15 9.65E + 00 (3.97E−01)− 1.56E + 01 (2.72E−01)− 9.21E + 00 (9.97E−02)− 9.38E + 00 (3.19E−02)− 1.78E + 00 (1.38E + 00)

WFG5

3 2.30E−01 (3.88E−05)− 2.48E−01 (2.37E−03)− 2.31E−01 (3.77E−04)− 2.30E−01 (4.74E−05)− 1.37E−01 (3.75E−02)

5 9.59E−01 (1.98E−04)− 1.48E + 00 (3.59E−01)− 9.59E−01 (1.92E−04)− 9.59E−01 (1.68E−04)− 1.88E−01 (3.14E−02)

8 2.94E + 00 (1.39E−03)− 6.02E + 00 (2.11E−01)− 2.95E + 00 (8.43E−03)− 2.94E + 00 (1.99E−03)− 5.93E−01 (6.54E−02)

10 4.53E + 00 (3.33E−03)− 7.92E + 00 (2.76E−01)− 4.42E + 00 (2.52E−02)− 4.53E + 00 (7.72E−03)− 8.30E−01 (4.33E−02)

15 9.31E + 00 (1.39E−01)− 1.51E + 01 (1.21E−01)− 9.16E + 00 (5.63E−02)− 9.34E + 00 (5.68E−02)− 3.02E + 00 (1.51E + 00)

WFG6

3 2.34E−01 (9.47E−03)− 2.78E−01 (1.52E−02)− 2.46E−01 (1.17E−02)− 2.40E−01 (8.94E−03)− 1.51E−01 (4.70E−02)

5 9.60E−01 (7.65E−04)− 1.57E + 00 (3.13E−01)− 9.60E−01 (1.12E−03)− 9.59E−01 (6.72E−04)− 2.32E−01 (3.50E−02)

8 2.95E + 00 (4.20E−03)− 6.93E + 00 (7.53E−02)− 2.97E + 00 (1.12E−02)− 2.95E + 00 (3.35E−03)− 9.24E−01 (3.34E−01)

10 4.64E + 00 (4.87E−01)− 9.16E + 00 (1.43E−01)− 4.39E + 00 (2.96E−02)− 4.53E + 00 (9.26E−03)− 8.95E−01 (2.92E−02)

15 1.18E + 01 (8.86E−01)− 1.61E + 01 (2.05E−01)− 9.50E + 00 (3.69E−01)− 9.41E + 00 (3.57E−02)− 3.10E + 00 (1.30E + 00)

WFG7

3 2.21E−01 (4.27E−04)− 2.91E−01
(1.76E−02)− 2.24E−01 (1.58E−03)− 2.21E−01 (1.48E−04)− 2.67E−02 (9.61E−03)

5 9.68E−01 (3.81E−04)− 1.69E + 00 (1.49E−01)− 9.69E−01 (4.68E−04)− 9.69E−01 (6.97E−04)− 8.72E−02 (1.52E−02)

8 2.97E + 00 (5.59E−03)− 7.00E + 00 (1.03E−01)− 2.99E + 00 (1.68E−02)− 2.96E + 00 (4.89E−03)− 7.23E−01 (2.39E−02)

10 4.61E + 00 (2.55E−01)− 9.08E + 00 (2.58E−01)− 4.45E + 00 (2.84E−02)− 4.52E + 00 (1.94E−02)− 8.64E−01 (1.56E−02)

15 9.44E + 00 (3.25E−01)− 1.63E + 01 (8.25E−02)− 9.33E + 00 (6.49E−02)− 9.39E + 00 (4.26E−02)− 3.16E + 00 (7.08E−01)

WFG8

3 2.82E−01 (2.57E−03)− 3.06E−01 (5.35E−03)− 2.92E−01 (3.19E−03)− 2.73E−01 (1.79E−03) = 2.69E−01 (1.20E−02)

5 9.95E−01 (6.40E−03)− 1.33E + 00 (2.75E−01)− 9.86E−01 (8.62E−04)− 9.81E−01 (1.35E−03)− 6.05E−01 (4.21E−02)

8 3.52E + 00 (4.10E−01)− 6.32E + 00 (2.43E−01)− 3.05E + 00 (2.54E−02)− 3.02E + 00 (3.03E−02)− 2.16E + 00 (4.80E−01)

10 4.94E + 00 (3.78E−01)− 8.62E + 00 (2.94E−01)− 4.40E + 00 (6.03E−02)− 4.63E + 00 (4.38E−02)− 3.08E + 00 (8.23E−01)

15 1.11E + 01 (7.78E−01)− 1.46E + 01 (1.35E + 00)− 9.37E + 00 (4.82E−01)− 9.39E + 00 (4.23E−02)− 6.16E + 00 (7.03E−01)

WFG9

3 2.23E−01 (1.12E−03)− 2.68E−01 (2.91E−02)− 2.24E−01 (2.05E−03)− 2.25E−01 (2.17E−02)− 9.18E−02 (5.04E−02)

5 9.39E−01 (3.29E−03)− 1.39E + 00 (1.41E−01)− 9.48E−01 (1.26E−03)− 9.47E−01 (2.11E−03)− 3.23E−01 (3.64E−02)

8 2.93E + 00 (1.01E−02)− 6.41E + 00 (1.62E−01)− 2.95E + 00 (1.89E−02)− 2.93E + 00 (5.57E−03)− 1.03E + 00 (1.27E−01)

10 4.47E + 00 (1.23E−01)− 8.61E + 00 (6.55E−01)− 4.32E + 00 (3.44E−02)− 4.50E + 00 (1.38E−02)− 1.58E + 00 (4.21E−01)

15 9.11E + 00 (3.59E−01)− 1.46E + 01 (2.03E + 00)− 9.17E + 00 (8.39E−02)− 9.12E + 00 (3.88E−02)− 4.36E + 00 (3.85E−01)

+/=/− 11/0/34 5/2/38 10/0/35 11/1/33
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Table 11.  Average and standard deviation of the HV values obtained by the five algorithms on the WFG test 
suite with different numbers of objectives.

Text suite M NSGAIII MOEA/D RVEA ARMOEA MOIFF

WFG1

3 9.43E−01 (4.52E−03) + 9.01E−01 (1.44E−02)− 9.38E−01 (2.74E−03) = 9.43E−01 (7.00E−04) + 9.37E−01 (1.52E−02)

5 9.98E−01 (1.44E−04) + 9.49E−01 (1.58E−02)− 9.98E−01 (1.22E−04) + 9.94E−01 (5.00E−03) + 9.72E−01 (1.36E−02)

8 9.99E−01 (3.14E−04) + 8.27E−01 (6.78E−02) = 9.96E−01 (3.75E−03) + 1.00E + 00 (4.23E−05) + 8.66E−01 (6.33E−02)

10 9.99E−01 (2.64E−04) + 7.35E−01 (1.05E−01)− 9.97E−01 (5.13E−04) + 1.00E + 00 (2.67E−04) + 9.29E−01 (3.31E−02)

15 9.99E−01 (7.15E−04) + 4.30E−01 (9.42E−02)− 9.86E−01 (3.57E−02) + 9.99E−01 (5.81E−04) + 8.48E−01 (7.10E−02)

WFG2

3 9.31E−01 (5.84E−04)− 9.14E−01 (5.26E−03)− 9.28E−01 (8.48E−04)− 9.31E−01 (8.75E−04)− 9.40E−01 (3.66E−03)

5 9.97E−01 (4.43E−04) + 9.33E−01 (5.96E−02)− 9.96E−01 (4.76E−04) + 9.92E−01 (5.01E−03) + 9.76E−01 (3.09E−03)

8 9.97E−01 (1.18E−03) + 9.37E−01 (4.13E−03)− 9.85E−01 (4.88E−03)− 9.98E−01 (8.24E−04) + 9.92E−01 (2.62E−03)

10 9.98E−01 (1.04E−03) + 9.41E−01 (2.92E−03)− 9.89E−01 (2.61E−03)− 9.98E−01 (6.76E−04) + 9.96E−01 (1.15E−03)

15 9.94E−01 (6.55E−03) + 9.26E−01 (7.65E−03)− 9.73E−01 (6.91E−03)− 9.97E−01 (1.47E−03) + 9.92E−01 (2.37E−03)

WFG3

3 3.90E−01 (3.83E−03)− 3.65E−01 (7.90E−04)− 3.41E−01 (6.28E−03)− 3.81E−01 (3.31E−03)− 5.57E−01 (6.94E−03)

5 1.77E−01 (1.21E−02)− 7.31E−02 (5.56E−02)− 1.79E−01 (7.41E−03)− 1.66E−01 (1.18E−02)− 3.98E−01 (1.56E−02)

8 6.35E−02 (2.08E−02)− 0.00E + 00 (0.00E + 00)− 0.00E + 00 (0.00E + 00)− 2.61E−02 (2.40E−02)− 2.54E−01 (1.39E−02)

10 6.57E−03 (1.12E−02)− 9.41E−01 (2.92E−03) + 0.00E + 00 (0.00E + 00)− 0.00E + 00 (0.00E + 00)− 2.19E−01 (1.43E−02)

15 0.00E + 00 (0.00E + 00)− 0.00E + 00 (0.00E + 00)− 0.00E + 00 (0.00E + 00)− 0.00E + 00 (0.00E + 00)− 1.28E−01 (1.52E−02)

WFG4

3 5.59E−01 (2.59E−04)− 5.44E−01 (9.99E−04)− 5.55E−01 (1.09E−03)− 5.59E−01 (1.78E−04)− 7.30E−01 (4.41E−03)

5 8.09E−01 (8.55E−04)− 6.77E−01 (1.07E−01)− 8.08E−01 (8.38E−04)− 8.04E−01 (5.03E−03)− 8.88E−01 (3.03E−03)

8 9.11E−01 (1.85E−02)− 4.88E−01 (4.38E−02)− 9.15E−01 (1.98E−03)− 9.17E−01 (1.40E−03)− 9.50E−01 (8.53E−03)

10 9.59E−01 (6.08E−03)− 4.92E−01 (4.43E−02)− 9.60E−01 (1.82E−03)− 9.61E−01 (1.14E−03)− 9.80E−01 (1.03E−03)

15 8.82E−01 (3.46E−02)− 3.35E−01 (4.29E−02)− 9.80E−01 (3.05E−03) = 9.85E−01 (1.67E−03) = 9.73E−01 (2.19E−02)

WFG5

3 5.18E−01 (2.70E−05)− 5.03E−01 (5.07E−03)− 5.17E−01 (2.48E−04)− 5.18E−01 (8.94E−05)− 6.93E−01 (6.47E−03)

5 7.61E−01 (3.85E−04)− 6.55E−01 (8.20E−02)− 7.61E−01 (3.34E−04)− 7.57E−01 (5.02E−03)− 8.45E−01 (3.40E−03)

8 8.63E−01 (3.14E−04)− 5.29E−01 (1.47E−02)− 8.62E−01 (4.47E−04)− 8.61E−01 (1.07E−03)− 8.96E−01 (2.10E−03)

10 9.04E−01 (3.42E−04)− 5.48E−01 (1.61E−02)− 9.03E−01 (3.76E−04)− 9.01E−01 (4.27E−03)− 9.21E−01 (1.36E−03)

15 9.00E−01 (3.37E−02) + 3.43E−01 (5.63E−02)− 9.17E−01 (1.74E−04) + 9.15E−01 (5.49E−04) + 8.76E−01 (3.01E−02)

WFG6

3 5.14E−01 (1.47E−02)− 4.90E−01 (1.79E−02)− 5.02E−01 (1.56E−02)− 5.05E−01 (1.34E−02)− 6.81E−01 (1.78E−02)

5 7.46E−01 (9.83E−03)− 6.08E−01 (7.28E−02)− 7.45E−01 (1.77E−02)− 7.38E−01 (1.08E−02)− 8.23E−01 (1.54E−02)

8 8.52E−01 (1.23E−02)− 2.89E−01 (3.17E−02)− 8.44E−01 (1.90E−02)− 8.40E−01 (1.83E−02)− 8.66E−01 (2.77E−02)

10 8.72E−01 (2.58E−02)− 2.86E−01 (2.41E−02)− 8.76E−01 (1.78E−02)− 8.72E−01 (1.52E−02)− 8.97E−01 (2.00E−02)

15 6.95E−01 (4.64E−02)− 1.18E−01 (3.33E−02)− 7.53E−01 (6.15E−02)− 8.87E−01 (2.06E−02) + 8.63E−01 (4.28E−02)

WFG7

3 5.58E−01 (1.91E−04)− 5.32E−01 (3.68E−03)− 5.55E−01 (7.58E−04)− 5.58E−01 (2.24E−04)− 7.31E−01 (3.05E−03)

5 8.10E−01 (5.15E−04)− 6.63E−01 (4.89E−02)− 8.08E−01 (5.19E−04)− 8.02E−01 (5.05E−03)− 8.88E−01 (2.54E−03)

8 9.19E−01 (1.30E−03)− 3.64E−01 (2.01E−02)− 9.09E−01 (2.60E−03)− 9.16E−01 (1.49E−03)− 9.50E−01 (1.89E−03)

10 9.63E−01 (1.06E−02)− 3.67E−01 (1.45E−02)− 9.58E−01 (1.99E−03)− 9.58E−01 (4.98E−03)− 9.75E−01 (1.37E−03)

15 9.62E−01 (2.92E−02) + 1.60E−01 (8.80E−03)− 9.63E−01 (2.58E−02) + 9.85E−01 (1.95E−03) + 9.38E−01 (1.30E−02)

WFG8

3 4.73E−01 (1.91E−03)− 4.64E−01 (2.33E−03)− 4.72E−01 (1.40E−03)− 4.78E−01 (1.18E−03)− 6.51E−01 (5.82E−03)

5 6.98E−01 (2.17E−03)− 5.93E−01 (1.05E−01)− 7.02E−01 (1.25E−03)− 7.02E−01 (5.10E−03)− 7.66E−01 (3.83E−03)

8 7.62E−01 (3.98E−02) = 8.94E−02 (5.32E−02)− 7.65E−01 (5.85E−02) = 8.25E−01 (2.92E−02) + 7.73E−01 (2.28E−02)

10 8.34E−01 (3.15E−02) = 7.90E−02 (4.62E−02)− 7.99E−01 (7.39E−02)− 9.21E−01 (1.97E−02) + 8.38E−01 (2.46E−02)

15 5.63E−01 (9.70E−02)− 1.11E−01 (2.31E−01)− 6.22E−01 (1.37E−01)− 9.45E−01 (2.64E−02) + 8.29E−01 (7.94E−03)

WFG9

3 5.36E−01 (2.32E−03)− 4.96E−01 (2.61E−02)− 5.38E−01 (1.66E−03)− 5.32E−01 (2.28E−02)− 7.07E−01 (1.91E−02)

5 7.67E−01 (4.04E−03)− 6.10E−01 (1.00E−01)− 7.72E−01 (2.88E−03)− 7.50E−01 (8.16E−03)− 8.47E−01 (6.35E−03)

8 8.23E−01 (5.90E−02)− 4.14E−01 (7.76E−02)− 8.48E−01 (1.63E−02)− 8.20E−01 (2.52E−02)− 8.57E−01 (4.22E−02)

10 8.70E−01 (5.53E−02) = 3.66E−01 (1.40E−01)− 8.88E−01 (3.27E−02) = 8.45E−01 (3.61E−02)− 8.75E−01 (4.46E−02)

15 8.07E−01 (6.83E−02) = 2.04E−01 (1.67E−01)− 8.36E−01 (5.40E−02) + 8.18E−01 (4.20E−02) = 7.99E−01 (5.41E−02)

+/=/− 11/4/30 1/1/43 7/4/34 15/2/18
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WFG4 instance; the fifteen-objective WFG6 instance; the fifteen-objective WFG7 instance; and the eight-, ten-, 
and fifteen-objective WFG8 instances. Among the 45 test instances, MOIFF obtains the smallest HV values on 
24 test instances.

Figure 9 shows the parallel coordinates of the final non-dominated solutions obtained by these five algorithms 
on the five-objective WFG8 test instance. These plots clearly demonstrate that the PF obtained by MOIFF is close 
to the true PF and maintains a good distribution.

Conclusions
A novel algorithm named MOIFF is proposed in this paper for handling MaOPs to improve the comprehensive 
performance in terms of convergence and diversity. FF with excellent convergence performance is employed to 
serve as the optimization strategy of MOIFF. In order to handle MaOPs effectively, FF has been tailored from 
the following aspects in this paper. First, to distinguish the quality of each individual in MaOPs, we propose a 
novel individual fitness assessment approach based on cumulative ranking value. Second, considering the char-
acteristics of MaOPs, we propose a novel method based on individual cumulative ranking value to constitute and 
update the global memory and local memory of each individual and a hybrid search mode combining subspace 
search and full space search to update individuals at the stages of soil optimization and soil fusion. In addition, 
we improve the dual aggregation function-based environmental selection. Finally, the results on the DTLZ and 
WFG test suites show that MOIFF has excellent convergence and diversity compared with four state-of-the art 
many-objective evolutionary algorithms.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.

Received: 4 November 2021; Accepted: 27 January 2022

References
 1. Ammara, M. et al. Design of backtracking search heuristics for parameter estimation of power signals. Neural Comput. Appl. 5, 

1–18 (2020).
 2. Muhammad, A. Z. R. et al. Bio-inspired computational heuristics for parameter estimation of nonlinear Hammerstein controlled 

autoregressive system. Neural Comput. Appl. 11, 1–20 (2016).

Figure 9.  Parallel coordinates of final non-dominated solutions obtained by five algorithms on the five-
objective WFG8 test suite.



23

Vol.:(0123456789)

Scientific Reports |         (2022) 12:2545  | https://doi.org/10.1038/s41598-022-06329-x

www.nature.com/scientificreports/

 3. Lygoe, R., Cary, M. & Fleming, P. A real-world application of a many-objective optimization complexity reduction process. Lect. 
Notes Comput. Sci. 78(11), 641–655 (2013).

 4. Ye, T., Shangshang, Y. & Xingyi, Z. An evolutionary multiobjective optimization based fuzzy mothod for overlapping community 
detection. IEEE Trans. Fuzzy Syst. 28(11), 2841–2855 (2020).

 5. Bader, J. & Zitzler, E. HypE: An algorithm for fast hypervolume-based many-objective optimization. Evol. Comput. 19(1), 45–76 
(2011).

 6. Yang, S. et al. A grid-based evolutionary algorithm for many-objective optimization. IEEE Trans. Evol. Comput. 17(5), 721–736 
(2013).

 7. Yuan, Y., Xu, H., Wang, B. An improved NSGA-III procedure for evolutionary many-objective optimization. In Conference on 
Genetic & Evolutionary Computation, Association for Computing Machinery 661–668 (2014).

 8. Zhang, E. Z. & Chen, Q. W. Improved r-dominance-based particle optimization for multi-objective optimization. Control Theory 
Appl. 32(5), 623–630 (2015).

 9. Cheng, R., Jin, Y. & Olhofer, M. A reference vector guided evolutionary algorithm for many-objective optimization. IEEE Trans. 
Evol. Comput. 20(5), 773–791 (2016).

 10. Zhu, Z. L., Li, Z. & Zhao, R. L. Many-objective optimization algorithm based on linear weighted minimal/maximal dominance. J. 
Comput. Appl. 37(10), 2823–2827 (2017).

 11. Sun, Y., Yen, G. G. & Zhang, Y. IGD indicator-based evolutionary algorithm for many-objective optimization problems. IEEE 
Trans. Evol. Comput. 23(2), 173–187 (2018).

 12. Dabba, A., Tari, A. & Zouache, D. Multiobjective artificial fish swarm algorithm for multiple sequence alignment. INFOR Inf. Syst. 
Oper. Res. 58(1), 38–59 (2019).

 13. Zhao, H. & Zhang, C. A decomposition-based many-objective artificial bee colony algorithm with reinforcement learning. Appl. 
Soft Comput. 86, 105879 (2019).

 14. Wu, Y., Wang, X. & Fu, Y. Many-objective brain storm optimization algorithm. IEEE Access 7, 186572–186586 (2019).
 15. Zhang, H. P. & Su, S. H. A hybrid multi-agent coordination optimization algorithm. Swarm Evol. Comput. 51, 10060 (2019).
 16. Guo, Y., Tian, X. & Fang, G. Many-objective optimization with improved shuffled frog leaping algorithm for inter-basin water 

transfers. Adv. Water Resour. 138, 1–63 (2020).
 17. Liu, Y., Tian, L. & Fan, L. The hybrid bacterial foraging algorithm based on many-objective optimizer. Saudi J. Biol. Sci. 27(12), 

3743–3752 (2020).
 18. Uzman, P., Irfan, Y. & Ali, A. A. Many-objective BAT algorithm. PLoS One 15(6), 1–20 (2020).
 19. Rodrigues, D., Albuquerque, V. & Papa, J. P. A multi-objective artificial butterfly optimization approach for feature selection. Appl. 

Soft Comput. 94, 106442 (2020).
 20. Li, F., Wu, Z. H. & Liu, K. R. R2 indicator and objective space partition based many-objective particle swarm optimizer. Control 

Dection 36(9), 2085–2094 (2020).
 21. Deb, K., Pratap, A. & Agarwal, S. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 

182–197 (2002).
 22. Das, A. K., Nikum, A. K. & Krishnan, S. V. Multi-objective Bonobo Optimizer (MOBO): An intelligent heuristic for multi-criteria 

optimization. Knowl. Inf. Syst. 62(11), 4407–4444 (2020).
 23. Zhang, Q. & Hui, L. MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 

712–731 (2007).
 24. Cui, Z. H., Zhang, M. Q. & Wang, H. Hybrid many-objective cuckoo search algorithm with Lévy and exponential distributions. 

Memet. Comput. 12(3), 251–265 (2020).
 25. Wang, Y. J. & Chen, Y. An improved farmland fertility algorithm for global function optimization. IEEE Access 8, 111850–111874 

(2020).
 26. Deb, K., Thiele, L., Laumanns, M. & Zitzler, E. Scalable Test Problems for Evolutionary Multiobjective Optimization, Evolutionary 

Multiobjective Optimization 105–145 (Theoretical Advances and Applications, 2005).
 27. Huband, S., Hingston, P. & Barone, L. A review of multiobjective test problems and a scalable test problem toolkit. IEEE Trans. 

Evol. Comput. 10(5), 477–506 (2006).
 28. Deb, K. & Jain, H. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting 

approach, part I: Solving problems with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2014).
 29. Tian, Y., Cheng, R. & Zhang, X. An indicator-based multiobjective evolutionary algorithm with reference point adaptation for 

better versatility. IEEE Trans. Evol. Comput. 22(4), 609–622 (2018).

Author contributions
All authors contributed to the manuscript.

Funding
This work was supported by the Project of Scientific and Technological Innovation Development of Jilin in China 
under Grant 20210103090, and the Science and Technology Research Project of Education Department of Hubei 
Province in China under Granted Q20191313.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to P.G.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

www.nature.com/reprints


24

Vol:.(1234567890)

Scientific Reports |         (2022) 12:2545  | https://doi.org/10.1038/s41598-022-06329-x

www.nature.com/scientificreports/

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2022

http://creativecommons.org/licenses/by/4.0/

	An improved farmland fertility algorithm for many-objective optimization problems
	Methods
	Farmland fertility algorithm. 
	A representative many-objective processing approach. 

	Proposed method
	Novel individual fitness assessment approach based on cumulative ranking value. 
	Mechanism of updating global memory and local memory. 
	New individual-updating mechanism for soil optimization. 
	A new individual-updating mechanism for soil fusion. 
	Adaptive environmental selection. 
	Hybrid subspace-full space search mode. 
	Conversion condition between subspace and full-space search modes. 
	Description of subspace search mode. 

	Complexity analysis. 

	Results and discussion
	Test problems. 
	Algorithm and parameter. 
	Results on DTLZ test suite. 
	Results on WFG test suite. 

	Conclusions
	References


