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North to south gradient and local 
waves of influenza in Chile
Christian Garcia‑Calavaro1*, Lee H. Harrison2, Darya Pokutnaya3, Christina F. Mair4, 
Maria M. Brooks3 & Wilbert van Panhuis3

Influenza seasonality is caused by complex interactions between environmental factors, viral 
mutations, population crowding, and human travel. To date, no studies have estimated the 
seasonality and latitudinal patterns of seasonal influenza in Chile. We obtained influenza‑like illness 
(ILI) surveillance data from 29 Chilean public health networks to evaluate seasonality using wavelet 
analysis. We assessed the relationship between the start, peak, and latitude of the ILI epidemics using 
linear and piecewise regression. To estimate the presence of incoming and outgoing traveling waves 
(timing vs distance) between networks and to assess the association with population size, we used 
linear and logistic regression. We found a north to south gradient of influenza and traveling waves 
that were present in the central, densely populated region of Chile. Our findings suggest that larger 
populations in central Chile drive seasonal influenza epidemics.

Human influenza viruses persist as important disease-causing agents worldwide. Annually, influenza epidem-
ics affect 5–10% of the world population and cause 250,000–500,000 influenza-associated  deaths1. Influenza 
seasonality is influenced by complex interactions of biological, environmental, and social factors including viral 
mutations, temperature, humidity, rainfall, population crowding, and human  travel2–5. Temperate regions expe-
rience peaks in influenza cases in the winter while tropical and subtropical areas are affected year-round with 
peaks occurring during the rainy  season1,6. The virus travels from reservoirs from tropical to temperate regions 
and from high to low populated areas following human  movement5,7–13. Identification of influenza seasonality is 
crucial for implementation of effective control strategies that can be tailored to local and national  patterns5,7,14.

Previous influenza timing studies have used laboratory surveillance, mortality data, and symptomatic surveil-
lance of influenza-like illness (ILI). While ILI surveillance has a high sensitivity and low specificity, it is a useful 
measure to describe influenza seasonality and identify influenza population  patterns15–21. National surveillance 
is established globally; however, estimating influenza dynamics within countries requires substantial subnational 
and local datasets. High resolution data on the local level is essential to inform prevention measures such as 
vaccination campaigns and provider preparedness.

The majority of evidence supporting influenza timing comes from the developed countries and there are no 
studies of seasonal influenza timing in Chile. Chowell and colleagues found a south to north pattern of hospitali-
zations for H1N1 pandemic strain in 2009 in Chile that was later confirmed through mathematical simulations 
of the same  data22,23. Influenza surveillance was enhanced after the 2009 pandemic with year-round surveillance 
of ILI in emergency departments (EDs), laboratory surveillance by sentinel providers, and surveillance of severe 
respiratory disease hospitalizations in public  hospitals24. Here, we aimed to estimate the seasonality and spatial 
dependencies of influenza in Chile using ILI data reported in EDs.

Results
Hospitals included. From the 78 large and medium size hospitals in Chile, we excluded three hospitals 
from Santiago and one from Valparaiso with < 75% of daily ED data reported for the period between 2011 and 
2016. Six pairs of hospitals from Santiago were combined, four corresponded to the merging of a pediatric and 
adult hospital (S2). We included 65 hospitals from the 15 regions and the 29 Chilean public health networks 
(Fig. 1).

A total of 242,982 ILI cases were reported from January 2010 to December 2016. Sixty-five percent of the days 
(n = 1.782.470) reported zero cases and 34% (n = 959,792) had ≥ 1 case reported. One percent (n = 1861) were 
days with missing data that ranged from 0 to 5% of the time series in different hospitals.
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Influenza-like illness rates presented a cyclic pattern and synchrony across hospitals specially in 2010 with a 
spread pattern in the following years (Fig. 1).

Predominant annual seasonality. We discovered a predominant annual seasonality for ILI rates in 
Chile. The annual pattern of ILI was present in the original time series and in the wavelet-reconstructed data 
(Fig. 2a). The local wavelet power spectrum showed an annual seasonality within periods from 40 to 64 weeks 
and the highest average power for period of 50 weeks (Fig. 2b and c, respectively).

The best seasonality, calculated as the 95th percentile of power, was observed between 46 and 53 weeks for all 
hospitals, health networks, and Chile overall (Figs. 2, 3, and S3 respectively)). Consequently, we used an annual 
periodicity from 46 to 53 weeks to filter the Morlet wavelet from each health network.

Start and peak day of seasonal influenza in health networks. The median start and peak of the 
epidemic for all health networks and years was May 11th and August 4th, respectively (start day 131 of each year; 
IQR 117, 152 and peak day 217; IQR 200, 237, respectively). The median duration from start to peak was 84 days 
(IQR 82, 88), equivalent of 12 weeks or three months.

Despite the variability of start and peak day between and within health networks, there was consistency of 
timing of ILI across Chile. The duration of the epidemic was constant across health networks and latitudes (S4).

Influenza-like illness epidemics tended to start earlier than the previous year between 2010 and 2013, but 
from 2014 the start was delayed in each successive year. No significant association was found between the peak 
of the epidemic and predominant strain in the country for each year (S5).

Population and a north to south pattern associated to early annual epidemics. The univari-
ate analysis showed that as latitude increased from north to south, the start and peak of the influenza season 
were delayed (Fig. 4). While there was a significant association between latitude and timing in the central zone 
of Chile (Fig. 4c and d), no association was present in the north or south of the country. There was a positive 
association between population size and earlier start and peak time of influenza. Given that influenza seasons 
vary annually, years was analyzed as a categorical variable and showed a significant association between start and 
peak day. Similarly, each year had a predominant strain in the country. The H3N2 strain had an earlier peak day 
and a shorter start-peak time compared to H1N1 strain. The presence of an airport in the territory of a health 
network was not associated with influenza timing (S6).

The best multivariate model for the outcome start day included nine variables: latitude, population, pres-
ence of airport, and years 2010 − 2016 encoded as dummy variables  (R2 = 0.24; P < 0.01) (Table 1). A negative 

Figure 1.  Hospital location and ILI rates, Chile 2010–2016. Left panel. Location of hospitals included through 
the Chilean territory. Right panel: Y axis, represent Hospitals ordered by latitude corresponding to the grouped 
zones marked by horizontal lines. X axis, time in days from 2010 to 2016. Gradient colors represent rates of ILI 
per 100,000 population. Z-score of log10 transformed shown for better  visualization24,27.
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Figure 2.  Detrended ILI incidence rate, wavelet reconstruction, local wavelet power spectrum and average 
power per period, Chile 2010–2016. (a) Detrended ILI incidence rate time series and wavelet reconstructed 
time series (red). Wavelet reconstruction using periods between 46 − 53 weeks, for Chile 2010–2016. (b) Local 
wavelet power spectrum of ILI rates for periods and time in weeks in Chile between 2010–2016. Significant 
power against white noise presented inside black contour. Ridge shown in white. A significant and high power 
was present through the complete time series for periods between 40 − 60. (c) Average power for periods, 
representing the average of local power from panel b with significance levels < 0.01 (red) and < 0.05 (blue)24.

Figure 3.  Power per period in hospitals and 95th percentile of power z-score across period and hospitals, 
Chile 2010–2016. (a) Power per each of the 65 hospitals presented across periods. Dark red represent higher 
power, yellow represents low power and fit, white spaces denote non-significant power compared to white 
noise. (b) Cumulative power z-score to calculate the periods with best fit across hospitals, represented as the 
95th percentile of cumulative power. Power for each hospital were normalized, log transform, subtracted from 
the mean, and divided by the standard deviation. The sum of z-score for each period was plotted with the 95th 
percentile (dotted lines in both a and b)24,27.
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association was found between start date and population size (β = − 0.3; 95% CI, − 0.5 − −0.1; P < 0.01). Health 
networks with a nearby airport was associated with an estimated delay of 9.5 days for the start of an ILI epidemic 
(95% CI, 0.84 − 18.19; P < 0.05). A north to south pattern was found across the country, for one degree increase in 
latitude there was one day delay on the start of ILI (β = 0.903; 95% CI 0.315 − 1.491; P < 0.01) (Eq. 1 and Table 2).

(1)
Sd = 170.9+ 0.9(Lat)− 0.31

(

Pop10, 000
)

+ 9.5
(

Airport
)

+ 49.7(Y2010)

+ 30.5(Y2011)+ 12.9(Y2012)+ 14.8(Y2014)+ 23.5(Y2015)+ 23.3(Y2016)

Figure 4.  Start and peak of ILI vs latitude, 29 health networks in Chile, 2010–2016. Linear model for start day 
and peak day vs latitude. (a) and (b). all health networks; c and d health networks classified by zone: north, 
center, and south. Red lines: p-value < 0.05, black: p-value > 0.05. Vertical grey zones denote 95% CI, horizontal 
grey: range of start days for de period for each health network. Black circles size represents population size and 
black circle position, median start (panels a and c) or peak day (panels b and d). (a) Linear model for start day 
versus latitude denotes a slight, but significant north to south gradient: β = 0.99, P = 0.003,  R2 = 0.04. (b) Linear 
model for peak day versus latitude denotes a slight, but significant north to south gradient: β = 0.8, P = 0.002, 
 R2 = 0.04. (c) Linear model for start day versus latitude by zone shows a significant north to south gradient in 
the center zone of the country. North zone linear regression (top): β = 0.5, P = 0.75,  R2 = 0.003. Center zone linear 
regression (middle): β = 3.49, P < 0.01,  R2 = 0.09. Southern zone linear regression (bottom): β = 1.49, P = 0.33, 
 R2 = 0.02. D) Linear model for peak day versus latitude by zone shows a significant north to south gradient in 
the center zone of the country. North zone linear regression (top): β = 0.8, P = 0.554,  R2 = 0.01. Center zone linear 
regression (middle): β = 3.65, P < 0.01, R2 = 0.11. Southern zone linear regression (bottom): β = − 1.8, P = 0.08, 
 R2 = 0.0524,27.

Table 1.  Multivariate regression model selection for influenza-like illness start day and peak day, using best 
subset method. ‡  Best model for all possible models with the given numbers of variables using RSS. *Year was 
considered as 6 dummy variables and was forced in. Strain was excluded given the high correlation with year. †  
Selected peak day model. ††  Selected start day model.

Model‡ # of Variables Variables used*

Start day models Peak day models

R2 Adjusted  R2 Cp BIC R2 Adjusted  R2 Cp BIC

A 7 year, latitude 0.24 0.21 16.0 − 13.0 0.41 0.39 11.0 − 65.0

B† 8 year, latitude, population 0.26 0.23 12.0 − 14.0 0.43 0.40 8.4 − 65.0

C†† 9 year, latitude, population, airport 0.28 0.25 9.0 − 14.0 0.43 0.40 9.0 − 61.0
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where Sd = Start day from January 1st from each year; Lat = South Latitude; Airport = Presence of an airport; 
Y = Dummy for the year noted.

The best model for ILI peak included eight variables: latitude, population and year as a dummy variable 
(R2 = 0.40; P < 0.01) (Table 1). A north to south pattern was found for latitude (β = 0.780; 95% CI, 0.346 − 1.215; 
P < 0.01) and a negative association between ILI peak and population size (β = − 0.16, 95% CI − 0.366 to − 0.016; 
P < 0.05) (Eq. 2 and Table 2).

where  Pd = Peak day from January 1st from each year; Lat = South Latitude; Y = Dummy for the year noted.

Local travelling waves. We used a second-degree local polynomial regression model (LOESS) to deter-
mine the distance limit for the local traveling wave models. We found a descending Spearman’s correlation of 
phase angles up to 1250 km that disappeared for larger distances (Fig. 5a) in both the reconstructed wavelet 
analysis and in the original rate time series data (S7). As a result, we included health networks closer than 
1250 km in each model of local traveling waves.

There were 11 health networks with outgoing traveling waves and 10 that presented incoming waves located 
at the center and southern regions of Chile (P < 0.0017) (Fig. 5b and c). Local traveling waves were associated 
with population size after adjusting for latitude. For every 10,000 individuals, a health network had a 23% greater 
odds of presenting local outgoing waves (OR = 1.23; 95% CI 95, 1.05 − 1.44; P = 0.001) and 18% higher odds of 
presenting incoming waves (OR = 1.18; 95% CI, 1.03 − 1.34; P = 0.01) (S8). Both logistic regression models had 
excellent discrimination for outgoing and incoming waves (AUC = 0.914, 95% CI 0.8 − 1.0 and AUC = 0.884, 
95% CI 0.729 − 1.0, respectively).

Discussion
We found a predominant annual seasonality of influenza in Chile with a periodicity of 50 weeks (95% CI, 43 − 53). 
This period coincided with the annual seasonality of influenza reported from other temperate territories and 
from the Chilean Ministry of Health influenza surveillance  reports48. To our knowledge, this is the first study 
that confirms a cycle of seasonal influenza in Chile.

There was a north–south latitudinal gradient for the start and peak of influenza related to the central zone 
between latitudes 31 and 40 degrees south. Chowell and colleagues found a south to north hospitalization gradi-
ent for the H1N1 2009  pandemic22. The difference between Chowell results and our findings can be explained 
by the annual variability of influenza epidemics due to weather, population immunity, or human  movement49. 
We did not include 2009 data in our analysis; however, we found a south-north latitudinal gradient in 2015 for 
the start date of the ILI season (S9). In the 2009 and 2015 epidemics, the first influenza cases were reported in 
southern cities with populations greater than 200,000. While health networks consisting of large populations 
from central Chile have a higher probability of reporting the first cases of influenza, southern zones with relatively 
large populations can also experience epidemics.

Population size was also associated with the start and peak of influenza epidemics as described previously in 
Perú, Hong Kong, Brazil and the  USA5,7,12,13,21. The patterns found were mostly influenced by the center region 
of Chile which includes Santiago, the nation’s capital and most populated city. The outward, rapid spread of 
influenza from Santiago to the rest of the country has been previously reported by Burger et al. in Chile and are 
similar to the findings described by Viboud et al. in the  USA5,23. These findings are supported by the association 
between population and the presence of local incoming and outgoing wave. Health networks with significant local 
outgoing and incoming traveling waves were primarily located in central Chile; two networks with significant 

(2)
Pd = 173.43+ 0.78(Lat)− 0.16

(

Pop10, 000
)

+ 47.8(Y2010)+ 28.7(Y2011)

+ 11.8(Y2012)− 1.09(Y2014)+ 31.59(Y2015)+ 20.94(Y2016)

Table 2.  Selected multivariate models for ILI start day and peak day.

Start day model Peak day models

β 95% CI p value Adjusted  R2 β 95% CI p value Adjusted  R2

Model  < 0.01 0.2471  < 0.01 0.4016

Variables

Latitude 0.903 0.314 , 1.490  < 0.01 0.780 0.345 , 1.214  < 0.01

Population (10,000) − 0.313 − 0.519 , − 0.105  < 0.01 − 0.166 − 0.316 , − 0.016 0.03

Airport (yes) 9.519 0.847 , 18.190 0.03 – –

Year  < 0.01  < 0.01

2010 49.710 34.892 , 64.518 47.810 36.861 , 58.756

2011 30.500 15.687 , 45.313 28.710 17.758 , 39.653

2012 12.960 − 1.850 , 27.773 11.800 0.8581 , 22.751

2013 (Ref.) – – – –

2014 14.860 0.0508 , 29.674 − 1.085 − 12.03 , 9.8615

2015 23.520 8.7108 , 38.334 31.590 20.642 , 42.535

2016 23.310 8.4998 , 38.123 20.940 9.9897 , 31.882
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incoming waves were also located in the southern region. Our findings suggest that larger populations located 
in the center of the country drive seasonal influenza epidemics. Health networks in the central zone spread 
influenza to neighboring networks through outgoing traveling waves. Networks receive incoming waves in the 
same zone and in southern Chile.

This study has several limitations. We assumed that all hospitals had the same age distribution and did not 
adjust for age structure of health networks. Controlling for age may provide more detailed information on influ-
enza transmission in future studies. We did not include ED data from private insurance companies, hospitals, 
or practices because they were not available; however, public insurance covers 74% of the population in  Chile26. 
Additionally, we included data from hospitals located in a range of latitudes that are collected through a central-
ized reporting system with national  guidelines24. While we used secondary ILI case data from ED reports that 
were based on clinical diagnosis without laboratory confirmation, laboratory surveillance is available only for 25 
hospitals with partial coverage of the countries´ territory. ILI has been reported as a useful measure to describe 
influenza seasonality and identify influenza population  patterns21. On the other hand, ILI surveillance operates 
in all Chilean hospital EDs year-round resulting in more complete seasonality data. We assumed a constant 
proportion of emergency consultation to other providers. Private hospitals, private practices, and public primary 

Figure 5.  Distance vs pairwise Spearman’s correlation and travelling waves of influenza in health networks. 
Chile 2010–2016. (a) Spearman’s correlation of phase angles versus distance between all pairs of health 
networks. Dashed lines represent the average correlation. The model used a loess model with α = 0.75 (red line) 
and 95% CI (grey). There is a change in the descending relation of correlation and distance at 1250 km that we 
used as the upper distance limit to define local wave. (b) Phase difference in weeks vs distance (km) for Health 
Networks with incoming (red) and outgoing (blue) waves. In grey linear models with a significance level of 
0.05. In red and blue, linear models with a Bonferroni corrected significance level < 0.001. The distance sign 
was inverted for negative lag times for a more intuitive display of incoming waves. (c) Geographic location of 
health networks with significant traveling waves. Incoming and outgoing waves are clustered in the center of the 
country. Colors correspond to panel (b)24,27.
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healthcare centers could attract patients with public insurance, especially in seasons of high demand. We assessed 
this limitation by estimating the population with public insurance that lives in a 5 km radius that are more likely 
to visit a hospital ED compared to a public or private provider. Instead of assuming an annual seasonality, we 
estimated the best seasonality before fitting our models. We selected the best models for the start and peak of 
influenza by comparing all possible models.

This is the first study to estimate seasonal influenza seasonality in Chile and its patterns across latitudes. Novel 
strains should be considered when different patterns are detected. If a novel strain is detected early, patterns 
could differ from the ones found here.

Our findings can help decision-makers to prepare for the influenza season by prioritizing zones for early 
vaccination campaigns, reallocating hospital beds for annual epidemics, and distributing resources according 
to patterns of influenza. Zones with larger populations and those located in the center of the country would 
require earlier implementation of interventions to reduce the spread of influenza to regions across the country.

Methods
Data sources. We obtained daily ILI case data collected by the Chilean Ministry of Health between 2010 
and 2016 from public hospitals EDs. ILI is an acceptable measure that is correlated to laboratory surveillance 
regarding population  patterns21. We used ILI from ED rather than sentinel laboratory surveillance data given 
that influenza surveillance is limited to 25 hospitals in the country with limited territorial coverage. We supple-
mented gridded population data from WorldPop with official governmental data on hospital locations, census 
information, and population coverage to estimate the population with access to each  hospital25–28.

We excluded community hospitals, hospitals without an ED, and hospitals that reported < 75% of daily ED 
data between 2011 and 2016 (< 1920 days). Hospitals that had ≥ 5% missing data in groups of 20 consecutive 
days were also excluded to reduce imputation errors. We assumed missing data were missing at random. Twelve 
different imputation methods were tested using randomly generated missing data compared to the original data. 
Time series imputation with Kalman Smoothing showed the best results for estimating seasonality compared 
to the original  data29,30.

Data preparation. Given that patients experience a decline in ED access with increasing distance, we chose 
a five kilometer radius to estimate the population covered by each  hospital31,32. We obtained the population esti-
mates per 100 × 100 m grid from WorldPop for 2010 and 2015 and adjusted by census data for each municipality 
and  year28. We used linear interpolation to impute population estimates for 2011 − 2014, and 2016. For each 
hospital coverage area, we adjusted for the proportion of individuals with public insurance for each municipality 
per year and calculated daily rates of ILI over the estimated  population26. Data from hospitals in the same health 
network and within 5 km from each other were combined into one time series. To determine seasonality across 
health networks, we calculated the ILI rate by network by adding ILI and population data from all hospitals 
within each health network. We used a mid-point location from hospitals within each network to determine the 
health network’s latitude.

Data transformation using wavelets. We used wavelet analysis to determine the best periodicity (e.g. 
seasonality) of influenza across 29 Chilean health networks. Wavelet transformation is an adequate method 
to determine seasonality for non-stationary time series and to determine seasonality of a periodic time series 
without assuming a priori a specific  seasonality33. Wavelet transformation corresponds to the cross-correlation 
of ILI rate’s time series with wavelets of different “widths” or “scales” across  time33. Morlet wavelet has been used 
to calculate infectious disease rates for dengue, pertussis, measles, and  influenza34–39. We computed the Morlet 
wavelet transformation for the entire country, each health network, and each individual  hospital34,35,40.

We conducted wavelet transformations for periods (scales) from 14 − 144 weeks. Statistical significance was 
tested by comparing the wave signal against 1000 randomly generated time series (i.e. white noise) with a sig-
nificance level of 0.0541. The local wavelet power spectrum was used to visualize the cross-correlation between 
rates and each group of wavelets (Fig. 2b, S1 and Equation s1)33,42.

To determine the best seasonality (periods with higher power), we computed the average power for each 
period, over all time points, from the local wavelet power spectrum for Chile, each health network, and for 
individual hospitals, according to the work of  Torrence42:

where N represents the number of observations.
We defined the best seasonality of influenza as the range of periods within the 95th percentile of average 

power across periods.

Association between epidemic timing and latitude in health networks. To determine the asso-
ciation between influenza timing and latitude, we selected the wavelet transform using the range corresponding 
to the best seasonality for each health network. We reconstructed the epidemic cycles using the filter defined by 
Torrence and Campo (S1 and Equation s2)42. For each health network, the start date of an annual ILI epidemic 
was defined as the date when the reconstructed cycles reached the midpoint between the lowest point and the 
peak of the signal for each year from 2010 to 2016. We calculated the peak day for the corresponding period 
along with the median start and peak date for each health network.

(3)W
2
(s) =

1

N

N
∑

n=0

|Wn(s)|2
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We developed univariate, piecewise, and multivariate linear regression models to assess the relationship 
between the predictor, latitude, and start and peak outcomes of the epidemic across the health networks. For 
the piecewise models, we separated the country into three zones: north, center, and south with south latitude 
ranges of < 31, 31–40, and > 41, respectively. For multivariate analysis, we included latitude and population as 
continuous variables, a binary variable to describe the presence of an airport within the health network terri-
tory, and dummy variables for years 2010 to 2016 with 2013 as the reference. The predominant influenza strain 
was excluded due to linear dependencies with years 2011 and 2014. The final multivariate model was selected 
by testing all possible predictor combinations with the regression sum of squares method and by comparing the 
BIC and Mallow’s  Cp43.

Local traveling waves of influenza. A Morlet wavelet is a complex function with a real and an imaginary 
part. The real part enables separation of the amplitude and extraction of the phase of a signal as the timing within 
a specific period, regardless of the  amplitude33,42,44. Phases are continuous cycles that are presented as phase 
angles in radians from -π to + π41. We extracted phase angles using a band of periods within the 95th percentile 
of power as described previously by Torrence (S1 and Eq. 3).

In order to define a local traveling wave, we used a second-degree local polynomial regression model (LOESS) 
with Spearman’s correlation between pairs of health networks phase angle time series to distance with parameter 
α = 0.75. Then, we determined the distance were the smallest correlation after an initial linear segment of the 
LOESS model was found. All pairs of health networks within this distance limit were included for each of the 
29 linear models for traveling waves.

We calculated the phase angle (timing) time-series median difference for all possible pairs of health networks 
and tested the association to distance. The sign of the phase difference represented the relative timing of ILI. A 
negative difference indicated a delayed timing of influenza (incoming); positive difference indicated outgoing 
travelling waves. We fitted two linear models for each health network to all others, one for positive phase differ-
ences and the second for negative phase difference:

where θp,q is the lag between health networks p and q and dp,q is the distance in kilometers between health net-
works. The distance sign was inverted for negative lag times for a more intuitive display of incoming waves. We 
considered a local traveling wave as a significant linear association between phase difference and distance using 
a corrected Bonferroni significance level of 0.0017.

We developed separate logistic regression models for incoming and outgoing waves to determine the associa-
tion between traveling waves and population estimates, adjusting for each health network latitude. To evaluate 
model discrimination, we used the receiver operating characteristic curve and the area under the curve (AUC)45.

We used R version 3.6.2 R package Leaps for model selection, and R package WaveletComp for wavelet 
transformation and phases  extraction46,47.

Previous presentations. This work has not been previously presented or published.

Received: 18 June 2021; Accepted: 24 January 2022

References
 1. World Health Organization. Influenza (Seasonal) Fact Sheet. [Internet]. [cited 2021 Jan 22]. https:// www. who. int/ news- room/ 

fact- sheets/ detail/ influ enza- (seaso nal).
 2. Lipsitch, M. & Viboud, C. Influenza seasonality: lifting the fog. Proc. Natl. Acad. Sci. U.S.A. 106, 3645–3646 (2009).
 3. Lofgren, E., Fefferman, N. H., Naumov, Y. N., Gorski, J. & Naumova, E. N. Influenza seasonality: underlying causes and modeling 

theories. J. Virol. 81, 5429–5436 (2007).
 4. Lowen, A. C., Mubareka, S., Steel, J. & Palese, P. Influenza virus transmission is dependent on relative humidity and temperature. 

PLoS Pathog. 3, 1470–1476 (2007).
 5. Viboud, C. et al. Synchrony, waves, and spatial hierarchies in the spread of influenza. Science (New York, NY) 312, 447–451 (2006).
 6. Tamerius, J. et al. Global influenza seasonality: reconciling patterns across temperate and tropical regions. Environ. Health Perspect. 

119, 439–445 (2011).
 7. Alonso, W. J. et al. Seasonality of influenza in Brazil: a traveling wave from the Amazon to the subtropics. Am J Epidemiol 165, 

1434–1442 (2007).
 8. Chan J, Holmes A, Rabadan R. Network analysis of global influenza spread. PLoS computational biology 2010; 6:e1001005-e.
 9. He, D. et al. Global Spatio-temporal patterns of influenza in the post-pandemic era. Sci. Rep. 5, 11013 (2015).
 10. Kamigaki, T. et al. Seasonality of Influenza and Respiratory Syncytial Viruses and the Effect of Climate Factors in Subtropical-

Tropical Asia Using Influenza-Like Illness Surveillance Data, 2010–2012. PloS one 11, e0167712 (2016).
 11. Yu, H. et al. Characterization of regional influenza seasonality patterns in China and implications for vaccination strategies: spatio-

temporal modeling of surveillance data. PLoS Med 10, e1001552 (2013).
 12. Chowell, G. et al. Spatial and temporal characteristics of the 2009 A/H1N1 influenza pandemic in Peru. PloS one 6, e21287 (2011).
 13. Lee, S. S. & Wong, N. S. The clustering and transmission dynamics of pandemic influenza A (H1N1) 2009 cases in Hong Kong. J 

Infect 63, 274–280 (2011).
 14. Simonsen, L. The global impact of influenza on morbidity and mortality. Vaccine 17(Suppl 1), S3-10 (1999).
 15. Bollaerts, K. et al. Contribution of respiratory pathogens to influenza-like illness consultations. Epidemiol Infect 141, 2196–2204 

(2013).

(4)θp,q =

{

C − βpdp,q for θ < 0, incoming waves
C + βpdp,q for θ > 0, outgoing waves

}

https://www.who.int/news-room/fact-sheets/detail/influenza-(seasonal
https://www.who.int/news-room/fact-sheets/detail/influenza-(seasonal


9

Vol.:(0123456789)

Scientific Reports |         (2022) 12:2409  | https://doi.org/10.1038/s41598-022-06318-0

www.nature.com/scientificreports/

 16. McDonald, S. A., van Boven, M. & Wallinga, J. An evidence synthesis approach to estimating the proportion of influenza among 
influenza-like illness patients. Epidemiology 28, 484–491 (2017).

 17. Ritzwoller, D. P. et al. Comparison of syndromic surveillance and a sentinel provider system in detecting an influenza outbreak–
Denver, Colorado, 2003. MMWR Suppl 54, 151–156 (2005).

 18. Shah, S. C. et al. Clinical predictors for laboratory-confirmed influenza infections: exploring case definitions for influenza-like 
illness. Infect Control Hosp Epidemiol 36, 241–248 (2015).

 19. Zhang, Y., Arab, A., Cowling, B. J. & Stoto, M. A. Characterizing Influenza surveillance systems performance: application of a 
Bayesian hierarchical statistical model to Hong Kong surveillance data. BMC Public Health 14, 850 (2014).

 20. World Health Organization. A manual for estimating disease burden associated with seasonal influenza. World Health Organiza-
tion, 2015.

 21. Yang, L. et al. Synchrony of clinical and laboratory surveillance for influenza in Hong Kong. PloS One 3, e1399 (2008).
 22. Chowell, G. et al. The influence of climatic conditions on the transmission dynamics of the 2009 A/H1N1 influenza pandemic in 

Chile. BMC Infect Dis 12, 298 (2012).
 23. Bürger, R., Chowell, G., Mulet, P. & Villada, L. M. Modelling the spatial-temporal progression of the 2009 A/H1N1 influenza 

pandemic in Chile. Math Biosci Eng 13, 43–65 (2016).
 24. Ministerio de Salud. Influenza estacional y pandemica (H1N1): Vigilancia epidemiologica, investigacion y control de brotes. In: 

Salud Md, ed. Vol. B51/20, 2010.
 25. Instituto nacional de estadisticas. Demograficas y vitales. http:// www. ine. cl/ estad istic as/ demog rafic as-y- vital es, 2018
 26. FONASA. Demografia. Series estadisticas: FONASA, 2018.
 27. Ministerio de bienes nacionales. Geoportal de Chile, Catálogo Nacional de Información Geoespacial. http:// www. geopo rtal. cl. 

2018.
 28. Sorichetta, A. et al. High-resolution gridded population datasets for Latin America and the Caribbean in 2010, 2015, and 2020. 

Scientific data 2, 150045 (2015).
 29. Grewal, M. S. Kalman filtering 705–708 (Springer, 2011).
 30. Moritz, S. & Bartz-Beielstein, T. imputeTS: time series missing value imputation in R. The R J. 9, 207–218 (2017).
 31. Lee DC, Doran KM, Polsky D, Cordova E, Carr BG. Geographic variation in the demand for emergency care: a local population-

level analysis. In Healthcare. Elsevier: 98–103.
 32. Sanz-Barbero B, García LO, Hernández TB. The effect of distance on the use of emergency hospital services in a Spanish region 

with high population dispersion: a multilevel analysis. Med. Care 2012:27–34.
 33. Cazelles, B. et al. Wavelet analysis of ecological time series. Oecologia 156, 287–304 (2008).
 34. Choisy, M. & Rohani, P. Changing spatial epidemiology of pertussis in continental USA. Proc R Soc Lond B Biol Sci 279, 4574–4581 

(2012).
 35. Grenfell, B., Bjørnstad, O. & Kappey, J. Travelling waves and spatial hierarchies in measles epidemics. Nature 414, 716 (2001).
 36. Gubler, D. J. Cities spawn epidemic dengue viruses. Nat. Med. 10, 129 (2004).
 37. Lima, M. et al. Whooping cough dynamics in Chile (1932–2010): disease temporal fluctuations across a north-south gradient. 

BMC Infect Dis 15, 590 (2015).
 38. Thai, K. T. et al. Dengue dynamics in Binh Thuan province, southern Vietnam: periodicity, synchronicity and climate variability. 

PLoS Negl. Trop. Dis. 4, e747 (2010).
 39. Van Panhuis, W. G. et al. Region-wide synchrony and traveling waves of dengue across eight countries in Southeast Asia. Proc. 

Natl. Acad. Sci. 112, 13069–13074 (2015).
 40. Johansson, M. A., Cummings, D. A. & Glass, G. E. Multiyear climate variability and dengue—El Nino southern oscillation, weather, 

and dengue incidence in Puerto Rico, Mexico, and Thailand: a longitudinal data analysis. PLoS medicine 6, e1000168 (2009).
 41. Cazelles, B., Chavez, M., De Magny, G. C., Guégan, J.-F. & Hales, S. Time-dependent spectral analysis of epidemiological time-

series with wavelets. J. R. Soc. Interface 4, 625–636 (2007).
 42. Torrence, C. & Compo, G. P. A practical guide to wavelet analysis. Bull. Am. Meteor. Soc. 79, 61–78 (1998).
 43. James G, Witten D, Hastie T, Tibshirani R. An introduction to statistical learning. Vol. 112. Springer, 2013.
 44. Grinsted, A., Moore, J. C. & Jevrejeva, S. Application of the cross wavelet transform and wavelet coherence to geophysical time 

series. Nonlinear Process. Geophys. 11, 561–566 (2004).
 45. Vittinghoff E, Glidden DV, Shiboski SC, McCulloch CE. Regression Methods in Biostatistics: Linear, Logistic, Survival, and Repeated 

Measures Models. Springer Science & Business Media, 2011.
 46. Roesch A, Schmidbauer H. WaveletComp: Computational Wavelet Analysis. R package version 2014; 1.
 47. Team RC. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing, 

2017.
 48. Departamento de Epidemiologia. Boletin epidemiologico trimestral: MINSAL, 2018.
 49. Tamerius, J. D. et al. Environmental predictors of seasonal influenza epidemics across temperate and tropical climates. PLoS Pathog. 

9, e1003194 (2013).

Acknowledgements
Dirección de Investigación Científicay Tecnológica from the Universidad de Santiago de Chile (Dicyt-USACH).

Author contributions
C.G. performed designed the study, performed the analysis, drafted the manuscript and processed the designed 
the figures. W.P. aided in the design of the study and methods. L.H., C.M. and M.B. aided in reviewing the meth-
ods, result interpretation and the manuscript. D.P. aided in reviewing the manuscript. All authors discussed the 
results and commented on the manuscript.

Funding
This work was funded by the program for development of advanced human capital from the Chilean Ministry 
of Education [CONICYT PFCHA/BECAS CHILE 2014 Folio 79090016].

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 022- 06318-0.

http://www.ine.cl/estadisticas/demograficas-y-vitales
http://www.geoportal.cl
https://doi.org/10.1038/s41598-022-06318-0
https://doi.org/10.1038/s41598-022-06318-0


10

Vol:.(1234567890)

Scientific Reports |         (2022) 12:2409  | https://doi.org/10.1038/s41598-022-06318-0

www.nature.com/scientificreports/

Correspondence and requests for materials should be addressed to C.G.-C.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2022

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	North to south gradient and local waves of influenza in Chile
	Results
	Hospitals included. 
	Predominant annual seasonality. 
	Start and peak day of seasonal influenza in health networks. 
	Population and a north to south pattern associated to early annual epidemics. 
	Local travelling waves. 

	Discussion
	Methods
	Data sources. 
	Data preparation. 
	Data transformation using wavelets. 
	Association between epidemic timing and latitude in health networks. 
	Local traveling waves of influenza. 
	Previous presentations. 

	References
	Acknowledgements


