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A deep learning algorithm 
to identify cervical ossification 
of posterior longitudinal ligaments 
on radiography
Koji Tamai1*, Hidetomi Terai1, Masatoshi Hoshino1, Akito Yabu1, Hitoshi Tabuchi2,3, 
Ryo Sasaki1 & Hiroaki Nakamura1

The cervical ossification of the posterior longitudinal ligament (cOPLL) is sometimes misdiagnosed or 
overlooked on radiography. Thus, this study aimed to validate the diagnostic yield of our deep learning 
algorithm which diagnose the presence/absence of cOPLL on cervical radiography and highlighted 
areas of ossification in positive cases and compare its diagnostic accuracy with that of experienced 
spine physicians. Firstly, the radiographic data of 486 patients (243 patients with cOPLL and 243 
age and sex matched controls) who received cervical radiography and a computer tomography 
were used to create the deep learning algorithm. The diagnostic accuracy of our algorithm was 0.88 
(area under curve, 0.94). Secondly, the numbers of correct diagnoses were compared between the 
algorithm and consensus of four spine physicians using 50 independent samples. The algorithm had 
significantly more correct diagnoses than spine physicians (47/50 versus 39/50, respectively; p = 0.041). 
In conclusion, the accuracy of our deep learning algorithm for cOPLL diagnosis was significantly higher 
than that of experienced spine physicians. We believe our algorithm, which uses different diagnostic 
criteria than humans, can significantly improve the diagnostic accuracy of cOPLL when radiography is 
used.

Cervical ossification of posterior longitudinal ligament (OPLL) can result in spinal canal or foraminal narrowing, 
cause by myelopathy or radiculopathy, and increase spinal cord injury risk following a traumatic  event1. It is a 
multifactorial, degenerative disease, and both environmental and genetic factors contribute to its development, 
type, and  severity2. The prevalence of cervical OPLL detected by the cervical radiography has been estimated as 
2% in Japan, 0.12% in the United States, and 0.10% in  Germany3. In contrast, the prevalence of cervical OPLL 
detected by computed tomography (CT) has been estimated as 6.3% in Japan and 2.2% in the United  States4,5.

Since OPLL is a progressive  disease6, an accurate diagnosis in the early phase is crucial. However, one of the 
intractable problems associated with OPLL treatment is its misdiagnosis/overlook on  radiography7. The above-
mentioned differences between OPLL prevalence when detected on radiography and CT scans directly illustrate 
this problem. Recently, a standard method for OPLL diagnosis that involves CT scanning rather than radiography 
has been  suggested7. However, medical radiation exposure due to the CT scan is a drawback of the  method8,9. 
Accordingly, physicians should avoid routine CT scans in patients with cervical symptoms.

A deep learning algorithm to detect cervical OPLL on cervical radiography has the potential to assist physi-
cians by decreasing misdiagnosis rates and facilitating the implementation of timely therapy in patients with 
early-phase OPLL. Furthermore, the use of the algorithm will improve patient safety by minimizing radiation 
exposure, as cervical radiography has been determined to be associated with 1/700 times the radiation exposure 
of a CT  scan10.

Therefore, this study aimed to validate the diagnostic yield of our deep learning algorithm for detecting 
cervical OPLL on radiography and compare its diagnostic accuracy with that of experienced spine physicians.
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Results
Demographics. No significant differences were noted in the average age and number of females/males 
between OPLL patients and controls (p = 0.891 and 1.000, respectively; Table 1). Among all patients, 224 were 
from institution A, 166 were from institution B, and 96 were from institution C. Regarding the type of OPLL, 
the mixed type was most prevalent (n = 110, 45.3%), followed by the segmental type (n = 67, 27.6%), localized 
type (n = 44, 18.1%), and continuous type (n = 22, 9.1%). The OPLLs were mostly located in the middle-to-lower 
cervical levels (n = 86, 35.4%), followed by the middle cervical (n = 67, 27.6%), upper-to-middle (n = 65, 18.1%), 
and whole cervical levels (n = 25, 10.3%).

Accuracy of the deep learning algorithm. The overall diagnostic accuracy, precision, and recall of our 
deep learning algorithm were 0.88, 0.86, and 0.90, respectively (Table 2). In the ROC analysis, the area under 
curve (AUC) of the presence/absence of OPLL was 0.94 (95% confidential intervals, 0.92–0.97; p < 0.001; Fig. 1). 
Representative images created by our algorithm are shown in Fig.  2. In the subgroup analysis based on the 

Table 1.  Demographic data. #Mann–Whitney U test, *Chi-squared test. OPLL, ossification of the posterior 
longitudinal ligament.

OPLL group Control group p-value

Number of patients 243 243

Average age 63.5 ± 10.1 64.9 ± 11.2 0.891#

Sex 0.850*

Female 86 89

Male 157 154

Collected institution 1.000*

Institution A 112 112

Institution B 83 83

Institution C 48 48

OPLL type

Continuous 22 –

Segmental 67 –

Mixed 110 –

Localized 44 –

OPLL location

Upper-to-middle 65 –

Middle 67 –

Middle-to-lower 86 –

Whole cervical 25 –

Table 2.  Diagnostic results of the deep learning algorithm (n = 486). TP, true positive; FP, false positive; FN, 
false negative; TN, true negative; OPLL, ossification of the posterior longitudinal ligament.

TP FP FN TN Accuracy Precision Recall

Overall 219 34 24 209 0.88 0.86 0.90

Institution

Institution A 99 22 15 92 0.85 0.82 0.87

Institution B 79 7 4 76 0.93 0.92 0.95

Institution C 41 5 5 41 0.90 0.89 0.89

OPLL type

Continuous 20 – 2 – – – 0.91

Segmental 57 – 10 – – – 0.85

Mixed 106 – 4 – – – 0.96

Localized 36 – 8 – – – 0.82

OPLL location

Upper to middle 60 – 5 – – – 0.92

Middle 58 – 9 – – – 0.87

Middle to lower 76 – 10 – – – 0.88

Whole cervical 25 – 0 – – – 1.00
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institution, accuracy was highest when images from institution B were considered and lowest when those of 
institution A were considered (0.95 versus 0.87, respectively; Table 2). In the subgroup analysis based on the 
OPLL type, recall was the highest for mixed-type OPLL and lowest for localized-type OPLL (0.96 versus 0.82, 
respectively). In the subgroup analysis based on the OPLL location, recall was highest at whole cervical levels, 
and lowest at the middle cervical level (1.00 versus 0.87, respectively).

Comparisons in the accuracy of the deep learning algorithm and spine surgeons. The accuracy 
of our deep learning algorithms was 0.92, whereas that of the four spine surgeons was 0.80, 0.78, 0.76, and 0.74 
(Table 3). Figure 3 depicts patients for whom all four surgeons failed to identify the OPLL, while the deep learn-
ing algorithm could accurately identify the OPLL. The number of correct assessments by the learning algorithm 
was significantly higher than that by the four surgeons (47/50 versus 39/50, respectively; p = 0.041, Table 4).

Discussion
Overall, the diagnostic accuracy of the deep learning algorithm was 0.88, and the AUC was 0.94. However, the 
accuracy was affected by the following factors: institution at which radiographic images were obtained, OPLL 
type, and the segment-level of the OPLL. The deep learning algorithm performed significantly better than the 
consensus of experienced Japanese spine surgeons.

A strength of this study was its clear establishment of the ground truth by the presence or absence of cervical 
OPLL on CT. To create the deep learning algorithm, determination of the ground truth is a critical issue. For 
example, Won et al. created a convolution neural network (CNN) to classify lumbar canal stenosis severity into 
four  grades11. Although their study was informative, the study methodology and results were complex; two radi-
ologists assessed lumbar canal stenosis on magnetic resonance imaging independently, and two types of CNNs 
were investigated using the radiological findings determined by the radiologists. The agreement between the 
CNNs and radiologists were comparable to that between the two radiologists. A difficulty in the interpretation 
of this result arises from the ambiguousness of the ground truth of the previous study; namely, the stenotic grade 
(i.e., ground truth) was subjectively evaluated and differed by observer. In contrast, Maki et al. reported on a CNN 
that distinguished between spinal schwannoma and meningioma, with an accuracy value comparable to that of 
a professional  radiologist12. Their study provided a clear message because the ground truth was a histological 
result assessed post-resection, comprising objective and consistent data. In the present study, we used cervical 
OPLL on CT as the ground truth, similarly comprising objective and consistent data.

In the current study, results of our algorithm may be affected by both OPLL type and the institution at which 
the cervical radiographic images were obtained. The potential reasons for the differences according to institu-
tion included the concentration of radiography, incidence angle of the X-ray, and patient positioning. Further 
improvement in the algorithm is warranted to provide consistent results regardless of the institution at which 
cervical radiography is performed.

Artificial intelligence cannot overcome human  abilities13, as labeled training data and the ground truth for 
creating the algorithm must be set by a human. However, our algorithm could produce a significantly higher 
number of correct assessments regarding the presence/absence of OPLL on radiography than experienced Japa-
nese surgeons, who routinely diagnose  OPLL2. This performance improvement is due to the fact that the deep 
learning system was trained using not only cervical radiography but also CT data as reference. This procedure 
could be considered as a type of radiomics, which refers to a method used to extract a large number of features 
from radiographic images using data-characterization  algorithms14. Radiomics significantly aids physicians to 

Figure 1.  The ROC curve of the diagnostic accuracy of the deep learning algorithm is shown. ROC, receiver 
operating characteristic.
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Figure 2.  Representative images used and created by the deep learning algorithm are shown. The left image 
shows the cervical plain radiograph used in the deep learning algorithm. Images created by our algorithm 
are shown on the center. The right image shows a sagittal slice of the computed tomography image used as 
the ground truth, but not used in the algorithm. The algorithm was designed to highlight areas of suspected 
ossification of the posterior longitudinal ligament (OPLL) when OPLL was identified in an image. (A) An image 
from a 47-year-old women with a continuous-type OPLL from C2–C4 is shown. (B) An image from a 56-year-
old man with a small segmental OPLL at C5 and C6 is shown. (C) An image from a 63-year-old man without 
cervical OPLL is shown.
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improve the efficiency and accuracy of their diagnoses and has even been used to predict prognoses by measuring 
and analyzing features of medical images. We do not think that our algorithm will be capable of automatically 
selecting patients with OPLL; however, the algorithm will suggest to physicians whether the presence/absence of 
OPLL is likely, while applying different diagnostic criteria from those used by physicians. For example, the recall 
of our algorithm to identify the OPLL located below C6 level was almost similar to the other level, although the 
human tended to miss the OPLL located in the lower cervical level due to overlapping of the shoulder line. The 

Table 3.  Diagnostic accuracy of the deep learning algorithm and four spine surgeons (n = 50). TP, true 
positive; FP, false positive; FN, false negative; TN, true negative; y, years; exp, experience.

TP FP FN TN Accuracy

Deep learning algorithm 24 1 2 23 0.92

Surgeon 1 (> 25 y exp.) 22 3 7 18 0.80

Surgeon 2 (> 20 y exp.) 20 5 8 17 0.74

Surgeon 3 (> 10 y exp.) 21 4 8 17 0.76

Surgeon 4 (> 5 y exp.) 23 2 9 16 0.78

Figure 3.  Images in which only the algorithm could identify an ossification of the posterior longitudinal 
ligament (OPLL) are shown. (A) An image from a 56-year-old woman with a small segmental OPLL at C5 is 
shown. (B) An image from a 72-year-old man with an OPLL at C5–C6 is shown.
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postulated reason of high recall of the algorithm may be segmentation. Namely, AI algorithm would evaluate the 
OPLL with extremely small segment rather than global perspective like humans  do15. Hence, for human, the lower 
cervical level may be difficult to observe in comparison with the upper and middle cervical level; meanwhile, 
for AI algorithm, the shoulder line might not disturb to evaluate the OPLL in the lower cervical level. With this 
example in mind, the use of the AL algorithm which have different diagnostic criteria could potentially improve 
the physician’s diagnostic yield of OPLL.

This study has the potential to impact physicians and patients in the clinical setting. Importantly, the misdi-
agnosis/overlook of OPLL is expected to decrease with the use of our deep learning algorithm. This is because 
the algorithm both suggests the presence/absence of OPLL and highlights suspected lesions on radiography. This 
benefits patients by providing adequate examinations or therapies throughout the relatively early phases of OPLL. 
Additionally, the use of the algorithm would increase patient safety by minimizing radiation exposure, as the 
algorithm can effectively identify OPLL using only cervical radiography. Finally, our algorithm could contribute 
to not only spine physicians but also primary doctors, emergency doctors, and orthopedic physicians who may 
have chances to take cervical radiography in their daily clinical setting.

Our deep learning algorithm had several limitations. First, to distinguish OPLL with some type of osteophyte 
is difficult. The OPLL in the current study was defined as “the ossification of the posterior longitudinal ligament 
with more than 2 mm thickness in the axial CT image” based on the previous  report4. However, we may miss the 
OPLL which is less than 2 mm and/or may include the large osteophyte which occurred from the posterior corner 
of vertebra. Second, all cervical radiographic images were collected from the Japanese population. Although no 
major differences between the Japanese and other races have been observed, several minor differences, such as 
the spinal canal diameter, may be crucial parameters considered within the deep learning  algorithm16,17. Third, 
postoperative images were excluded when the algorithm was established. Since it is well-known that the some 
OPLLs would progress after surgery, an algorithm that can detect OPLL with postoperative radiographic images 
may be of use to  physicians18. Fourth, as mentioned previously, the results of our algorithm were affected by 
the OPLL type and location and the institution at which the cervical radiography was performed. Fifth, though 
we used a k-fold cross-validation technique, which allows for an efficient validation of small datasets without 
requiring separate test  data19, a larger sample size would be ideal for creating a more precise algorithm. Finally, 
the current cross-sectional study design cannot determine the risk of future OPLL growth. To overcome these 
limitations, an international, longitudinal, large-scale study with precise clinical scores is warranted.

Conclusion
We created a deep learning algorithm capable of suggesting the presence/absence of OPLL on cervical radiog-
raphy and highlighting suspected areas of ossification on radiographic images when an OPLL is identified. The 
diagnostic yield of the algorithm for cervical OPLL on radiography was higher than that for the consensus of 
experienced spine physicians. We believe our algorithm, which uses different diagnostic criteria than humans, 
can significantly improve the diagnostic accuracy of OPLL when radiography is used.

Methods
Study design and ethics. We performed a cross-sectional study of patients who received cervical radi-
ography and a CT scan. All study participants provided written informed consent. The study was performed in 
accordance with the World Medical Association Declaration of  Helsinki20.

Collection of data. Data were collected from a database that included patient records from three institu-
tions. Inclusion criteria were as follows: patients who underwent radiography for symptoms such as neck pain, 
radiculopathy, neurological deficits, or cervical deformity and patients who received cervical high-resolution CT 
and plain radiography within a 3-month interval. Exclusion criteria were as follows: patients who underwent 
previous cervical surgery; patients who did not consent to the use of their data for study purposes; and patients 
with obvious spinal tumors or trauma. Patients with OPLL were identified using CT images regardless of myelo-
pathic symptom occurrence. Finally, 243 patients were included in the OPLL group. To identify matched con-
trols from the database, 1:1 propensity score matching was performed. We fit a logistic regression model using 
patient age, sex, and institution to estimate a propensity score, and a nearest-neighbor matching procedure was 
performed. After matching, the data of 243 patients were extracted for use as control. The absence of cervical 
OPLL using CT images was confirmed in control patients.

Labeling process. Lateral cervical plain radiographies of all patients were extracted as 224 × 224-pixel jpeg 
files from the DICOM database after personal information was removed. Independent spine surgeon manually 

Table 4.  Comparison of the diagnostic accuracy between the deep learning algorithm and the consensus of 
four spine physicians (n = 50). *Chi-square test. TP, true positive; FP, false positive; FN, false negative; TN, true 
negative.

TP + TN FP + FN p-value Accuracy

Deep learning algorithm 47 3 0.041* 0.92

Surgeons’ consensus 39 11 0.78
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painted the ossification area on jpeg images using computer software (e-Growth Co., Ltd.; Kyoto, Japan). Based 
on the previous definition, the OPLL was defined as ossification of the posterior longitudinal ligament with more 
than 2 mm thickness in the axial plane CT  image4. During this procedure, the spine surgeon used sagittal, axial, 
and three-dimensional reconstructed CT images as reference to identify the precise shape and extent of ossifica-
tion on cervical radiographic jpeg images (Fig. 4).

Establishment of the deep learning algorithm. To increase the quantity of training data available, 
data augmentation techniques such as inversion, equalization, brightness, gamma correction, histogram, noise 
addition, and mix-up were applied to the images within the training dataset. Subsequently, a CNN model was 
constructed and trained using sub-images randomly cropped at 224 × 224 pixels from preprocessed image data. 
Using amplified images, we constructed a model to highlight suspected ossification using a CNN model called 
 EfficientNetB221. Ten-fold cross validation was performed to establish the algorithm. To accomplish this, all jpeg 
images were equally divided into 10 groups, and 9 of the 10 groups were used for training, whereas the remain-
ing group was used for model validation. This process was repeated 10 times so that the groups were adequately 
 assessed19. Model construction and validation were carried out using Keras (https:// keras. io/ en/), which runs 
Python’s TensorFlow backend (https:// www. tenso rflow. org/). Training and validation of the CNN were per-
formed using a computer with a GeForce GTX 1080 Ti (NVIDIA, Santa Clara, CA) graphics processing unit.

Algorithm validation. Using patient data from all 486 individuals, cases of true positive (TP), false positive 
(FP), false negative (FN), and true positive (TN) were counted. Then, the following parameters were calculated: 
accuracy, defined as “(TP + TN)/ (TP + FP + FN + TN)”; precision, defined as “TP/(TP + FP)”; and recall, defined 
as “TP/(TP + FN)”. Sub-analyses were performed according to the individual institution, OPLL type, and OPLL 
location. In the analyses based on the OPLL type or OPLL location, only the OPLL group was included, and only 
recall was calculated.

OPLL classification. Cervical OPLL was classified into four types based on a classification system estab-
lished by the Japanese Ministry of Health, Labor, and Welfare using CT  images22–24: continuous, a long lesion 
extending over several vertebral bodies; segmental, one or several separate lesions behind vertebral bodies; 
mixed, a combination of continuous and segmental types; and circumscribed, mainly located posterior to the 
disc space. The location of cervical OPLL was defined as follows: upper-to-middle cervical level (OPLLs mainly 
found between the C2 and C4 levels); middle cervical level (OPLLs mainly found between the C5 and C6 lev-
els); middle-to-lower level (OPLLs mainly found below the C6 level); and whole cervical levels (OPLLs found 
throughout whole cervical levels from C2 to below C6).

Figure 4.  Illustration of study process. Lateral cervical plain radiographies of all patients were extracted 
as jpeg files from the DICOM database. As annotation phase, an independent researcher manually painted 
the ossification area in the cases with OPLL on jpeg images of radiography with the reference of CT images. 
Subsequently, the painted image was divided into mask images for ground truth and original image, and both 
were used to construct the CNN. In the cases without OPLL on referenced CT image, all-black mask images 
were created as ground truth for CNN.

https://keras.io/en/
https://www.tensorflow.org/
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Comparison with surgeon assessments. The deep learning algorithm and four spine surgeons (HT, 
HM, AY, and RS with > 25, > 20, > 10, and > 5 years of experience, respectively) independently evaluated 50 cervi-
cal radiographic jpeg images for the presence or absence of OPLL (25 patients with OPLL and 25 patients with-
out OPLL). Surgeons were allowed to use software functions to expand the images and control the image tone. 
After surgeons independently evaluated the images, a consensus was reached. When three out of four surgeons 
agreed, the assessment reached by the majority was considered as the consensus assessment; when the evalua-
tor’s assessments were split evenly (2:2), the surgeons discussed the findings until a consensus could be reached.

Statistical analysis. The chi-square or Fisher’s exact test were used to compare categorical variables and 
the Mann–Whitney U test for continuous variables. To evaluate the diagnostic accuracy of our algorithm, the 
receiver operating characteristic (ROC) curve and AUC were calculated. All analyses were performed using SPSS 
version 23 software (IBM Corp., Armonk, NY, USA). P-values < 0.05 were considered statistically significant.

Ethical approval and informed consent. IRB approval: All study participants provided informed con-
sent, and the study protocol was approved by the Institutional Review Board of Osaka City University (No. 3170).

Received: 22 October 2021; Accepted: 25 January 2022
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