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The artificial neural networks (ANNs) have been often used for thin-film thickness measurement, 
whose performance evaluations were only conducted at the level of simple comparisons with the 
existing analysis methods. However, it is not an easy and simple way to verify the reliability of an 
ANN based on international length standards. In this article, we propose for the first time a method by 
which to design and evaluate an ANN for determining the thickness of the thin film with international 
standards. The original achievements of this work are to choose parameters of the ANN reasonably 
and to evaluate the training instead of a simple comparison with conventional methods. To do this, 
ANNs were built in 12 different cases, and then trained using theoretical spectra. The experimental 
spectra of the certified reference materials (CRMs) used here served as the validation data of each 
trained ANN, with the output then compared with a certified value. When both values agree with each 
other within an expanded uncertainty of the CRMs, the ANN is considered to be reliable. We expect 
that the proposed method can be useful for evaluating the reliability of ANN in the future.

An artificial neural network (ANN) is a well-known machine learning algorithm used to execute unspecified 
operations to achieve a certain goal without the operator’s intervention. The ANN is a method that compre-
hensively utilizes a variety of information by imitating the synapse structure of neurons making up the nervous 
system1. Therefore, the ANN can provide optimized solutions for any type of data. With such advantages, ANNs 
have been widely used in numerous fields, such as gaming, medicine, image processing, and voice recognition2. 
One of the main characteristics of an ANN is that it can extract meaningful data from complex information that 
contains noise. Moreover, unlike traditional algorithms that require initial values and multiple iterations, an 
ANN algorithm provides output in a very short time when trained once in advance.

Metrology throughout semiconductor and display manufacturing processes involves significant amounts of 
complex data3–14. A typical example is to determine the thickness of a thin film using the spectral reflectance 
spectrum. The reflectance spectrum includes not only information related to the thickness of the thin film but 
also various effects such as the bandwidth and distribution of the light source, the optical properties of the opti-
cal components in use, the uniformity of the material, the linearity of the detectors, environmental fluctuations 
and external noise. It is practically impossible to extract information of only the thin film thickness from the 
reflectance spectrum obtained experimentally, which increases measurement uncertainty. In this respect, given 
the advantages of an ANN, several studies have been reported to measure the thickness of transparent thin 
films or multiple thin films with a broad spectral light source and X-rays15–19. However, in all of these earlier 
works, the performance evaluation was limited to the level of a simple comparison with the results of existing 
analysis methods or other measurement techniques. As a result, it was concluded that an ANN works well if the 
difference between the results from the comparisons is relatively small. Even if the difference is small enough, it 
doesn’t mean that the ANN algorithm works accurately because both analysis methods can be incorrect. There-
fore, because of insufficient verification on the effectiveness of the ANN algorithms, the results obtained with 
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an ANN algorithm should only be used as initial values in a model-based analysis to reduce the difference with 
less iteration15,18. Despite of the practical difficulty regarding analysis reliability, no methods beyond the simple 
comparison have been proposed and adopted for verifying the ANN algorithms. Besides thickness measure-
ment applications, several studies of ANN algorithms have been also reported in real-life applications related to 
weather forecasting, yield improvement, and so on20–24. Similarly, the performance of the models used in these 
studies were evaluated in terms of various types of errors like root mean square error between model output 
and label. Unfortunately, label values based on actual measurements were also basically lack of measurement 
reliability. The original idea of this work is to exploit the traceability chain of the length standard of SI unit for 
evaluating the ANN algorithm for the first time. The reasonable determination of the ANN parameters and the 
reliable evaluation of the ANN algorithm can be achieved based on this concept, not using simple comparison 
with conventional methods.

In this article, an ANN algorithm for thin film thickness measurements was designed and verified using four 
certified reference materials (CRMs). Certification was done using a standard instrument based on spectral 
ellipsometry at the Korea Research Institute of Standards and Science. The ultimate goals of this study are (1) 
reasonable selection of the parameters of ANN algorithms and (2) a performance evaluation based on an inter-
national standard instead of a simple comparison with current analysis methods or measurement techniques. To 
accomplish this, ANNs for the thin film thickness analysis were built in 12 conditions with different combina-
tions of the number of hidden layers (L = 1, 2, 3) and the number of nodes in each layer (N = 50, 100, 150, 200). 
These 12 ANN algorithms were trained in a thickness range of 1–110 nm. The training spectra were created by 
a numerical simulation based on a multiple interference within the thin film. To evaluate the reliability of each 
ANN algorithm, the measured spectra of CRMs with nominal thicknesses of 10 nm (CRM-10), 30 nm (CRM-30), 
50 nm (CRM-50), and 100 nm (CRM-100) were used as the validation data sets. When a trained ANN algorithm 
provides outputs that are in good agreement with the certified values from the CRMs, it is considered to function 
properly. To the best of our knowledge, this study is the first to evaluate ANN algorithms intended to measure 
thin film thickness value based on the traceability chain of a length standard. It is very difficult to conclude that 
the simple comparison methods in previous works provide measurement reliability applicable to metrology.

Methods
For thin film thickness measurements, the spectral reflectometer has been widely employed due to high measure-
ment speed and simple configuration3–7,12,14. The lights reflected from the top and bottom surfaces interfere with 
each other, as shown in Fig. 1. These lights usually have a wide spectral bandwidth covering the whole visible 
range and can be emitted from gas lamps such as a tungsten-halogen lamp. The reflected lights can be detected 
by a visible spectrometer in a form of a spectrum, the mathematical model of which can be expressed by Eq. (1). 
The reflectance spectrum depends on the thickness of the thin film (d) as well as the Fresnel reflection coef-
ficients at the interfaces (r12 and r23), the complex refractive index of medium ( Ñ(k) ), the wavenumber (k) and 
the refracted angle (θ) according to the Fresnel equation14.

When the reflectance spectrum at an unknown thickness is obtained experimentally, the thickness cannot be 
easily determined by analyzing the spectrum itself. In such a case, each measured spectrum is compared individu-
ally with many spectra generated by Eq. (1). The reflectance spectra are generated with a certain thickness step 
in the measurable thickness range. In the absence of an estimated thickness of the specimen, a large number of 

(1)R(d; k) =
r12 + r23 · e

−j·2·k·d·Ñ(k)·cos θ

1+ r12 · r23 · e−j·2·k·d·Ñ(k)·cos θ

Figure 1.   Schematic diagram of multiple reflections and transmissions taking place within the thin film layer 
of a specimen (r12: Fresnel reflection coefficient of light incident from air to the film, t12: Fresnel transmission 
coefficient of light incident from air to the film, r23: Fresnel reflection coefficient of light incident from the film 
to the substrate, r21: Fresnel reflection coefficient of light incident from the film to air, t21: Fresnel transmission 
coefficient of light incident from the film to air, d: Film thickness).
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reflectance spectra are required to find the optimal thickness in a wide arbitrary thickness range. Moreover, to 
improve the thickness measurement resolution during this comparison, the number of spectra should increase 
by adopting a smaller thickness step. Therefore, for a precise analysis of an arbitrary thickness, this model-based 
algorithm requires a considerable amount of time during the comparison process. After this comparison, the 
thickness used to generate the spectrum with the least square error relative to the measured spectrum is chosen 
as the solution of the thickness of the thin film. When the thin film thickness is outside the range of comparison, 
a solution may not be found, or an incorrect thickness value may be obtained. On the other hand, the learned 
ANN algorithm instantly gives the analyzed thickness value of a given reflectance spectrum with no need of 
multiple iterations and an initial value. Therefore, the ANN algorithm can be useful for real-time applications.

Figure 2 shows the schematics of the proposed method for the design and verification of an ANN algorithm. 
In Fig. 2a, the conventional method of training for an ANN algorithm is shown, matching those in previous 
works15–19. A multilayer perceptron (MLP) type ANN algorithm was constructed and trained using Python, 
similarly to the previous work15,17,19. In the wavelength range of the spectrometer to be used for the CRM meas-
urement, a wavelength range in which the intensity of the measured light is sufficiently greater than noise was 
selected, and the number of samples for that range was established as the number of input nodes. Therefore, 
reflectance spectra are received from 881 input nodes and thin film thickness analysis values are output from one 
output node through a hidden layer. A sigmoid function was applied as the activation function like the previous 
works15,19, and the loss was calculated according to the average of the mean squared error between the outputs 
and the ideal value as determined in the simulation. After the error estimation is completed, a basic backpropa-
gation algorithm is utilized to update the weights connecting each layer. Batch gradient descent was used with a 
learning rate of 0.000001. For weight initialization, Xavier initialization was utilized. Because the purpose of this 
study is not to improve the performance of ANN algorithms, of which basic form is only exploited without any 
additional techniques among other advanced algorithms. In our work, in the thickness range of 1–110 nm, 110 
reflectance spectra were numerically generated with equal steps of 1 nm based on a mathematical model with 
the Fresnel equation, as expressed by Eq. (1). The wavelength range of the spectrum was 355–657 nm with 881 
sampling points. In this case, 70% of the ideally created reflectance spectra were utilized as a training dataset, 

Figure 2.   Schematics of the proposed method: (a) conventional training process using numerical simulations. 
The ideal reflectance spectrum for the thin film thickness d is used as the input, and the d is used as the correct 
label. (b) Flowchart of the proposed method for design and verification of ANN algorithm for measuring thin 
film thicknesses.
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and the others were a test dataset of the ANN algorithms. Because the proposed method can basically offer strict 
validation of the ANN algorithms using certified values of the CRMs, it is not necessary to use validation data 
separately from ideally created reflectance spectra used for training datasets. The design parameters of the ANN 
algorithm were number of hidden layers (L = 1, 2, 3) and number of nodes in each layer (N = 50, 100, 150, 200), 
which were selected as simple cases based on the previous works15,17,19. Therefore, with the combination of these 
two parameters, 12 ANN algorithms were developed and then trained.

Figure 2b shows the procedure used to measure the reflectance spectrum of the CRMs and to verify the 
trained ANN algorithms. Considering the thickness measurement range, four CRMs of CRM-10, CRM-30, 
CRM-50, and CRM-100 were exploited to verify the 12 ANN algorithms. The CRMs have two layers consisting 
of a silicon dioxide (SiO2) thin film on a thick silicon substrate. Table 1 shows the certified values and expanded 
uncertainties of each CRM in use, as provided by the Korea Research Institute of Standards and Science. In our 
experiments, the reflectance spectra of these CRMs were obtained using a commercial spectrometer with a 
wavelength range of 190–879 nm with 2048 sampling points. Any other spectrometers detecting the wavelength 
range of 300–700 nm can be used for determination of thin-film thickness in spectral reflectometry3,5,7,12,14. The 
Deuterium lamp used as a light source emits white light in a wide wavelength range of 112–900 nm. The light was 
normally incident with regard to the thin film surface with a beam diameter of 2.6 mm in the form of plane wave 
created using a collimating lens, as shown in the spectral reflectometry part in Fig. 2b. The reflectance spectra 
obtained experimentally using the four CRMs served as the validation data of the trained ANN algorithms. The 
outputs of the trained ANN algorithms were plotted for a comparison with certified values from the four CRMs, 
as shown in Fig. 3. When the outputs agreed with all of these certified values of the CRMs, it was concluded that 
the trained ANN algorithm works properly.

Results and discussion
For clarity, Table 2 summarizes the comparison results from Fig. 3 in terms of reliability and effectiveness. 
The columns shown in diagonal represent the output of each ANN algorithm when in disagreement with the 
corresponding certified value. In this study, certified values and expanded uncertainties of the CRMs in use 
were adopted as the quantitative evaluation criteria. The certified values were determined through a rigorous 
measurement process, which fully satisfies the traceability system of the international standard. During the 
measurements, even if this task follows a rigorous process, various types of uncertainties can always occur due 
to unstable environmental conditions. Lots of uncertainty components can affect the measurement result all 
together, which is expressed as an expanded uncertainty (approximately 95% confidence level of the certified 
value, coverage factor k = 2). Based on this quantitative evaluation criteria, only four cases consisting of 150 nodes 
and 200 nodes with one hidden layer (N = 150, 200 with L = 1) and two hidden layers (N = 150, 200 with L = 2) 
were chosen as trustworthy candidates. For a quantitative comparison of cases, the offset between the outputs 
and the certified values of the CRMs were calculated and then averaged. The averaged offsets (δ) in cases were 
1.2 nm for 100 nodes with one hidden layer (N = 100 with L = 1) and 0.54 nm for 150 nodes with one hidden 
layer (N = 150 with L = 1) and 0.81 nm for 100 nodes with two hidden layers (N = 100 with L = 2) and 0.74 nm 
for 150 nodes with two hidden layers (N = 150 with L = 2). Thus, we finally selected the ANN algorithm with the 
lowest value of the averaged offset, which in this case was 150 nodes with one hidden layer (N = 150 with L = 1). 
Unexpectedly, the ANN algorithms with more hidden layers, i.e., L = 3, and more nodes, i.e., N = 200, did not 
always result in better reliability. In the authors’ view, the results showed that the ANN algorithms with more 
nodes and hidden layers were over-trained by only the training data set of ideally generated reflectance spectra, 
which may result in overfitting. Hence, the proposed method can be beneficial for evaluating accuracy of the 
ANN algorithms with the help of a traceability chain of a length standard.

More importantly, in some previous works, when the difference between the ANN algorithm and the model-
based algorithm was found to be relatively large, the output of the ANN algorithm was used as the initial value 
of the model-based algorithm to reduce the difference15,18. This allows the iteration steps of the model-based 
algorithm to be reduced. In such case, the output of the model-based algorithm was used as a reference value or 
as a true value regardless of its reliability. The smallest deviation between two outputs cannot always mean that 
the ANN algorithm is designed well and works properly.

Summary
In this article, a novel method to design and evaluate an ANN algorithm used to determine the thickness of 
thin films was proposed and demonstrated. As a reference value, a CRM certified value directly traceable to a 
length standard was utilized. Twelve ANN algorithms with different conditions (L = 1, 2, 3 and N = 50, 100, 150, 
200) were developed in-house and then trained using 110 numerically created reflectance spectra in a thickness 

Table 1.   Summary of CRMs.

Sample number CRM number Materials Nominal value (nm) Certified value (nm)
Expanded uncertainty 
(k = 2) (nm)

CRM-10 207-03-006

SiO2 thin film on Si wafer

10 13.8 1.2

CRM-30 207-03-005 30 39.1 1.4

CRM-50 207-03-004 50 52.7 2.1

CRM-100 207-03-003 100 104.7 2.1
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range of 1–110 nm. With reflectance spectra of the 4 different CRMs obtained by experiments, the thickness 
values were determined by 12 well-trained ANN algorithms and then compared with the corresponding certi-
fied values of the CRMs. As a result, based on a traceability chain to the length standard, each ANN algorithm 
was evaluated. Finally, in this work, an ANN algorithm with 150 nodes with one hidden layer was chosen as the 
best case with an average offset of 0.54 nm, as derived from the differences between the outputs and the certified 
values of the CRMs. The practical applications of this study can be limited to only cases providing certified val-
ues for the present. It is expected that the proposed approach will be beneficial for those involved in developing 
and verifying machine-learning algorithms for rigorous metrology. In the future, for completeness of this study 
in a metrological view, uncertainty evaluations need to be performed according to Guide to the Expression of 
Uncertainty in Measurement.

Figure 3.   Analyzed thickness values of trained ANN algorithms for (a) CRM-10, (b) CRM-30, (c) CRM-50, (d) 
CRM-100.
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