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Adaptive deep learning‑based 
neighborhood search method 
for point cloud
Qian Xiang1, Yuntao He1* & Donghai Wen2

Point cloud processing is a highly challenging task in 3D vision because it is unstructured and 
unordered. Recently, deep learning has been proven to be quite successful in point cloud recognition, 
registration, segmentation, etc. Neighborhood search operation is an important component of point 
cloud deep learning models, and directly affects the performance of the model. In this paper, we 
propose a learnable neighborhood search method. This method adaptively chooses an appropriate 
search method based on the characteristics of each point, thus avoiding the disadvantage of 
selecting the search method manually. We validate the proposed methods on ModelNet40 dataset 
and ShapeNetPart dataset, and all the chosen models achieved a performance improvement with a 
maximum improvement of 1.1%. The proposed method is a plug‑and‑play technique and can be easily 
integrated into existing methods.

The rapid development of 3D sensors has increased the demand for point cloud processing technology. At 
present, point cloud processing technology is widely used in sensor systems such as AR, autonomous driving, 
and pose  estimation1–3 In recent years, deep learning methods are widely used in point cloud processing and 
have achieved good  results4–6. Because a single point cannot provide enough information to identify a local 
structure, neighborhood search technology is very important in point cloud analysis. At present, there are two 
main methods to achieve the objective: one is to search a neighborhood in 3D space, and the other is to search 
it in feature space.

The difference between the two methods lies in their search space. The former method searches in 3D space, 
while the latter method searches in feature space. This leads to the formation of different neighborhoods by the 
two methods. The former method aggregates local information, thus preserving the local topological relationship. 
In this way, a point cloud is divided into a group of 1-hop subgraphs. In the latter method, proximity in feature 
space differs from proximity in 3D space, leading to the nonlocal diffusion of information throughout the point 
cloud. The neighborhood in feature space is equivalent to a group of dynamic n-hop subgraphs from 3D space, 
which gives the feature space a stronger ability to capture global features. Especially in multilayer systems, affin-
ity in feature space captures semantic characteristics over potentially long distances in the original embedding.

The neighborhood searched in 3D space has clear local topology information, which makes it widely used 
in point cloud normal estimation, feature extraction, outlier removal and other tasks; examples include Point-
Net++7,  PointCleanNet8 and  D3Feat9. Because the neighborhood searched in feature space makes better use of 
learned features, it has rich semantic information and makes it easier to obtain global information. Therefore, 
it has a good effect on unsupervised learning, feature retrieval and semantic segmentation, as in  GraphTER10 
 DGCNN11, and  LDGCNN12. Many studies have been devoted to improving the flexibility of 3D space searches, 
such as specifying the search  direction13 and clustering points to special  points14 There have also been some 
studies on building a better feature neighborhood, such as using clustering instead of brute search. Using a data 
structure to speed up the search is an important improvement direction, such as using KD-Tree15or OC-Tree16 
to speed up the search.

Generally, 3D space searching only depends on local information, so the information it provides is not rich 
enough, and selecting the neighborhood size is difficult. Feature space searching obtains enough local and 
global information due to the introduction of long dependency, but the features are not abstract enough in the 
low-level layers in multilayer networks, which often leads to the neighborhoods in feature space being unstable 
and having no clear meaning.

For the problem of how to select the search method in multilayer networks, one option is to use 3D space 
searching to obtain local neighborhoods and aggregate features in the low-level layers and use feature space 
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searching to obtain nonlocal neighborhoods in the high-level layers to enrich the extracted information. This 
method has been proven to be feasible in  experiments17, but to the best of our knowledge, there is no clear design 
principle to find the best search method directly according to different network attributes.

Our approach is to change the selection of the search method into parameters that can be optimized by the 
model. The method links a neighborhood in 3D space with a neighborhood in feature space. In addition, we 
assign weights to these two branches that are learned from a point attention feature. We call this “soft-shortcut” 
ATSearch. Thus, each point can adjust its search tendency adaptively according to its own characteristics.

In summary, the main achievements of this paper are follows:

(1) In view of the characteristics of the existing 3D point cloud neighborhood search methods, this paper 
proposes an adaptive neighborhood search method based on point features and attention module.

(2) The proposed method is plug-and-play and can be easily inserted into the existing point cloud deep learn-
ing models in many tasks.

(3) The performances of proposed method are evaluated on popular 3D shape classification and segmentation 
data sets. Experimental results show that the proposed method can improve the performance of the models.

The rest of this paper is organized as follows. The “Methods” section introduces the method of the proposed 
neighborhood search method based on the features of point cloud and different search spaces. The “Results” 
section verified the effectiveness of the proposed method through experiments. The “Discussion” section studied 
the proposed search method, robustness-test, visualization and ablation experiments are performed in this sec-
tion. “Conclusion” are in the last section.

Methods
Traditional neighborhood search methods for point cloud. In previous works, the neighborhood 
searching methods for point cloud can be categorized into two ones, one method is based on the spatial distance 
between pairs of points, which finds the neighbor points in 3D space, shown in (1). The other method is based 
on the feature distance between pairs of points, shown in (2).

where P ∈ R
N×3 and F ∈ R

N×C represent the positions and features of points in the point cloud. 
dxyz ∈ R

N×N , and df ∈ R
N×N represent the pairwise distances of points in 3D space and in feature space, 

respectively. pi ∈ R
3 and fi ∈ R

C represent the center points, and pj ∈ R
3 and fj ∈ R

C are the corresponding 
neighbor points.

Search methods based on the spatial distance focus on preserving local information, and search methods 
based on feature distance focus on global information and nonlocal diffusion of information. In point cloud deep 
learning models, different convolution layers have different requirements for local and nonlocal  information17. 
Therefore, manually selecting a search method will limit the performance of the models.

Proposed adaptive search method for point cloud. Equation (1) and (2) show that the key process 
of the traditional search method is to calculate the distance between points, In order to obtain the advantages 
of search methods in 3D or feature space, we propose a new method: attention search (ATSearch), which uses 
a “soft” shortcut to account for the feature distance and spatial distance when searching neighborhoods. The 
search method proposed in this paper is a combination of the advantages of the search methods in 3D space 
and feature space, which is essentially a secondary sampling from the 3D neighborhood based on 3D coordi-
nate distance and the neighborhood in feature space based on the feature distance. So that both local and non-
local information can be obtained to further improve the model performances. The differences from traditional 
search methods are shown in Fig. 1.

where wxyz ∈ R
N and wf ∈ R

N represent the point search preference. It can be easily seen that (1) and (2) are 
special cases of (3) for wxyz = 1,wf = 0 and wxyz = 0,wf = 1 , respectively. Taking the general case, we can 
obtain a “mixed” distance dmix by weighting dxyz and df  and then searching the neighborhood on it. The method 
proposed in this paper can search neighborhoods more flexibly, and it can not only choose how to search neigh-
borhoods according to the characteristics of a point but also enhance the model’s ability to find features across 
regions. The selection of wxyz and wf  needs to be considered carefully for good performance.

To determine the selection range of wxyz and wf  , we first define their basic rules to ensure that the selection 
is logical: (1) wxyz,wf ≥ 0 . (2) wxyz,wf  are negatively correlated.

These are very broad conditions, so we have many choices. One of the simplest choices is to use fixed values 
as a shortcut, such as wxyz = 1,wf = 1 . This approach has low computational cost, but it is as inflexible as (1) 
and (2). On the other hand, we can set wxyz and wf  to be learnable and use a function to normalize the result, 

(1)
{

dxyz =
∥

∥pi − pj
∥

∥, ∀pj ∈ P

N
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but this method has difficulty taking advantage of the characteristics of the point cloud itself. Finally, we choose 
a generation method to obtain wxyz ,wf  ; specifically, we first obtain the attention feature and then generate the 
weight from it.

The weight generation step is a two-stage procedure, and is shown in Fig. 2. In the first stage, the attention 
feature of a point is obtained, and in the second stage, the search weight is obtained from the feature.

where f ∈ R
C is the point feature and fpa ∈ R

d is the attention feature of the point. wxyzandwf ∈ R are the 
search weights.

To obtain the relative features of points, we design a lightweight point attention (PA) operator inspired by 
Convolutional Block Attention Module(CBAM)18. Similar to the CBAM, the PA operator obtains information 
from channels and space and then generates attention features. The CBAM needs to obtain spatial informa-
tion from adjacent pixels, but this operation is inefficient in point clouds because point clouds are unstruc-
tured. Therefore, the PA operator simply obtains the feature of a single point as the spatial information Ms by 
ϕ1 : R

N×C → R
N×d , and the channel information Mc is obtained through ϕ2 : R

N×C → R
C . Finally, fpa is 

generated by concatenating Mc and Ms.

(4)fpa = ϕ
(

f
)

(5)wxyz ,wf = φ
(

fpa
)

Figure 1.  Neighborhood search illustration. Left top: using the distance in 3D space as the search metric. Left 
bottom: using the distance in feature space as the search metric. Right: The proposed method weights the two 
metrics by learning from point attention features, then searches the neighborhood using the “mixed” distance. 
With this method, a point’s neighborhood in the point cloud can be flexibly searched.

Figure 2.  Generation of wd and ws from point cloud features. Mc is the global descriptor of the point cloud, and 
Ms is the point’s local feature. The point attention feature is obtained by concatenating Mc and Ms . Then, an MLP 
layer is used to generate wd andws , and softmax is used to normalize the output.
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Because ϕ2 needs to satisfy the point order invariance, we use MaxPooling(MP) as the selection. In addition, 
ϕ1 chooses MP with AvgPooling(AP).

The pointwise attention feature fpa cannot be used to describe the search weights directly. Therefore, we need 
to use a function to generate search weights. To define φ : Rd → R,R , a simple and logical choice is to generate 
the initial search weights by learning from fpa ; then, we use a function to normalize the weights. In this paper, 
we use a learnable weight matrix W ∈ R

2×d to generate the initial search weights and softmax to normalize the 
search weights:

And the pseudo-code for ATSearch is shown in Fig. 3.

Applications in point cloud deep learning models. The proposed search method is plug-and-play, so 
we just need to change the search operation of models to the proposed ATSearch. We integrate the proposed 
ATSearch into two basic blocks in point cloud deep learning models:  SetAbstraction7 and  EdgeConv11. the over-
view of DGCNN after using ATSearch is shown in Fig. 4, because the proposed method is plug-and-play, in 
order to use ATSearch in point cloud deep learning models, we only need to replace the origin neighborhood 
search operation with ATSearch in each convolution layer.

Datasets and training details. ModelNet40  dataset19 and ShapeNetPart  dataset19 are used for training 
and testing in our study. ModelNet40 dataset includes 12,311 CAD models belonging to 40 categories and Shap-
eNet part benchmark consists of 16,881 CAD models from 17 categories. Points are uniformly sampled from 
the CAD model surface. During the training period, parameters were updated by the SGD optimizer, with the 
learning rate set to 0.1. All experiments are implemented using PyTorch 1.5 and models are trained on one 
Nvidia RTX Titan.

Results
Tables 1 and 2 show the classification and segmentation performance of different models. PointNet++7, 
 DGCNN11,  LDGCNN12,  RSCNN20 are the models in previous works.

In terms of classification performance, instance accuracy is used as the evaluation metric. The performance of 
each model is improved when the search method is replaced by ATSearch. Among these test models, the best is 
PointNet++, which has an accuracy increase of 1.1%, and the accuracy improvement of RSCNN is limited because 
of it has explicitly encoded the points’ relations. In summary, the classification results prove that ATSearch can 
improve the accuracy of existing models without changing their structure.

In terms of segmentation performance, we utilized mIOU as the evalution metric, The result shows that 
our proposed method is also helpful for segmentation tasks, which shows that our search method can extract 
enough local details and retain global information compared with the search methods that only depend on 
spatial distance or feature distance.

(6)Ms = ϕ1

(

f
)

,Mc = ϕ2

(

f
)

(7)fpa = concat(Ms;Mc)

(8)φ
(

fsub
)

= z · softmax
(

Wfpa
)

Figure 3.  Pseudo code for ATSearch.
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Discussion
To further study the proposed search method, robustness-test, visualization and ablation experiments are per-
formed in this section. The baseline model is chosen to be DGCNN, and the dataset is chosen to be ModelNet40. 
To show the difference in results when using ATSearch, we name EdgeConv as ATEdgeConv and DGCNN as 
ATDGCNN.

The choice of the neighborhood size is the key of the search method, it often directly affects the performance 
and generalization of the deep learning models. Specifically, in the k nearest neighbor algorithm, the selection 
of k is an important hyperparameter. The compared results are shown in Fig. 5 and ATDGCNN is significantly 
more robust than DGCNN and LDGCNN.

To explore the influence of the number of our search operations on the accuracy, ablation study is performed 
and the results are summarized in Table 3 The addition of ATSearch in any layer can improve the performance 
of the model, but only when the first two layers are equipped with ATSearch together.

There will be a slight performance degradation. This may be caused by the difficulty of matching in the last 
layer.

T-SNE21 is utilized to demonstrate the performance of our feature extractor. T-SNE reduces the dimensional-
ity of high- dimensional features to visualize the separability of the features. As shown in Fig. 6, the extracted 
features are much more discriminative than the original point cloud. Compared with DGCNN, ATDGCNN’s 
output is even more discriminative.

Several point clouds are randomly selected from the ModelNet40 dataset and used to visualize the wxyz and wf  
distribution of ATDGCNN’s output. It can be seen from Fig. 7 that in different point clouds, the w distribution has 
its own tendency. For example, the more complex the shape is, the more inclined it is to search the neighborhood 

Figure 4.  Top: ATDGCNN used for classification task; Bottom: ATDGCNN used for segmentation task. Both 
of them use the proposed search method in their convolution operator to gather neighbor points.

Table 1.  Shape classification results on Modelbet40 (%).

Model Accuracy Accuracy (with ATSeach)

DGCNN 92.4 93.4 (+ 1.0%)

LDGCNN 92.7 93.0 (+ 0.3%)

PointNet++ 92.1 93.1 (+ 1.1%)

RSCNN 92.5 92.6 (+ 0.1%)

Table 2.  Shape segmentation results on ShapeNet Part (%).

Model Instance mIoU Instance mIoU (with ATSeach)

DGCNN 85.1 85.5 (+ 0.4%)

LDGCNN 85.1 85.2 (+ 0.1%)
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in feature space. This shows that the characteristics of the point cloud itself have a unique search preference, so 
it is proven that our method is feasible.

Finally, to explain how the weights wxyz ,wf  affect the model performance, we do experiments with fixed 
weights: (1) wxyz = 1,wf = 0 , the neighborhood is only sampled from 3D space; (2) wxyz = 0,wf = 1 . the neigh-
borhood is only sampled in feature space. (3) wxyz = 0.5,wf = 0.5 . the neighborhood is sampled from both two 
spaces with equal probability.(4) wxyz and wf  , the neighborhood is adaptively sampled according to the point 
features from the two spaces. The performances of the DGCNN model with these 4 cases are shown in Table 4 
by retraining on ModelNet40 dataset.

As can be seen in the Table 4, compared to the methods of using a neighborhood on a particular space, simply 
changing wxyz ,wf  to 0.5 can improve the performance of the model because the neighborhood can obtain points 
from both 3D and feature space.

Conclusion
In this study, ATSearch, a plug-and-play search method for point cloud analysis, is proposed. By adaptively com-
bining 3D space searching with feature space searching, ATSearch can flexibly search point cloud neighborhoods, 
which enhances its ability to obtain information across regions. Moreover, the point attention block has a very 
low computational cost, so the whole structure is efficient. In the xperiment, our method changes only the model 
search method to ATSearch and then improves the performance of multiple models. In addition, the proposed 

Figure 5.  The sensitivity of k used in K-Nearest Neighbor algorithm (k = 5, 10, 20, 30).

Table 3.  Ablation study of ATSearch on DGCNN(%), AT i stands for using ATsearch at layer i.

Model AT1 AT2 AT3 Accuracy

Baseline 92.4

A √ 93.2

B √ 93.0

C √ 93.0

D √ √ 92.5

E √ √ 93.1

F √ √ √ 93.4

Figure 6.  (a) Original ModelNet40 dataset. (b) DGCNN’s output (c) ATDGCNN’s output.
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method also shows good robustness to the chosen value of k. Neighborhood search technology is widely used 
in image processing and point cloud analysis, so ATSearch can be further applied to these fields, such as gesture 
recognition, emotion classification In the future, it will be worthwhile to consider how to accelerate the inference 
speed of our proposed network and the form of the weight generation function.

Data availability
All data included in this study are available upon request by contact with the corresponding author.

Received: 6 September 2021; Accepted: 19 January 2022

Figure 7.  Left: the histogram represents the distribution of search weight in feature space(wf  ). Right: In the 
point cloud, the points in yellow are more likely to search the neighborhood in 3D space ( wxyz > wf  ), while the 
points in cyan are more likely to search in feature space.

Table 4.  Performance comparison under different parameter combinations.

Condition Accuracy (%)

wxyz = 1,wf = 0 91.7

wxyz = 0,wf = 1 92.4

wxyz = 0.5,wf = 0.5 93.1

ATSearch 93.3
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