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Influence of sampling design 
on landslide susceptibility 
modeling in lithologically 
heterogeneous areas
Andrei Dornik1, Lucian Drăguţ1*, Takashi Oguchi2, Yuichi Hayakawa3 & Mihai Micu4

This work aims at evaluating the sensitivity of landslide susceptibility mapping (LSM) to sampling 
design in lithologically-heterogeneous areas. We hypothesize that random sampling of the landslide 
absence data in such areas can be biased by statistical aggregation of the explanatory variables, 
which impact the model outputs. To test this hypothesis, we train a Random Forest (RF) model in 
two different domains, as follows: (1) in lithologically heterogeneous areas, and (2) in lithologically 
homogeneous domains of the respective areas. Two heterogeneous areas are selected in Japan (125 
km2) and Romania (497 km2), based on existing landslide inventories that include 371 and 577 scarps, 
respectively. These areas are divided into two, respectively three domains, defined by lithological 
units that reflect relatively homogeneous topographies. Fourteen terrain attributes are derived from 
a 30 m SRTM digital elevation model and employed as explanatory variables. Results show that LSM 
is sensitive to a random sampling of the absence data in lithologically heterogeneous areas. Accuracy 
measures improve significantly when sampling and LSM are conducted in lithologically homogeneous 
domains, as compared to heterogeneous areas, reaching an increase of 9% in AUC and 17% in the 
Kappa index.

Landslides produce each year thousands of human victims1, important economic losses, as well as severe envi-
ronmental damages. To reduce exposure to landslide hazards, it is necessary to identify the areas which are sus-
ceptible to such processes. Landslide susceptibility modeling (LSM) encompasses several branches of methods 
and approaches designed to evaluate the degree to which an area might be subject to landslide initiation2. Among 
these, statistically based methods have been increasingly used in the last four decades to perform quantitative 
LSM2. These methods describe the bivariate or multivariate statistical relationships between slope instability 
factors and the distribution of the inventoried landslides3, which are connected through spatial entities (raster 
grid cells or various types of vectors). Such entities are usually sampled randomly4 to train and validate the model 
and depending on the approach they can fall into two categories: landslide presence and landslide absence. 
Since sampling strategies hold a major influence on the results of the susceptibility models5, several studies have 
focused on this area6.

A category of sampling strategies has focused on presence data to address rather conceptual issues such as: 
how should landslides be modeled (single point vs. all points)?7; which parts of landslides should be considered 
(scarp vs. body)?8; which sampling strategy best approximates the pre-failure conditions? Other studies have 
considered both presence and absence data in sensitivity analyses of model performance related to sampling 
intensity (total or a relative number of samples) and the presence/absence ratio9–11. In such studies, presence data 
are usually sampled within landslides, and the absence samples are randomly selected from the areas outside 
the landslides12. Details on the above approaches, as well as references to them have been provided by Budimir 
et al.13, Lombardo et al.14, and Lombardo and Mai15.

Comparatively less attention has been paid to sampling of absence (non-landslide) data, although their qual-
ity is critical to the success of the models16–18. By analogy to ecological research, these data are rather pseudo-
absence19 because their absence from landslide inventories does not necessarily mean that an area is stable20; it 
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rather means that no evidence of landsliding has been found, either because of a biased survey (e.g. in forested 
areas), or because landslides have not occurred yet, so to be incorporated within an inventory21. The quality of 
the absence data depends more on the sampling strategy and less on the quality of the landslide inventory, as 
compared to the quality of the presence data16. Dhakal et al.22 proposed unaligned stratified random sampling 
(equal number of cells taken from rectangular blocks) to select the absence data and found that this method 
led to more accurate hazard (as called) maps as compared to a systematic sampling method. The success of this 
sampling strategy is likely due to the reduction of spatial autocorrelation as well as to the increase of the distance 
from the source area, which reduces confusions between presence and absence. Conoscenti et al.23 introduced 
a method to restrict sampling the absences to circles with diameters that approximate the width of the source 
area, which are distributed randomly over the apparently stable area. This approach also reduces the bias of the 
spatial autocorrelation, thus increasing the representativity and quality of the absence data. Later on, Conoscenti 
et al.12 showed that this sampling strategy helped in improving the accuracy of the models in the areas where the 
models were calibrated. However, the strategy was found less successful when the model was transferred outside 
the calibration area. Hong et al.24 evaluated the ratio of the presence to absence samples as a function of the size 
of the sampling area and found that the accuracy of LSM significantly depends on the interplay between the two 
factors. Shao et al.25 found that both sampling intensity and the presence/absence ratio impact the predicted 
occurrence probability of co-seismic landslides. Unlike the previous approaches, Zhu et al.16 proposed a sampling 
strategy that maximized the difference between presence and absence solely in the feature space. Their similarity-
based sampling (SBS) approach led to better performances of the model as compared to other sampling strategies.

While the lithological and morphological homogeneity of the study area has been acknowledged as an impor-
tant factor in the performance of LSMs20,26, most studies have not explicitly considered sampling issue. For 
instance, Blahut et al.27 performed LSM at a regional scale on both geomorphologically homogeneous zones and 
random partitions, and concluded that the former was preferable. Trigila et al.28 addressed the heterogeneity of 
the Italian territory by partitioning it into five more homogeneous domains for training LSMs. To facilitate an 
easier interpretation of the model by stakeholders, Petschko et al.29 fitted one generalized additive model (GAM) 
for each lithological unit in the study area. The authors reported a good ability of this approach to discriminate 
between slide and no slide points. Petschko et al.30 confirmed the merits of the partition on lithological units and 
mentioned that sampling bias can occur when some model domains have high contrast between so-considered 
stable (e.g. large flat areas) and unstable (e.g. steep areas) sectors. Similar results were reported by Steger and 
Glade18, who showed that in morphologically-heterogeneous regions, the presence of “trivial areas” (e.g. flood-
plains and flat areas) influenced modeled relationships, the appearance of landslide susceptibility maps, and 
associated prediction performance. Indeed, in heterogeneous areas some statistic trends in the explanatory 
variables may be different at the level of the individual domains as compared to their aggregate (the whole study 
area), thus leading to a fallacy in the models, which is known as the Simpson’s paradox. Such issues have been 
reported in geosciences, e.g. by Ma31 who noted that 3D geostatistical modeling can be plagued by sampling 
bias in heterogeneous areas. It should be noted that modeling on lithologically/morphologically homogeneous 
areas is not widely supported, because of the inherent subjectivity involved in the partition of the study area32.

Our analysis of the literature to date shows that the effects of sampling in heterogeneous areas are still poorly 
understood in LSM. Modeling in lithologically/morphologically homogeneous areas has been performed rather 
intuitively and/or for other purposes than understanding and improving the quality of sampling strategies. 
Moreover, it is not clear whether modeling in lithologically/morphologically homogeneous areas helps or just 
adds uncertainties through subjective delineation.

The main goal of this article is to evaluate the sensitivity of LSM to sampling in lithologically-heterogeneous 
areas. We hypothesize that random sampling of the landslide absence data in such areas can be biased by statisti-
cal aggregation of the explanatory variables, which impact the model outputs. To test this hypothesis, we train 
a Random Forest (RF) model in two different domains, as follows: (1) in lithologically heterogeneous areas, 
and (2) in lithologically homogeneous domains of the respective areas. The domains are defined by geological/
lithological units that reflect more homogeneous topographies. The experiments are carried out in two different 
areas, considered representative of landslide-prone environments in Romania and Japan. Previous landslide 
susceptibility studies tended to deal with only one area or relatively close multiple areas. Therefore, the obtained 
results may strongly reflect specific local conditions. Here we selected two distant areas with clearly different 
environments, to obtain more widely applicable implications.

Methods
Study areas.  The first study area is located within Buzău County, Romania, and covers about 497 km2, 
named hereafter B (Fig. 1a–c). It is a geologically and lithologically complex region due to complex morphogen-
esis and paleogeographic evolution in a tectonically active sector of an intra-collisional plates sector (Vrancea 
seismic region), developed at the contact between the Romanian Curvature Carpathian Mountains and the Sub-
carpathian Hills. In this area (generally well-covered by dense forests in the mountainous sector and by a mixed 
association of forests, orchards, and pastures/hayfields in the hilly sector) three distinct lithological domains 
could be individualized (Fig. 1d). The north-western section, named B1, belonging to the Carpathian Mountains 
(parts of Penteleu and Podul Calului sub-units), is built by low cohesive Paleogene flysch formations consisting 
of sandstones alternating with shale and schistose clayey-marly intercalations, and the maximum altitude of 
this area (1355 m) is the highest of the three domains. The central part covers a southwest-northeast-oriented 
structure, named B2, and is represented by a hilly massif reaching 1100 m (Ivănețu Ridge), which represents the 
external termination of the intensely folded Palaeogene flysch formations consisting of schistose sandy flysch 
with bituminous and clayey-marly intercalations. The third domain, named B3, is located in the south-east part 
of the study area and represents a part of the 600–800 m high Subcarpathian Hills (Buzău sub-unit), dominated 
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Figure 1.   Location of Buzău (a,b) and Shizuoka (e,f) study areas. Lithologically-heterogeneous study areas are 
shown in (c) and (g) Lithologically-homogeneous domains are shown in (d) and (h).
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by typical molasse deposits consisting of clays, marls, sand, and gravel deposits, with thin intercalations of schis-
tose sandstone and gypsum (Fig. 1d).

The second study area is located in the southeast of Honshu Island, Japan, more precisely in the Shizuoka 
Prefecture, covering about 125 km2, named hereafter S (Fig. 1e–g). The study area is mainly covered by forests, 
reaching a maximum altitude of 1529 m. This area is subdivided into two domains, one located in the west (S1) 
and the other in the eastern part (S2). S1 has higher altitudes and consists mostly of the Eocene to early Oligo-
cene marine sandstone and accretionary complex, with local patches of the sandstone-dominant alternation of 
sandstones and mudstones of the same age. S2 with lower altitudes is dominated by the late Oligocene to mid-
dle Miocene mudstone-predominant alternation of sandstones and mudstones, with local patches of marine 
limestone of the same age (Fig. 1h).

As in Petschko et al.30, the main criteria in the delineation of the domains was lithological homogeneity, as 
defined by similar geomechanical properties. However, delineation of each lithological unit would lead to exces-
sively small areas, and some of them are without any landslide sample, which would make statistical modeling 
impossible. Thus, a tradeoff between “pure” homogeneity and the statistically relevant size of the domains had 
to apply. Therefore, smaller lithological units were merged into larger, relatively homogeneous associations, with 
similar geomechanical properties and visible expressions in topography (Fig. 1).

Data.  Landslide inventory database.  In the Buzău study area, there is an available database containing 577 
landslide scarps, acquired in the last 40 years and compiled from different sources, such as archive data, detailed 
geomorphological field mapping, local authority databases, digital stereographic photo interpretation using 
color aerial ortho-photographs33,34. For the Shizuoka study area, we used an inventory of 371 landslide scarps, 
provided by the National Research Institute for Earth Science and Disaster Resilience, Japan (NIED)35–37. The 
inventory was derived by visual interpretation of topographic discontinuities using stereo-paired aerial photo-
graphs at a 1:40,000 scale, acquired in the 1970s33. Both inventories lack attributes regarding landslide types.

The study areas and morphology of landslides as well as a more in-depth analysis of the existing databases 
are described in detail by Sîrbu et al.33.

Terrain variables.  For both regions, we used the Shuttle Radar Topography Mission (SRTM) digital elevation 
model (DEM) with a spatial resolution of 30 m and an absolute vertical accuracy of the elevation data of 16 m. 
This product was created with radar interferometry technique38.

The System for Automated Geoscientific Analyses (SAGA) software was used with the DEM to derive 14 
terrain variables, related to terrain slope and curvature, landscape position, and terrain roughness. Elevation 
is regularly used as a predictor in landslide susceptibility assessment39, while slope gradient is the most widely 
used predictor in landslide modeling2. Slope aspect may influence the soil moisture and vegetation growth3. In 
this study, the slope aspect has been expressed as cosine and sine of the aspect, which represents the norther-
ness and easterness, respectively. Slope length and slope height are related to potential disruption energy40. 
Plan curvature is generally used to highlight the divergence or convergence of flow, while profile curvature and 
convexity describe the relative deceleration/acceleration of material flows40. Valley depth and midslope position 
illustrates the relative landscape position, acknowledged as a predictor of landslides41. In addition, landscape 
position, related to dominance or enclosure of a location, is illustrated by topographic positive openness, and 
negative openness respectively42. Terrain surface texture, emphasizing differences in elevation of different loca-
tions, is related to terrain roughness43.

Sampling strategy.  In each lithologically heterogeneous area (B and S) and lithologically homogeneous 
domain (B1, B2, B3, S1, and S2) we conducted a random sampling. From all the available points (all pixels) in 
each area, we have selected a representative number of points, using the r.sample command44 within the Geo-
spatial Modelling Environment45, ensuring 50% within landslide scarps (at least one point per scarp) and 50% 
outside landslide scarps. Representative numbers of samples were calculated for a margin of error of 1% and a 
confidence level of 95%. For the Buzău area, the representative number is 10,000, while in Shizuoka it is 6000.

The seven point-type databases were subsequently intersected with the stack of terrain variables, recording 
the following information: presence/absence of landslide scarp and associated values of the terrain variables.

Random Forest models.  The random forest (RF) method was used for conducting LSM. RF46 is a machine-
learning algorithm for non-parametric multivariate classification or regression, being increasingly used in envi-
ronmental modelling47.

The randomForest package in R software44 was applied on the seven point-type databases. The predictors 
consisted of all 14 terrain variables, and LSM was conducted separately within each lithologically heterogeneous 
area (B and S), as well as in each lithologically homogeneous domain (B1, B2, B3, S1, and S2), resulting in seven 
models and susceptibility maps.

In addition, to evaluate confidence limits and uncertainties, a bootstrapping technique was used by repeating 
the random sampling and LSM 20 times. To create the LSM map for each area, the RF model with the maximum 
accuracy was retained among all models. To assess independently the accuracy of models, at each iteration the 
database was split randomly into two parts: 70% of samples were used for LSM prediction, while the rest 30% 
were used for model evaluation.

Model evaluation.  To test the hypothesis, results are compared both quantitatively as model prediction 
performance and relative to their geomorphic plausibility. The prediction performance of the LSM models was 
assessed by four metrics. The first metric is the area under the curve (AUC), a widely used metric for model 
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performance evaluation2 and is also the most appropriate method for assessing binary classification. AUC is also 
easy to interpret, since it has a value of 0.5 for a test with accuracy no better than chance, while a value of 1 for a 
test with perfect accuracy48. The second metric is “out-of-bag error” (OOB), an estimator of the ensemble error, 
computed by comparing the out-of-bag predicted responses against the true responses39. The other metrics are 
overall accuracy (OA) and the kappa index of agreement (Kappa), widely known and used in environmental 
mapping. OA and Kappa have been used to assess the predicted classes (scarp vs no scarp), with Kappa compen-
sating for the success of a random classification. They were used since OOB may overestimate the true prediction 
error because of binary classification problems. AUC was used to evaluate the landslide susceptibility models 
(probability maps) and measures how well the classifier ranks the probability of scarp class higher than no scarp 
class. The values of accuracy metrics were retained for all repetitions to assess the variability and confidence 
limits of the LSM.

Results
The distribution of elevation values in the entire population of the Buzău area shows a notable decrease of vari-
ation within homogeneous lithological domains as compared to the entire heterogeneous area, except for B1 
(Fig. 2). The elevation of absence data within the study area B has an interquartile range of 303 m (1st quartile 
501 m; 3rd quartile 804 m) and a median of 640 m, while B2 has a range of 252 m (1st quartile 565 m; 3rd quartile 
817 m) with the median of 697 m, and B3 has an interquartile range of 110 m (1st quartile 432 m; 3rd quartile 
542 m) with a median value of 532 m. Similarly, the interquartile range of elevation among presence data is 
significantly lower in B2 (188 m) and B3 (131 m) as compared to the heterogeneous area B (231 m). B1 is the 
only homogeneous domain that recorded a higher interquartile range compared to B, with values of 351 m for 
absence and 257 m for presence (Fig. 2).

In the Shizuoka study area, only absence data recorded an interquartile range significantly lower within 
homogeneous domains; S1 with 272 m (1st quartile 722 m; 3rd quartile 994 m) and S2 with 337 m (1st quartile 
401 m; 3rd quartile 738 m), compared to S with an interquartile range of 370 m (1st quartile 464 m; 3rd quartile 
834 m). The presence data recorded a similar interquartile range in S1 (336 m) as compared to S (332 m), but a 
higher value in S2 (386 m) (Fig. 2).

In both study areas, aggregation leads to an increase in the differences between presences and absences, which 
is more visible in the Japanese case (Fig. 2). In Buzău, the difference in the median values between presences and 
absences decreases from 75 m in B to 28 m in B1, 25 m in B2, and 46 m in B3. In Japan, the difference is 241 m 
for S, 136 m for S1, and 143 m for S2.

Landslide susceptibility maps in the Buzău and Shizuoka study areas, both within the heterogeneous litho-
logical area (B and S) and homogeneous domains (B1, B2, B3, S1, S2) are shown in Fig. 3. Different spatial 
distributions of the values can be observed between mapping within a heterogeneous lithological area and 
homogeneous domains, although the susceptibility values are similar and range from 0.017 to 0.655 in B, from 
0.001 to 0.637 in B1, from 0.018 to 0.775 in B2, and from 0.06 to 0.698 in B3, respectively, while in Shizuoka 
they range from 0 to 0.99–1.

By using a representative number of samples, a stratified random sampling led to an increase of AUC by 7% in 
B1, 1% in B2, and 9% in B3 as compared to the heterogeneous area, in all three lithological homogeneous areas in 
Buzău. The other three metrics show a similar trend of performance increase when sampling is conducted within 
lithological homogeneous domains, except the kappa index in B2 (Table 1). The S1 area is the only case study out 
of five, in which the stratified random sampling resulted in poorer prediction as compared to the heterogeneous 
area, with AUC recording a lower value by 4%. In S2, all four metrics show significant improvement of stratified 
sampling over random sampling in the heterogeneous area, by 3% for AUC, 6% for OOB, 5% for OA, and 9% 
for Kappa, respectively (Table 1).

The differences between single sampling and an average resulting from 20 times repetitions are insignificant, 
by only 1–2% (Table 1), which suggests high confidence of LSM even when only one draw is performed. Also, the 
variation of the four-accuracy metrics among 20 repetitions is small, up to 1–2%, within all study areas (Fig. 4).

Discussion
To evaluate the sensitivity of LSM to sampling in heterogeneous areas, we performed LSM in two study areas, on 
the whole regions (B and S) as well as at the level of their lithologically homogeneous domains (B1, B2, B3, S1, 
S2) and found that the accuracy of modeling increased when the sampling was restricted to the homogeneous 
domains, except for one case (S1). These results are explained by differences in the statistical properties of the 
explanatory variables associated with the landslide absence data. As lithology is often reflected in topography, 
terrain variables tend to vary accordingly, so that their statistical properties might differ when computed at the 
level of lithological strata versus larger, more heterogeneous areas. For instance, altitude values exhibit more 
variation, as well as higher differences between presences and absences at the level of entire study areas (B and 
S) as compared to their homogeneous domains (Fig. 2). A random sampling of absence data brings this exag-
gerated difference into the prediction model, which associates the presence with high altitudes and the absence 
with low heights, respectively. Thus, the scarps in the lower areas are underestimated, while those in the higher 
parts of the landscape are overestimated, as visible in Fig. 3. This bias also occurs in S1 where the low-altitude 
scarps present in the southern part of the area (Fig. 1), on a different lithology, are underestimated. Such differ-
ences in global vs. local are present in all other terrain variables and propagate errors in the prediction models.

Similar improvements in the accuracy of the results on the lithologically homogeneous areas were also 
observed when applying the widely used sampling strategy of one point per scarp and a balanced number of 
absences49. Thus, we have sampled one random point within each landslide scarp polygon and the same number 
of points randomly created outside the landslide scarp area, as absence data, both in the heterogeneous areas 
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(B and S) and their homogeneous domains (B1, B2, B3, S1, S2). The accuracy metrics are generally higher for 
the models run on the lithologically-homogeneous domains (Table 2). However, the values of accuracy meas-
ures are lower as compared to the analysis based on the representative number of samples. On the other hand, 
the use of the strategy of one point per scarp leads to unstable results. By repeating the sampling 20 times, we 
obtained accuracy metrics that exhibit large interquartile ranges, with total and partial overlapping within the 
Buzău study areas (Fig. 5).

The results reported here confirm the findings by Blahut et al.27 and Petschko et al.29 that LSM is more accurate 
when conducted on lithologically/morphologically homogeneous areas. Spatial modeling in heterogeneous areas 
has been acknowledged as an important issue in Geoinformatics because spatial heterogeneity leads to uncon-
trolled variance in geographic variables50. We showed that random sampling of the absence data significantly 
influences the accuracy of LSM because of the differences in the statistical properties of the explanatory variables 
at homogeneous vs. heterogeneous levels. This sampling bias did not display reversals of statistical relationships 
at the heterogeneous levels as in a typical Simpson’s paradox. Nevertheless, a sampling bias that does not lead 
to a reversal can be more dangerous as it is less noticeable, thus holds a higher potential for biased results31.

Figure 2.   Distribution of terrain variables in the landslide presence and absence areas as represented by the box 
plot. Note that those variables with non-normal distributions have been subjected to normalization procedure.



7

Vol.:(0123456789)

Scientific Reports |         (2022) 12:2106  | https://doi.org/10.1038/s41598-022-06257-w

www.nature.com/scientificreports/

On the other hand, our results disagree with the sampling strategy of one point per scarp and a balanced 
number of absences. By following such a strategy, the accuracy metrics were highly variable, especially in the 
Buzău study area, where the results were likely obtained by chance. Recently, Shao et al.25 found that varying the 
sampling intensity led to significant differences in the total predicted landslide area and concluded that stability 
of the prediction results increases with the intensity of the sampling. In contrast, we obtained acceptable results 
with relatively low interquartile ranges of accuracy metrics, by selecting a representative number of samples, 
calculated for a margin of error of 1% and a confidence level of 95%. A recent study8 also found that the predic-
tive power of the models generally increases with sampling intensity, yet the differences in accuracy are canceled 
out by using a deep learning neural network as compared to other models.

Seen from a slightly different perspective, our results can be explained by the interpretation of lithology as 
a lurking variable. According to this view, lithology was ignored in the heterogeneous areas (B and S), while 
implicitly considered in modeling their homogeneous domains (B1, B2, B3, S1, S2). In other words, lithology is 
important in LSM, thus it should be added as an explanatory variable in modeling. However, a meaningful cod-
ing of lithology as a variable is not easy, because the information included within the geological maps may not 
have a direct relationship with the mechanical properties of the rocks2. Perhaps this difficulty is the reason for its 
scarce use in statistically-based LSM—less than 10%, according to a recent review2. Stratification of a landscape 

Figure 3.   Landslide susceptibility maps in Buzău (left) and Shizuoka (right).

Table 1.   Accuracy metrics with a representative number of samples. OOB out-of-bag error, AUC​ area under 
the curve, OA overall accuracy, Kappa kappa index of agreement.

Study area Number of samples

One random sampling 20 repetitions

OOB AUC​ OA Kappa OOB AUC​ OA Kappa

B 10,000 0.26 0.82 0.75 0.51 0.26 0.82 0.75 0.49

B1 10,000 0.19 0.89 0.80 0.61 0.20 0.90 0.81 0.62

B2 10,000 0.25 0.83 0.75 0.49 0.26 0.83 0.75 0.50

B3 10,000 0.18 0.91 0.83 0.65 0.18 0.91 0.83 0.66

S 6000 0.20 0.91 0.82 0.65 0.19 0.89 0.81 0.63

S1 6000 0.23 0.87 0.78 0.56 0.23 0.87 0.79 0.57

S2 6000 0.14 0.94 0.87 0.74 0.14 0.94 0.87 0.73
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according to lithology is, in turn, more straightforward when considering only the lithological boundaries that 
mark topographic discontinuities as well.

In this study, we did not consider the landslide types because this information was not available in the invento-
ries. Since it is known that the accuracy of predictions improves when the classification of landslide type is made 
first4, we expect better results from such an approach at least for some types of landslides, as shown by Shu et al.51.

Conclusions
This study has shown that landslide susceptibility mapping is sensitive to a random sampling of the absence 
data in lithologically/morphologically heterogeneous areas. Accuracy measures improved significantly when 
sampling and LSM were conducted in lithologically homogeneous domains, as compared to heterogeneous 
areas, reaching a maximum increase of 9% for AUC and 17% for the Kappa index. These results are explained 

Figure 4.   Distribution and variation of accuracy metrics after 20 repetitions. The Buzău study areas are shown 
in green; the Shizuoka study areas are shown in red. OOB out-of-bag error, AUC​ area under the curve, OA 
overall accuracy, Kappa kappa index of agreement.

Table 2.   Accuracy metrics with one point per scarp. OOB out-of-bag error, AUC​ area under the curve, OA 
overall accuracy, Kappa kappa index of agreement.

Study area Number of samples

One random sampling 20 repetitions

OOB AUC​ OA Kappa OOB AUC​ OA Kappa

B 1154 0.30 0.77 0.73 0.45 0.33 0.74 0.67 0.34

B1 204 0.26 0.81 0.77 0.54 0.35 0.73 0.66 0.32

B2 220 0.36 0.74 0.70 0.39 0.32 0.74 0.67 0.35

B3 220 0.30 0.78 0.75 0.50 0.35 0.73 0.67 0.34

S 714 0.29 0.78 0.72 0.44 0.29 0.78 0.71 0.43

S1 220 0.32 0.84 0.75 0.50 0.39 0.67 0.62 0.23

S2 220 0.29 0.82 0.77 0.54 0.34 0.79 0.72 0.43
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by differences in the statistical properties of the explanatory variables associated with the landslide absence data, 
which impact the model outputs.

We also found that the results of LSM are more stable when selecting a representative number of samples, 
calculated for a margin of error of 1% and a confidence level of 95%. Repetition of the random sampling with 
this design 20 times resulted in low differences in accuracy measures. By contrast, the sampling strategy of one 
point per scarp and a balanced number of absences led to large interquartile ranges of accuracy metrics, with 
the results probably obtained by chance, which is obvious in one study area.
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