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LIM Tracker: a software package 
for cell tracking and analysis 
with advanced interactivity
Hideya Aragaki1*, Katsunori Ogoh1, Yohei Kondo2,3,4 & Kazuhiro Aoki2,3,4

Cell tracking is one of the most critical tools for time-lapse image analysis to observe cell behavior 
and cell lineages over a long period of time. However, the accompanying graphical user interfaces 
are often difficult to use and do not incorporate seamless manual correction, data analysis tools, 
or simple training set design tools if it is machine learning based. In this paper, we introduce our 
cell tracking software “LIM Tracker”. This software has a conventional tracking function consisting 
of recognition processing and link processing, a sequential search-type tracking function based on 
pattern matching, and a manual tracking function. LIM Tracker enables the seamless use of these 
functions. In addition, the system incorporates a highly interactive and interlocking data visualization 
method, which displays analysis result in real time, making it possible to flexibly correct the data and 
reduce the burden of tracking work. Moreover, recognition functions with deep learning (DL) are also 
available, which can be used for a wide range of targets including stain-free images. LIM Tracker allows 
researchers to track living objects with good usability and high versatility for various targets. We 
present a tracking case study based on fluorescence microscopy images (NRK-52E/EKAREV-NLS cells 
or MCF-10A/H2B-iRFP-P2A-mScarlet-I-hGem-P2A-PIP-NLS-mNeonGreen cells) and phase contrast 
microscopy images (Glioblastoma-astrocytoma U373 cells). LIM Tracker is implemented as a plugin for 
ImageJ/Fiji. The software can be downloaded from https://​github.​com/​LIMT34/​LIM-​Track​er.

Cell migration plays important roles in various processes, including embryonic development, cell differentia-
tion, immune response, regeneration, and tumor invasion1–5. To better understand the regulatory mechanisms 
of cell migration, it is essential to have a time-lapse imaging tool to observe the continuity of cell behavior and 
cell lineages over a long period of time. There are currently technical limitations to long-term live-cell time-lapse 
imaging. Time-lapse imaging requires imaging at sufficient frequency to track a population of cells with irregular 
positions and morphological changes over time. For image analysis with high reproducibility, an image with a 
high S/N ratio is required, but, in many cases, it is difficult to obtain an image with a high S/N ratio at a high 
sampling rate because of phototoxicity in living cells or individuals6,7. Recent advances in microscope technol-
ogy have made this possible, but it is still difficult to analyze the enormous amount of image data obtained after 
image acquisition with high accuracy. To investigate these images, it is essential to develop advanced analytical 
software, including high-precision segmentation methods for extracting information on the position and mor-
phology of individual cells, and tracking methods for quantifying the dynamics of cells, among other features. 
However, at present there is a scarcity of tracking software with excellent usability and versatility suitable for 
long-term time-lapse experiments.

One of the most significant factors making tracking software impractical is that the microscopically imaged 
targets vary in appearance, have low S/N ratios, and exhibit many visual patterns, such as a variety of cell mor-
phologies. Because cell images have various visual characteristics, there has been no algorithm that can han-
dle a wide range of cell types and various microscopy modalities, such as fluorescence microscopy and phase 
contrast microscopy. Recognition and tracking of wide ranges of patterns is therefore technically challenging, 
which makes it difficult to develop universal tracking software. In recent years, with the advancement of deep 
learning (DL) recognition technology, it has become possible to perform recognition with higher accuracy than 
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before8–11, but even so, it is still impossible to fully automate recognition and tracking, and to prevent a certain 
number of processing errors from occurring. To solve these problems and improve the tracking work efficiency, 
it can be effective to prepare an appropriate operation system in which a user can quickly confirm an error from 
a large amount of data and can efficiently correct the error on the assumption that a certain number of erroneous 
trackings may occur. However, since tracking processing requires multidimensional (x, y, time, channel) analysis 
of a large amount of image data, software design is complicated, and it is not easy to realize software with high 
usability while ensuring high-speed processing and response.

Automatic tracking platforms established to date include “TrackMate”12, “CellProfiler”13, “MMHelper”14 and 
“Usiigaci”. TrackMate can perform recognition and tracking with simple wizard-based operations, but the data 
display for checking the tracking results is fixed and lacks interactivity, making it difficult to find the data on 
the spot of interest among a large amount of data. Editing trajectories (groups of spots linked between frames) 
can only be done on the cell lineage screen (TrackScheme), but it is difficult to determine the correctness of the 
trajectory from the lineage diagram alone, and the operation is complicated, especially when the number of tar-
gets increases. Manual correction methods to efficiently correct errors in tracking results are also not sufficiently 
supported. Another automatic tracking platform, CellProfiler, uses a pipeline method by combining various 
processing modules and can handle a large number of multi-channel images. Finally, Usiigaci has a powerful 
DL recognition function that can handle a variety of targets including stain-free images. However, both of them 
lack usability because they cannot be operated with a graphical user interface that enables effective interaction 
with the user, and they do not provide a means to check the validity of processing results or to correct them. In 
addition, the former requires users to have specialized knowledge of image processing and analysis, while the 
latter is difficult to use unless the user has a certain level of programming knowledge.

We developed LIM Tracker to solve some of the above problems. LIM Tracker is a tracking software that 
provides researchers with a highly versatile tracking solution with excellent usability. Our software is equipped 
with a tracking function that allows a flexible combination of manual and automatic tracking approaches. It 
also incorporates a highly interactive and interlocking data visualization tool that displays analysis result in real 
time, and together with a simple and flexible correction method, reduces the burden of tracking work. Table 1 
shows a comparison of the functions and performance of LIM Tracker with those of the above existing software. 
The performance is evaluated based on the index used in the ISBI Cell Tracking Challenge6 (Supplementary 
S1.1). LIM Tracker is designed to be versatile and can be applied to a wide range of tracking applications, from 
cell lineage analysis to particle tracking of organelles, at the tissue, cellular, and molecular levels. Researchers 
can streamline the tracking process, which used to take an enormous amount of time and effort, and use it to 
promote their research.

Table 1.   Comparison of LIM Tracker with those of the existing software. a, Cannot be combined with other 
tracking functions. b, The region shape cannot be set. c, The region shape can also be freely set. d, It only 
works for a very small number of targets. e, A Python script file is provided, and executed by command line 
operations. f, l, m, The evaluation index is the one used in the ISBI Cell Tracking Challenge6, and is calculated 
using a publicly available evaluation program. g, Use the DL recognition function “Stardist (Stardist detector 
custom model)”23. Since it has no training function, it creates trained weight files based on command line 
operations. h, i, It did not have a high-performance recognition function and could not be recognized. j, Use 
the DL recognition function “Mask R-CNN”25. The included Python script is used to create a trained weight 
file based on command line operations. k, Use the DL recognition function “Mask R-CNN”25, and the training 
function (integrated UI including annotation) enables efficient training with simple operations.

TrackMate (ImageJ/Fiji)
CellProfiler (Broad 
Institute)

MMHelper (Univ. of 
Exeter) Usiigaci (OIST) LIM Tracker

Comparison of the function

Tracking function Link-type tracking Yes Yes Yes Yes Yes

Sequential tracking No No No No Yes

Manual tracking Limiteda No No No Yes

Interactive real-time data
linkage display No No No No Yes

ROI editing function Yesb No No No Yesc

Trajectory editing function Limitedd No No No Yes

Recognition function 
(non-DL) Yes Yes Yes No Yes

DL recognition function Recognition function Yes No No Yes Yes

Training function
(integrated UI including 
annotation)

No No No Limitede Yes

Performance on ISBI Cell Tracking Challenge6 “PhC-C2DH-U373” dataset (Fig. 5c)

Recognition accuracy (SEG) f 0.68g N/Ah N/A i 0.89j 0.93k

Detection accuracy (DET) l 0.93 N/A N/A 0.97 0.98

Tracking accuracy (TRA) m 0.93 N/A N/A 0.97 0.98
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Method
Plasmids.  The cDNA of Histone 2B (H2B)-iRFP-P2A-mScarlet-I-human Geminin (hGem)-P2A-PIP-tag-
NLS-mNeonGreen was synthesized with codon optimization for human by FASMAC into the vector plasmid 
pUCFa (FASMAC). H2B-iRFP, hGem-mScarlet-I, and PIP-tag-NLS-mNeonGreen are a nuclear marker, S/G2/M 
marker15, and G1/G2/M marker16, respectively. The cDNA was further subcloned into a pCSII-based lentiviral 
vector17, pCSIIpuro-MCS, generating pCSIIpuro-H2B-iRFP-P2A-mScarlet-I-hGem-P2A-PIP-tag-NLS-mNe-
onGreen (sequence and plasmid map are available at the following link: https://​bench​ling.​com/s/​seq-​VNv4w​
wUusi​bodKn​qVv9f). psPAX2 was a gift from Dr. D. Trono (Addgene plasmid #12,260)18. pCMV-VSV-G-RSV-
Rev was a gift from Dr. H. Miyoshi (RIKEN, Japan). pCSIIpuro-MCS was a gift from Dr. M. Matsuda (Kyoto 
University).

Cell cultures.  NRK-52E/EKAREV-NLS cells were purchased from JCRB (catalog number IFO50480). NRK-
52E/EKAREV-NLS cells stably express the genetically encoded ERK FRET biosensor, EKAREV-NLS19. NRK-
52E/EKAREV-NLS was established as described previously20. The NRK-52E/EKAREV-NLS cells were main-
tained with Dulbecco’s Modified Eagle Medium (DMEM; ThermoFisher), 10% fetal bovine serum (FBS; Sigma), 
and 10 μg/mL Blasticidin S (Invitrogen) at 37 °C under 5% CO2 with antibiotics. MCF-10A cells were purchased 
from Horizon Discovery (catalog number HD PAR-003). MCF-10A cell lines were maintained in full growth 
medium, which consisted of DMEM/F12 (1:1) (Cat#11,330–032, Gibco) supplemented with 5% horse serum 
(Cat#16,050–122, Invitrogen), 10 mg/ml insulin (Cat#12,878–44, Nacalai Tesque), 0.5 mg/ml hydrocortisone 
(Cat#1H-0888, Invitrogen), 100 ng/ml cholera toxin (Cat#101B, List Biological Laboratories), 20 ng/ml hEGF 
(Cat#AF-100–15, PeproTech), and 1% penicillin/streptomycin (Cat#26,253–84, Nacalai Tesque) at 37 °C under 
5% CO2 with antibiotics. MCF-10A/H2B-iRFP-P2A-mScarlet-I-hGem-P2A-PIP-NLS-mNeonGreen cells were 
established through lentivirus-mediated gene transfer into the parental MCF-10A cells. In brief, the lentiviral 
pCSIIpuro vectors were transfected into Lenti-X 293 T cells (Clontech) together with the packaging plasmid 
psPAX2 and pCMV-VSV-G-RSV-Rev by using the linear polyethyleneimine “Max” MW 40,000 (Polyscience). 
After 2 days, MCF-10A parental cells were cultured in the virus-containing media in the presence of 8 μg/mL 
polybrene for 3–4 h. Two days after infection, the cells were selected by treatment for at least 1 week with 1.0 μg/
ml puromycin (InvivoGen). Bulk populations of selected cells were used in this study.

Fluorescence time‑lapse imaging.  The NRK-52E/EKAREV-NLS cells were seeded at a density of 
2.0 × 104 cells/cm2 on glass-bottomed dishes (IWAKI). One day later, time-lapse imaging was performed. The 
culture medium was replaced with FluoroBrite (ThermoFisher), 5% FBS (Sigma), and 1 × Glutamax (Ther-
moFisher) 3–6 h before starting the time-lapse imaging. For imaging NRK-52E/EKAREV-NLS cells, a wide-
field epi-fluorescence microscope was used with an inverted microscope (IX81; Olympus) equipped with a CCD 
camera (CoolSNAP K4; Roper Scientific) and an excitation light source (Spectra-X light engine; Lumenncor). 
Optical filters were as follows: an FF01-438/24 excitation filter (Semrock), an XF2034 (455DRLP) dichroic mir-
ror (Omega Optical), and two emission filters [FF01-483/32 for CFP and FF01-542/27 for YFP (Semrock)]. 
Images were acquired every 20 s (the exposure time was 100 ms) with binning 8 × 8 on MetaMorph software 
(Molecular Devices) with an IX2-ZDC laser-based autofocusing system (Olympus). A × 20 lens (UPLSAPO 
20 × , Olympus; numerical aperture: 0.75) was used. The temperature and CO2 concentration were maintained 
at 37  °C and 5% during the imaging with a stage-top incubator (Tokai Hit). The MCF10A/H2B-iRFP-P2A-
mScarlet-I-hGem-P2A-PIP-NLS-mNeonGreen cells were seeded on a 96-well glass-bottomed plate (Greiner; 
Cat# 655,892) as described previously21. One day later, the cells were imaged with IXM-XLS (Molecular Devices) 
equipped with an air objective lens (CFI Plan Fluor 10 × , NA = 0.30, WD = 16 mm and CFI Plan Apochromat 
Lambda 20 × , NA = 0.75, WD = 1 mm; Nikon), a Zyla 5.5 sCMOS camera (ANDOR), and a SOLA SE II light 
source (Lumencor). The excitation and fluorescence filter settings were as follows: mNeonGreen, excitation fil-
ter 472/30, dichroic mirror 350–488 (R)/502–950 (T), and emission filter 520/35 (Part# 1–6300-0450; Molecu-
lar Devices); mScarlet-I, excitation filter 562/40, dichroic mirror 350–585 (R)/601–950 (T), and emission filter 
624/40 (Part# 1–6300-0449; Molecular Devices); and iRFP, excitation filter 628/40, dichroic mirror 350–651 
(R)/669–950 (T), and emission filter 692/40 (Part# 1–6300-0446; Molecular Devices). Images were acquired 
every 10 min with binning 2 × 2 on MetaXpress software (Molecular Devices). The temperature and CO2 con-
centration were maintained at 37 °C and 5% during the imaging.

LIM Tracker overview.  This section describes the unique features of our cell analysis software. The appear-
ance of the screen of this software is shown in Fig. 1a.

Combined use of three tracking methods.  This software has three different tracking methods.

Method 1: link‑type tracking.  The first tracking method is a link-type tracking method (tracking by detec-
tion) combining recognition processing and link processing, which is a standard tracking method often adopted 
in existing tracking software. First, recognition processing is performed on all image frames to recognize the 
position and region shape of the target in each frame to generate the ROIs (represented by the bounding box in 
this paper), and then generate the trajectories by linking the ROIs that are determined to be identical between 
adjacent frames (Fig. 2a). The default recognition processing in this software is assumed to be mainly for fluo-
rescence and emission microscope images, and is equipped with a spot detection algorithm based on a Laplacian 
of Gaussian (LoG) filter and region formation algorithm based on Marker-Controlled Watershed. (A plugin 
mechanism is provided for the recognition function, and users can switch to their own algorithm.) In addition, 
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the Linear Assignment Problem (LAP) algorithm proposed by Jaqaman et al. is adopted as the link processing22, 
and by likening the link processing between targets to the optimization processing of the assignment problem, 
a large number of targets can be linked at high speed (Supplementary S2.1). The tracking performance of this 
method greatly depends on the recognition accuracy, and while highly accurate tracking processing can be 
expected for an object such as fluorescence microscope images on which it is relatively easy to identify a target, 
link processing itself does not function for an object that is difficult to recognize.

Method 2: sequential tracking.  The second tracking method is a sequential search-type tracking method based 
on the particle filter framework. In this method, the ROI specified by the user is tracked by sequentially search-
ing for the destination of the ROI and pattern matching it while moving the image frame forward (Supplemen-
tary S2.2). Unlike method 1, this method can freely track any region on the screen. Since this method searches 

Figure 1.   LIM Tracker screen structure. (a) LIM Tracker screen structure. The screen is divided into detection 
mode and tracking mode, and tracking is performed by switching between them. The entire screen is divided 
into four panels, with image display and ROI setting functions (top left), analysis data display functions (top 
right), image display adjustment functions (bottom left), and analysis processing operation functions (bottom 
right) integrated into each panel. (b) The ROI and each data display item (list, graph, scatter plot, montage 
image, cell lineage) are linked, and the display is updated in real time when there is a change in the ROI status. 
Each item in the data display responds to mouse clicks, and all data related to the selected item are instantly 
highlighted.
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based on the similarity of luminance patterns in the area around the target position, it can be applied to targets 
that are difficult to recognize and track with conventional processing, such as bright-field targets. The ROIs to be 
tracked can be created by the user directly with the mouse or automatically generated by the above recognition 
process (Fig. 2b). In addition to tracking in the forward direction, tracking in the reverse direction (i.e., back-
ward in time) can also be performed.

Method 3: manual tracking.  The third tracking method is manual tracking, which allows users to specify the 
position of ROIs using the mouse while moving frame by frame (Fig. 2c). The position and size of each ROI can 
be modified, the shape of the region can be set, and the trajectory can be edited (cut, link, delete) freely using 
the mouse.

Figure 2.   Tracking methods and editing function. (a) Overview of the link-type tracking method. First, all 
image frames are subjected to a recognition process to determine the position and shape of the target, and 
then ROIs are generated. Then, trajectories are generated by linking ROIs that are determined to be identical 
between adjacent frames. (b) Overview of the sequential tracking method. For a user-selected ROI (indicated 
by the green), the target region for each frame is searched sequentially based on pattern matching to identify 
the destination location. Time-series forward tracking as well as backward tracking is possible. (c) Overview 
of manual tracking. It is possible to perform manual tracking and generate trajectories for selected ROIs at any 
timepoint. (d) Overview of the trajectory editing function. By clicking on a point of interest in the cell lineage, 
the corresponding frame image and ROI are instantly displayed. The user can visually check the positional 
relationship between the source and target ROIs on the image, and modify the trajectory (link relationship 
between ROIs) with a simple mouse operation.
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Seamless combination of each method and interactive real‑time data linkage display.  The above three tracking 
methods can be used in LIM Tracker, but each method has its own advantages and disadvantages. Method 1, 
the link-type tracking method, can track a large number of targets at high speed, but it will not work unless the 
target position can be recognized with high accuracy. In contrast, method 2, the sequential tracking method, 
can track any target with high precision, but it is slow and unsuitable for tracking a large number of targets. In 
addition, the automatic tracking methods 1 and 2 do not always work perfectly, and unless the target is very 
easy to track, it is rare that the tracking process is error-free. In contrast, the manual tracking method 3 is 100% 
accurate, although it has the disadvantages of being time-consuming and laborious. A major feature of LIM 
Tracker, which is not available in conventional software, is that these three methods can be used in combination 
a seamless and appropriate manner. By combining each method according to the type and number of targets, 
recognition accuracy, and other variables, and by complementing the merits and demerits of each method, it 
is possible to significantly improve the efficiency of tracking. Even when functions for automatic tracking and 
manual tracking are installed in conventional software, each of these is often functionally independent and does 
not have a mechanism to freely combine them. In contrast, LIM Tracker has a semi-automatic operation system 
that allows seamless combination of the three methods. The screen layout and operations have been optimized 
to minimize unnecessary screen transitions, mode switching, and selection operations, and to make switching 
between the methods as simple as possible.

As mentioned above, when performing tracking with a combination of methods, if the user cannot see the 
entire tracking situation and adequately judge the correctness of the tracking results, they will not be able to select 
the optimal method and the effectiveness will be markedly reduced. In LIM Tracker, there is robust incorpora-
tion of interactive operability, analysis in real time, and interlocking of the images, data items, and cell lineage 
to be displayed on the screen, along with the establishment of visibility and operability lacking in conventional 
software (Fig. 1b, Supplementary S2.3). These features help users to intuitively grasp the validity of the processing 
and operation results, and contribute to the efficiency of tracking tasks.

Editing function for ROI and trajectory.  The user can freely create ROIs on the image at any time by using the 
mouse. In this software, trajectory editing, such as cutting, connecting, and deleting the trajectories generated by 
the tracking process, can also be performed directly using the mouse (pull-down menu selection) on the ROIs in 
the image. In conventional software, a separate screen showing the cell lineage is often prepared, and the trajec-
tory is often edited on the lineage regardless of the ROI displayed on the original image. Since information on the 
position of individual cells is not visible in the lineage display, it is often difficult to judge whether the trajectory 
is correct and to correct the link. With this software, users can grasp the overall tracking status by using the cell 
lineage, and if there is an ROI or trajectory that users want to edit, users can click on the lineage to call up the 
corresponding frame/ROI on the screen, and perform accurate and efficient editing by directly visually checking 
the link between the frames of the ROIs located on the image (Fig. 2d).

Spot detection and region shape recognition function.  The recognition process in this software can detect the 
spot position of the target, but if necessary, it can also simultaneously recognize the region shape based on the 
segmentation process, thus quantifying not only the luminance around the spot, but also the change in morpho-
logical features of the region. When the segmentation process recognizes the shape of a region, the segmentation 
results often contain errors (under- or over-segmentation). In many cases, existing software can only modify the 
segmentation by changing the processing parameters, among other factors, and resegmenting the entire image. 
However, in LIM Tracker, users can directly add or delete ROIs to the mis-detected portions of the segmentation 
results using the mouse. In addition, when adding a new ROI, the software has an auxiliary function that auto-
matically generates a region shape by segmenting the ROI region with optimized parameters. It also has a pen 
tool function, which allows the user to draw freehand curves to create arbitrarily shaped regions.

Deep learning recognition function.  In the analysis of microscopic images, the segmentation technique for rec-
ognizing the position and shape of cells has been continuously improved. However, there are still unstained 
microscopic images (bright-field, phase contrast, DIC images, etc.) that are difficult to identify because of the 
slight difference between the background and subject areas and the unclear contrast. On the other hand, with 
the remarkable progress in computer vision and machine learning using DL technology in recent years, it has 
become possible to analyze microscopic images, including stain-free ones, with high accuracy. However, in real-
ity, it is challenging to perform satisfactory analysis unless the user has a certain level of competence in fields 
such as Linux and Python programming. In addition, for users to build a recognition process that meets their 
objectives and obtain optimal recognition results, it is necessary to prepare an environment that allows them to 
properly learn using datasets created with their own experimental configurations. Unfortunately, there is a lack 
of software with excellent usability that supports a series of DL operations from the creation of training data 
(annotation) to training and recognition. In light of the above, we have built into our software a DL operation 
tool that can be operated efficiently and with as little effort as possible, and that can also be used to easily build a 
highly accurate recognition process (Fig. 3). Since the annotation tool, namely, the pen tool function mentioned 
above, is also built-in, users can create training data directly on this software and train it with simple operations 
to freely build the most suitable recognition process for their own dataset. By combining this DL recognition 
function with the link-type tracking function, the tracking accuracy can be greatly improved.

Concerning algorithms, there is rapid technological progress in the field of deep learning, better algorithms 
are constantly being proposed, and reference implementations of these algorithms are being released. Therefore, 
LIM Tracker has a plugin mechanism that allows users to call reference implementations written in the Python 
language as external programs and link them with this software to operate the DL training and recognition 
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processes from this software. Users with programming knowledge can implement their own plug-ins to work 
with any DL algorithm. Currently, plugins are available to work with four different algorithm implementations 
(“Cellpose”9, “StarDist” , “Mask R-CNN”24,25, and “YOLACT +  + ”26 (Supplementary S2.4 to 2.7)). Each algorithm 
has different features, such as processing speed, recognition accuracy, and required GPU memory size. Users 
can apply them according to the specifications of their execution environment.

Hardware requirements.  This software has been tested on Windows10 or Linux (Ubuntu18.04) using a PC 
with processor Intel Core i7-6700, 16 GB of RAM. Also, when using the DL recognition function, a GTX1080Ti 
11 GB was used (we recommend using nvidia GPUs with 8 GB GPU memory or higher, CUDA 10.0 or higher).

Results and discussion
Case 1: NRK‑52E/EKAREV‑NLS.  In this section, we introduce a tracking case study that combines the 
link-type tracking and sequential tracking functions, and the ROI and trajectory editing functions, given that 
the ease of such combinations is one of the characteristic features of LIM Tracker. The images used in this study 
were taken from NRK-52E/EKAREV-NLS cells derived from normal rat kidney epithelial cells and captured the 
stochastic changes in the activity of ERK molecules using a FRET biosensor. ERK is involved in cell proliferation, 
differentiation, and tumorigenesis27. It has been reported that cell proliferation is regulated by frequency modu-
lation of the stochastic activation of ERK molecules20,21. It has also been reported that intercellular propagation 
of ERK activation determines the directionality of collective cell migration28. Thus, quantifying the dynamics 
of the activity of ERK molecules is an important technical challenge. Time-lapse images were acquired with an 
IX81 fluorescence microscope (Fig. 4a; Olympus; 757.76 μm/512 pixels, × 20 objective, Bin 4 × 4, 512 × 512 pixels, 
217 frames, 80 s frame interval). In this dataset, there are about 300 cells in each frame, for a total of 64,181 cells 
in all 217 frames. Cell division occurs at 53 sites, and the number of cells gradually increases. Figure 5 shows an 
example of the cell lineage display. For these cells, the same cells are linked between images to create a trajec-
tory. The cell population imaged by fluorescence microscopy can be recognized with relatively high accuracy by 
referring to the peak position of the brightness. Because of the large number of cells, it is efficient to apply the 
link-type tracking function to create most of the trajectories in this dataset first, and then apply the sequential 
tracking, manual tracking, and editing functions to correct the errors in some of the mis-tracked areas (Fig. 6). 
After applying the link-type tracking function, the areas of mis-detection or mis-tracking can be identified, 
based primarily on the cell lineage display. In the cell lineage, tracking errors often appear in the form of broken 
trajectories or unnatural branching (e.g., repeated division in a short period of time). By clicking on a lineage, 

Figure 3.   Deep learning training and recognition procedure. (a) Training procedure. The software can annotate 
and create a training dataset file for DL training and can also automatically call an external DL program to train 
the dataset to generate a trained weight file. (b) Recognition procedure. When performing DL recognition, the 
DL recognition service program can be automatically launched by selecting a weight file on the software, and 
then the DL recognition process can be executed in cooperation with the recognition service program.
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the corresponding image frame and ROI are immediately recalled and displayed, making it easy to visually check 
for errors. In addition, if there is an ROI (trajectory) on the screen that the user wants to examine in detail, click-
ing on it will highlight all of the linked ROIs and related data and lineages, helping to visually understand the 
correctness of the link. Figure 7 shows an example of clicking on an ROI (ID number 204) on the original image 
and highlighting it. After applying the link-type tracking to this dataset, the tracking errors that were identified 
can be summarized into two main categories.

(1)	 In the case of two cells moving in close contact, the individual cells cannot be divided accurately and are 
misidentified as a single cell, resulting in no proper linking.

(2)	 Shape change (cell swelling) occurs during cell division, and over-segmentation (recognition of one cell as 
a plurality of cells) occurs, resulting in erroneous branching by judging that cell division has occurred.

   
For case (1), we reapply the sequential tracking function to each of the two cells to recreate the trajectory. 

When applying sequential tracking, the frame display is updated in real time as the tracking progresses, so the 
user can visually check the correctness of the destination and positional shift as the process proceeds. In situ-
ations where tracking is difficult and misalignment occurs, the process is canceled once, the misalignment is 
corrected using the mouse, and then tracking is restarted from the corrected position. By repeating this process, 
tracking can be performed efficiently. Depending on the closeness of the two cells, the sequential search may be 
difficult and misalignment may occur. In such cases, the manual tracking function can be useful. The tracking 
can be performed using both automatic and manual tracking as appropriate. For case (2), the over-segmented 
region (ROI) is deleted using the mouse and a new ROI is created. To create the shape of the region, an auxiliary 
function for automatically setting the shape at the same time as creating the ROI can be used. However, in some 
cases, the shape differs between before and after the division because of its irregularity, and an appropriate shape 
is not set; in this case, an arbitrary shape is set by tracing the boundary line of the region using the pen tool func-
tion. The link between the mother cell and daughter cell can be reconfigured individually from the pull-down 
menu of the newly created ROI. If there are many areas that need to be corrected, it is also possible to recreate 
all of the ROIs erroneously recognized in the whole frame in advance, and then reapply the link-type tracking 
function to relink the entire frame. Link processing in this function targets all ROIs located on an image, and 

Figure 4.   Test images. (a) NRK-52E/EKAREV-NLS. (b) MCF-10A/H2B-iRFP-P2A-mScarlet-I-hGem-
P2A-PIP-NLS-mNeonGreen. (c) Glioblastoma-astrocytoma U373 cells on a polyacrylamide substrate (PhC-
C2DH-U373).



9

Vol.:(0123456789)

Scientific Reports |         (2022) 12:2702  | https://doi.org/10.1038/s41598-022-06269-6

www.nature.com/scientificreports/

can be executed at any arbitrary timepoint not only for ROIs generated by recognition processing but also for 
ROIs directly generated by a user’s mouse operation.

The above process enables accurate tracking results to be obtained efficiently. We measured the recognition 
and tracking performance immediately after applying the link-type tracking function (before correcting the 
tracking errors). The evaluation index is the one used in the ISBI Cell Tracking Challenge6, and is calculated 
using a publicly available evaluation program. The recognition accuracy (SEG), which is affected by the accuracy 
of the region shape, is based on the Jaccard similarity of the regions of agreement between the correct answer 
(Ground Truth) and the recognition result. The detection accuracy (DET) and the tracking accuracy (TRA) 
is a graph-based method that represents the cell lineage as a directed acyclic graph, and the agreement score 
is calculated by comparing the graph created as the correct answer with the graph of the tracking result. The 
recognition accuracy (SEG) was 0.96, the detection accuracy (DET) was 0.98 and the tracking accuracy (TRA) 

Figure 5.   Cell lineage display. Cell lineage display of Case 1 [right: selected and highlighted lineage for a 
specific ROI (ID 204)].
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was 0.98, indicating that the tracking was relatively accurate. The recognition process (including the calculation 
of feature values) took 23 s (9.4 fps) for the entire 217 frames, and the link-type tracking took 5 s (43.4 fps).

In addition, sequential tracking, which was used to correct the errors in the link-type tracking in this case 
study, took an average of 17 s (12.8 fps) when one cell was selected individually and tracked through 217 frames. 
If the user do not need the morphological information of the region and only need to detect and track the spot 
position, the process is simpler because the user do not need to create the region shape. However, the basic 
procedure is the same as above.

Case 2: MCF‑10A/H2B‑iRFP‑P2A‑mScarlet‑I‑hGem‑P2A‑PIP‑NLS‑mNeonGreen.  Here, we pre-
sent a case study using a dataset from the imaging of MCF-10A/H2B-iRFP-P2A-mScarlet-I-hGem-P2A-PIP-
NLS-mNeonGreen cells derived from human mammary epithelial cells. The cells express the S/G2/M phase 
marker mScarlet-I-Gem16 and the G1/G2/M phase marker PIP-tag-NLS-mNeonGreen17, as well as H2B-iRFP, a 
nuclear marker required for tracking. The state of the cell cycle differs from one cell to another; therefore, quan-
tifying the cell cycle at the single-cell level is important for understanding the molecular mechanisms under-
lying cell cycle. The image set studied in this case consists of time-lapse images taken by IXM-XLS (Fig. 4b; 
697.68 μm/1080 pixels = 0.646 μm/pixel, × 20 objective, 1080 × 1080 pixels, 207 frames, 20 min frame interval). 
Each image is produced by the stitching together of multiple original images, and the cells differ markedly in size 
and luminance; some cells have extremely low luminance values that are the same level as the background. In 
this case, we followed the same procedure as in Case 1 for recognition and tracking. After applying the link-type 
tracking function, most of the tracking errors that could be confirmed at the time before the correction were due 
to the fact that the boundary between two cells was not detected when they were adjacent to each other, and they 
were misrecognized as a single cell, resulting in a break in the trajectory and incorrect branching. As in Case 1, 
we used the cell lineage display to find the mis-tracked area and correct the error. When misrecognition occurs 
over a long frame interval, it is effective to apply the sequential tracking function to individual cells that fail to be 
recognized. However, if the proximity is so close that tracking is difficult and misalignment occurs, it can be cor-

Figure 6.   Conceptual diagram of the tracking process. (a) Conceptual diagram of the tracking process for 
an entire frame using link-type tracking. Depending on the detection accuracy and other factors, it may not 
always be possible to track accurately, but it is easy to detect erroneous tracking by displaying the cell lineage 
and checking for breaks and branches in the genealogy. (b) In addition to link-type tracking, it is possible to 
seamlessly combine sequential tracking, manual tracking, and ROI/trajectory editing functions. For example, 
sequential tracking can be used to add or modify trajectories only for mistracked areas, and accurate tracking 
results can be obtained efficiently through the combination.
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rected by switching to manual tracking as appropriate. We measured the recognition and tracking performance 
immediately after applying the link-type tracking function (before correcting the erroneous tracking) using the 
same index as in Case 1. The recognition accuracy (SEG) was 0.90, the detection accuracy (DET) was 0.95 and 
the tracking accuracy (TRA) was 0.94. The recognition accuracy is lower than that of Case 1 because the bound-
ary between adjacent cells is more ambiguous and there is no difference in luminance between them, making it 
difficult to segment them. The recognition process (including the calculation of feature values) took 46 s (4.5 fps) 
for the entire 207 frames, and the link-type tracking took 1 s (207 fps).

Case 3: Phase contrast microscope image tracking.  Finally, using the dataset “Glioblastoma-astro-
cytoma U373 cells on a polyacrylamide substrate (PhC-C2DH-U373)” published in the ISBI Cell Tracking 
Challenge6 (Fig. 4c), we introduce an example of tracking processing using the DL recognition function and 
link-type tracking processing. A cell imaged by a phase contrast microscope is one of the targets difficult to 
detect by conventional recognition processing because the cytoplasm is generally irregularly shaped and there 
is no difference in contrast with the background. In this case study, we applied the DL training and recognition 
functions. This software is equipped with a pen tool function as an annotation tool, which allows user to freely 
create mask regions on the image loaded for training image creation. In this study, we used the SilverTruth anno-
tation image provided in the dataset above and converted it to the correct mask image format for the DL training 
process. Specific operation procedures for the DL training and recognition function are described below.

Step 1: Load the original image as a training image into the software, and create the correct mask area by trac-
ing the boundary line of the tracking target using the pen tool function. (In this case, the SilverTruth image 
is converted to the correct mask format and used instead.)
Step 2: On the GUI, specify the destination of the weight file that will be the training result. In addition, if 
necessary, set hyper-parameters related to DL training (e.g., number of epochs).
Step 3: Start training by pressing the button. When the training is completed, a weight file representing the 
training result is generated at the specified storage destination.
Step 4: When performing DL recognition, the trained weight file is selected from the file dialog, and the DL 
recognition service program written in the Python language is started.
Step 5: Read the image to be recognized on the software, and execute DL recognition processing in coopera-
tion with a DL recognition service program.

After the DL recognition processing, the tracking processing by the link-type tracking function was executed. 
When the tracking error was confirmed using the cell lineage display, among others, only a few small fragment 
areas with long migration and unclear boundaries were not detected. The undetected region was added as a new 

Figure 7.   Example of this software’s screen display. A scene during cell division. Clicking on an ROI (ID 204) 
in the original image immediately displays the corresponding cell lineage and a montage of the image before 
and after the frame in question. Clicking on any position in the cell lineage will display the corresponding image 
frame, ROI, and montage image. Clicking on a montage image will generate the same response.
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ROI region using the pen tool function, and when the link-type tracking function was applied again, the correct 
tracking result was obtained. As a result of measuring the recognition performance and tracking performance 
immediately after the application of the link-type tracking function (before correcting the erroneous tracking) 
using the same indices as in Case 1, the recognition accuracy (SEG) was 0.93, the detection accuracy (DET) was 
0.98 and the tracking accuracy (TRA) was 0.98, confirming that highly accurate tracking was possible. The DL 
recognition process (including the calculation of feature values) took 116 s (1.0 fps) for the entire 115 frames, 
and the link-type tracking took 0.4 s (230 fps).

Through Case 1 and Case 2, it was shown that accurate tracking results could be efficiently obtained by com-
bining multiple tracking functions and cell lineage display, among others, incorporated into this software. Many 
existing software programs do not have sufficient means of checking the validity of the tracking results, and it is 
always unclear whether the correct data have been obtained after the automatic tracking process. Especially when 
there is a large number of tracked objects or these objects are dense, it is often difficult for software to check the 
correctness of individual trajectories. To overcome these issues, LIM Tracker has a UI that enables interactive 
operation and incorporates an excellent visualization means that displays data in real time. Even in the cases 
described above, the entire linked ROI group (trajectory) can be highlighted with one click of the mouse on 
the ROI located on the original image, and the correctness can be easily confirmed visually. Furthermore, it is 
possible to highlight a feature list, related data on a scatter plot, or a graph showing time-series feature changes 
based on trajectory information in conjunction with a click of the mouse on the ROI, and to call up and display a 
montage (group of thumbnails) image of the corresponding trajectory. Conversely, when an arbitrary coordinate 
on the time-series graph is clicked with the mouse, a corresponding image frame is called to highlight the ROI 
and update the montage image display. Even when the position or size of the ROI is corrected with the mouse, 
the feature quantity is immediately recalculated, and the related tables, scatter plot, graph, montage, and so on 
are updated in real time. These features are also incorporated into the cell lineage display, and the correspond-
ing frame and ROI, among others, can be easily retrieved by simply clicking on the lineage as described in the 
above example.

In addition, among existing software, there are almost no options providing usable and practical correction 
methods for tracking results. For example, if the goal is to obtain 100% accurate and error-free tracking data, 
the only option is to abandon automatic tracking, which is not correctable, and use manual tracking. As intro-
duced in the above example, LIM Tracker can perform sequential tracking, manual tracking, or both by limit-
ing to erroneous tracking points found after automatic tracking by the link-type tracking function. By partially 
remaking the track, the erroneous points can be effectively corrected without reprocessing the whole, which 
greatly reduces the labor-intensiveness of the procedure. As another application of the combined approach, for 
example, when the object to be processed changes along the time axis and there is a frame section that is dif-
ficult to recognize on the way, a combination of changing the method for each section and tracking is possible. 
In addition, when the number of targets is small, a combination of utilizing manual tracking only in the section 
where automatic tracking is difficult is also possible, while utilizing sequential tracking in which highly precise 
processing is mainly possible.

Other features include simple and flexible editing of ROIs and trajectories based on direct manipulation 
with the mouse. For example, if misrecognition is found during the recognition process, it is easy to correct the 
over- or under-detected part using the mouse and then perform the linking process. In addition, if a link error 
is found after the linking process, it is easy to correct it by relinking directly with the mouse. Moreover, it was 
shown through case 3 that the latest DL recognition algorithm can be easily trained and recognized by the users 
themselves. In general, the recognition process using machine learning such as deep learning does not always 
work properly for user-specific datasets by simply using the default process; in such cases, the recognition process 
itself needs to be trained by the user. However, software incorporating existing DL recognition processing has 
poor functions related to DL training, and it is often difficult to construct processing optimized for a user’s own 
purpose. The standard DL training procedure consists of a series of steps, such as first creating a training image 
by annotation work for the image, then having the DL training algorithm learn the image, and then generating a 
training result, that is, a weight (model) file representing the learned network state. Our software enables users to 
perform the above steps simply and consistently without requiring expert knowledge of deep learning, machine 
learning, or other fields, and to obtain highly accurate tracking results by easily constructing the recognition 
process optimized for the desired data by users themselves.

The main challenges regarding the current state of LIM Tracker can be summarized in three points. First, 
there is a limitation in functional extensibility. Currently, there is a plugin mechanism for the default (non-DL) 
recognition and DL recognition processes, and users can incorporate any algorithm from outside the software; 
however, for the tracking process, users can only use the preloaded algorithms. In addition, the analysis result 
to be measured in this software can only use pre-defined features, and there is no extension mechanism to allow 
users to arbitrarily define the features that they want to output. Second, interoperability with other analytical 
software is limited. The output of analysis result in this software is limited to CSV text and image files, and there 
is no general-purpose interface to enable smooth data linkage from this software to existing more specialized 
analytical software (e.g., R, Matlab, etc.) or vice versa. Third, this software prioritizes support for Windows OS, 
and some of its functions are limited in Linux. We would like to improve the above points in the future.

Conclusion
LIM Tracker is equipped with conventional tracking functions consisting of recognition and frame-to-frame link 
processing, pattern-matching-based sequential search tracking, and manual tracking functions, which can be 
seamlessly combined as appropriate to improve the efficiency of tracking operations. In addition, the DL recogni-
tion function can also be used to build highly accurate recognition processes for a wide range of objects. Training 
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functions including annotation tools are built-in, and a series of DL operations from training to recognition can 
be performed by a simple procedure. Moreover, the software enables interactive operation of data display items 
(ROI, tables, graphs, thumbnails, etc.) on the screen to visually and intuitively evaluate the validity of tracking 
results, and has a function to select and highlight related items in real time using the mouse. It also has a simple 
and flexible mouse-based correction method in the case of mis-tracking. The application of this software is not 
limited to any particular subject but can support the quantification of a variety of dynamic phenomena in bio-
logical processes. By providing this software to the life science community, we hope to contribute to improving 
the efficiency of data analysis in time-lapse live imaging studies.

Data availability
The datasets for cases 1 and 2 are available at https://​github.​com/​LIMT34/​LIM-​Track​er. The dataset for case 3 can 
be downloaded from the ISBI Cell Tracking Challenge website at http://​cellt​racki​ngcha​llenge.​net/​2d-​datas​ets/.

Code availability
LIM Tracker is implemented as a plugin for ImageJ/Fiji. The software can be downloaded from https://​github.​
com/​LIMT34/​LIM-​Track​er.
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