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Network flow and flood routing 
model for water resources 
optimization
Ayoub Tahiri1,2, Daniel Che3, David Ladeveze2, Pascale Chiron1* & Bernard Archimède1

Real-time management of hydraulic systems composed of multi-reservoir involves conflicting 
objectives. Its representation requires complex variables to consider all the systems dynamics. 
Interfacing simulation model with optimization algorithm permits to integrate flow routing into 
reservoir operation decisions and consists in solving separately hydraulic and operational constraints, 
but it requires that the water resource management model is based on an evolutionary algorithm. 
Considering channel routing in optimization algorithm can be done using conceptual models such 
as the Muskingum model. However, the structure of algorithms based on a network flow approach, 
inhibits the integration of the Muskingum model in the approach formulation. In this work, a flood 
routing model, corresponding to a singular form of the Muskingum model, constructed as a network 
flow is proposed and integrated into the water management optimization. A genetic algorithm 
is involved for the calibration of the model. The proposed flood routing model was applied on the 
standard Wilson test and on a 40 km reach of the Arrats river (southwest of France). The results were 
compared with the results of the Muskingum model. Finally, operational results for a water resource 
management system including this model are illustrated on a rainfall event.

One of the most important aspects of minimizing the impacts of flooding is the proper operation of flood control 
systems  itself1. The hydraulic system includes rivers and their tributaries, catchments, and natural or artificial 
hydraulic structures. Operation management of these hydraulic system is very challenging since it involves con-
flicting objectives and complicated variables. Real-time management consists in maximizing benefits, minimizing 
costs, satisfying the required flows in the river and storing water in reservoirs, answering to water demands, 
avoiding floods, and preserving the quality of water. These management requirements cause a need for a river 
basin optimization model that provides appropriate results.

Modeling choices for monitoring hydraulic system depend on numerous criteria linked to the studied case. 
Therefore, compromises have to be done among decision scale, precision needs, expected robustness, computing 
cost and so on. In this paper we focus on the case of hydraulic constraints for large scale and strongly influenced 
water resource systems. A flood routing approach that can be integrated in the mathematical formulation of an 
optimization model is proposed. The flood routing model was design in order to limit the number of iterated 
simulations and the complexity of the optimization problem to solve.

In this work, a comparison between this model and the Muskingum’s model for the Wilson standard test and 
for a real case study is provided. Some applications of this approach to several French rivers are also presented.

State of the art
Real-time operation of multireservoir systems involves various operational, hydrologic, and hydraulic 
 considerations2. For efficient operation, real-time management model should contain a flow routing procedure 
to predict the impacts of the observed and/or predicted inflows hydrographs on the downstream parts of the river 
 system3. As flood waves travel from upstream to downstream, they attenuate and get delayed. Flood waves are 
subject to two principal movements: uniformly progressive flow and reservoir action. A uniformly progressive 
flow designates a shifting of the wave from upstream to downstream without a change in shape, which would 
occur only under ideal conditions. Reservoir action designates the modification of a flood wave by reservoir 
pondage. Flood routing is a technique that determines the flood hydrograph at a section of a river using an 
upstream hydrograph.
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The optimization problem for the operation of multireservoir systems under flooding conditions can be 
stated as follows:

subject to

where Q is the flow rate, and h is the water surface elevation. Bars above and below a variable denote the upper 
and lower bounds for that variable, respectively. g is a function that describes the flow in the different components 
of the hydraulic system. The objective function z is to be minimized ans depends on the total flood damage. 
Different optimization methods were proposed in the litterature for the optimization of complex water resource 
systems. An optimization method suited to the case to be addressed, i. e. to solve Eq. (1), depends on the nature 
of the objective function and the constraints.  Labadie4 and  Yeh5 reviewed the state of the art in optimization of 
multireservoir systems management and operations .

The constraints of the model (Eq. 2) can be divided into two groups: the hydraulic constraints and the opera-
tional constraints. The consideration of hydraulic constraints is crucial for the quality of the operations, since 
release decisions are made upstream and the target areas are usually downstream. Hence, every water resource 
optimization model should take into consideration the attenuation of the wave during the  transfer6.

Many models exist to represent the flood routing in a reach. Basic routing approaches may be classified into 
two main families: Hydraulic and conceptual approaches.

The hydraulic approach applies the governing Barre de Saint Venant equations represented by the continuity 
equation and the momentum equation,  respectively7. The integration of the Barre de Saint Venant equations 
in the formulation of water optimization algorithms presents several difficulties since these partial differential 
equations are nonlinear, and their numerical resolution requires a large amount of  calculation8. In order to inte-
grate flow routing into the reservoir operation model, many researchers interfaced a simulation model with the 
optimization  algorithm2,9–12 discussed the combination of simulation and optimization for real time flood opera-
tion for reservoir system and suggested the coupling of nonlinear optimization and simulation to close the gap 
between theory and practice.  Wurbs3 discussed simulation, optimization and combined simulation-optimization 
modeling approaches and presented the strengths and weakness of the reviewed models.

The methodology of interfacing a simulation model to an optimization algorithm consists in solving separately 
the hydraulic and operational constraints: the optimization algorithm generates the optimal reservoir operat-
ing decisions, and the simulation model appropriately simulates the propagation of the flow for a given flood 
hydrograph and a set of operating decisions. Figure 1 presents the process of interfacing a simulation model and 
an optimization  algorithm13. Simulation models produce outputs that are used by the optimization strategy to 
find an optimal solution.

Interfacing a simulation model with an optimization algorithm is only possible when the algorithm is based 
on an evolutionary computation  approach14. The typical structure of evolutionary computation makes them suit-
able to adapt vaguely defined objective functions and  constraints15. However, optimization-simulation process 
is time consuming and convergence problems may  occur16. It is also to be noted that simulation models require: 
geometric data, initial condition, boundary condition, and hydraulic parameters which are not always available 
and bathymetric survey campaigns are very expensive. In addition, modeling biases can be observed that ques-
tion the parameters of the model, and more so in the context of climate  change17,18.

In the literature, the consideration of channel routing in optimization problem for the operation of multires-
ervoir systems was also performed using conceptual routing procedures. Conceptual models are characterized 
by the fact that one does not seek to understand in detail the physical phenomena that occurs within the flow, 
but consider the network in its entirety; in other words, as a simple input-output transformer. The calibration of 
the model using input and output values allows fixing the parameters of the model. These models reflect only the 
consequences of the phenomena occurring in the system and therefore get over the difficulties of the hydraulic 
complexity. Most conceptual models are reservoir models; that is, the functioning of each reach is assimilated 
to the operation of one or more reservoirs in series or in parallel. Conceptual models are based on the continu-
ity equation (the variation of the reach storage (S) corresponds to the difference between the inflow (I) and the 
outflow (O), see Eq. 3); and a second empirical relation (storage function, see Eq. 4) that connects the reach 
storage and the outflow  rate19.

(1)Minimize : z = f (h,Q)

(2)

Hydraulic constraints : g(h,Q) = 0

Bounds on discharges : Q ≤ Q ≤ Q

Bounds on elevations : h ≤ h ≤ h

Figure 1.  Interfacing a simulation model and an optimization algorithm.
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The storage function can take many forms. Storage can be expressed as a function of inflow, outflow or both:

The Muskingum flood routing model is the most used  model19. The absolute storage is a function of both outflow 
and inflow discharges. The evolution in time of the absolute storage is expressed by:

where St is the absolute reach storage at time t; It and Ot are the rates of inflow and outflow at time t, respec-
tively; K is a coefficient with time dimension that represents the storage time of the reach or the travel time of 
flood waves through the channel reach; and x is a weighting dimensionless coefficient (between 0 and 0.5) that 
modulates the influence of the inflow and the outflow. Expressing Eqs. (3) and (5) in finite difference form for a 
time interval, while considering a transit time (TT) as additional pure delay, leads to:

where C0 , C1 and C2 are constants that are computed from K and x and �T20.
Muskingum flood routing model is widely used in optimization problem for the operation of multireser-

voir systems to represent channel routing, mainly because its formulation is linear and does not increase the 
complexity of the problem. Muskingum model has always been the first choice to model channel routing when 
the optimization problem is in a linear form.  Windsor21 formulated a theoretical recursive linear programming 
model for the operation of flood control, using the Muskingum method for channel routing. Hsu and  Wei22 
developed a reservoir real-time operation model for determining the optimal real-time release during a typhoon. 
The formulation of the problem is based on linear programming and the streamflow routing along a reach is 
modeled by using the Muskingum method of linear channel routing. Kumar et al.23 adopted Folded Dynamic 
Programming for developing optimal reservoir operation policies for flood control with channel routing based 
on Muskingum model imbedded within the algorithm.

Linear programming (LP) objective functions and constraints are restricted to summations of linear terms. 
It is the optimization technique that is most often applied in modeling reservoir/river systems as well as flood 
 management24. The main advantages of linear programming are its ability to optimize large problems, its con-
vergence towards the global optimal and the availability of efficient software packages under free  license25). The 
LP is expressed as:

Subject to:

where z is the objective function, xj are the decision variables, cj , aij , and bi are constants, n is the number of 
decision variables, and m is the number of constraints.

As a particular form of linear programming, network flow  programming26, because of its intuitive formulation 
and short resolution time, is often used in water management applications, and is suitable for solving large-scale 
allocation problems of multi-reservoirs and multi-periods3,27. In order to applied graph theory algorithms, the 
hydraulic system is modeled as a directed graph where convergence and diversion points, demand locations and 
water sources are represented by nodes, and reservoir releases, channel flows, carryover storage and withdrawals 
are represented by arcs. Network flow optimization problem is expressed as:

Subject to:

where qij is the flow rate in the arc connecting node i to node j; cij is a cost for qij ; qij  and qij  are lower and upper 
bound on qij , respectively. The only constraints allowed are the ones in the form of a “mass balance” equation.

The special structure of network flow programming inhibits the integration of the Muskingum flood routing 
model in the network flow problem formulation, since Eq. (6) violates the form of Eq. (10) for nodes. Consider-
able efforts are made to include proper modeling of hydrologic channel routing into network flow  models28. Braga 
and  Barbosa29 report on inclusion of channel routing into multiple time step optimization using an advanced 

(3)
dS

dt
= I − O

(4)S = f

(

I ,
dI

dt
, · · · ,O,

dO

dt
, · · ·

)

(5)St = K(xIt + (1− x)Ot)

(6)Ot = C0It−TT + C1It−TT−1 + C2Ot−1

(7)Minimize : z =

n
∑

j=1

cjxj

(8)

n
∑

j=1

aijxj ≤ bi for i = 1, . . . ,m

xj ≥ 0 for j = 1, . . . , n

(9)Minimize : z =
∑

cjiqij for all arcs

(10)

∑

qij −
∑

qji = 0 for all nodes

qij ≤ qij ≤ qij for all arcs
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Network Simplex Solver that can handle non-network side constraints required for inclusion of channel routing. 
Nonetheless, non-network constraints may disturb the allocation priorities as stated by  Ferreira30 and Chou and 
 Wu31. To eliminate the aforementioned disadvantages and difficulties of the use of the existing flood routing 
models in water resource optimization models based on a network approach, the conceptual model developed 
herein can be proposed. The flood routing model presented here uses the computational properties of the network 
flow technique, and can be coupled to a network flow structure.

Flood routing model
Mathematical formulation of the flood routing model. In the following, we will refer to the flood 
routing model developed herein as the Residual Storage Model (RSM). Although inflows during immediate 
moments have a marginal impact on the outflow, all reservoir routing models consider that the outflow at time 
t is a function of the absolute reach storage (total inflow minus total outflow) at the same time. Herein, the por-
tion of the absolute reach storage that impacts the outflow significantly is defined as the residual storage of a 
reach. Let S′t denotes the residual storage at time t. Figure 2 illustrates the upstream and downstream of a reach, 
and the residual storage.

The conservation equation can be written as:

where TT is the Transit Time. This parameter represents the time from when the inflows {It−TT , It−TT−1, . . . , I0} 
impact the outflow at time t. Hence, inflows {It , It−1, . . . , It−TT+1} , are not used in the computation of Ot and are 
represented by the white area in Fig. 2. The RSM considers that outflow at time t is proportional to S′t and It−TT:

The parameters of the model are the reach’s Transit Time (TT), the proportionality coefficient ( α ∈ [0 : 1] ) and 
the initial residual storage S′0.

The proportionality coefficient α physically represents the proportion of the residual storage that stays in 
the reach. It is between 0 and 1. The initial residual storage S′0 , represents the reach storage during a steady flow.

The RSM form is a singular form of Muskingum model (see Eq. (5) with x = 0 ) and is suited for long reach 
where the downstream flow has a limited influence on the upstream flow.

Network flow model. In a water management problem based on a network representation, the RSM can be 
easily integrated if it is described as a network. Let G = (V;E) be a directed single source network, with node set 
V and arc set E. Let S and T be the source and the sink fictive nodes of the network, respectively. The source node 
supplies the upstream of the system and the sink node collects the downstream flows. Convergence or diversion 
points and reservoirs are represented by nodes and water transfer by arcs. In fact, flows do not cross the network 
instantly, thus, in order to account for the dynamics of the flows, the nodes are duplicated at each time step over 
the duration of the simulation. In the arcs connecting those copies, the transit times and flows are  implicit32. 
For an arc eij , i is the origin node, and j is the end node. Let γ (n) and γ−1(n) respectively denote the sets of the 
outgoing and incoming arcs of a node n. Each arc e is associated with a positive flow �e . For each node n of V, 
except for S and T, the conservation of flow is satisfied:

Considering the reach’s transfer time TT, the outgoing flow from an upstream node at time t is connected to 
the reservoir node at time t + TT . In order to model a reach’s flood routing, an intermediate node denoted as 
reservoir node is introduced between every upstream and downstream node. The reservoir node separates the 
incoming flow into 2 flows: a flow corresponding the volume released from the reservoir at time t and a flow 
corresponding to the residual storage remaining in the reservoir.

Figure 3 presents an example of a network model corresponding to channel routing over one reach. To sim-
plify the example, we considered that the transit time is equal to one-time step, and we only provided the cor-
responding network for a horizon of 4 times step. Nodes Ut and Dt represent the upstream and the downstream 

(11)S′t+1 = S′t + It−TT − Ot

(12)Ot = (1− α)(S′t + It−TT )

(13)∀n ∈ V \ {S,T}
∑

e∈γ (n)

�e =
∑

e∈γ (n)−1

�e

Figure 2.  Residual storage schematic representation.
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of the reach at time t, respectively. Inflow at instant t is represented by the flow carried by the arc eSUt . Inflow 
at instant t joins the reservoir at instant t + TT through the arc eUtRt+TT . The reservoir node at instant t + TT 
preserves a proportional portion of the incoming flows: S′(t+TT)+1

= α(S′t+TT + It) , and releases the left portion: 
Ot+TT = (1− α)(S′t+TT + It).

Calibration of the model. For the simulated outflows to be close to the measured downstream flows, the 
model’s parameters of the flood routing model have to be calibrated. The objective function to minimize is stated 
as follows:

Subject to:

where OMeasured
t  and ORSM Model

t  are the measured and computed outflow at time t, respectively.
The unknowns of the problem are: the reach’s transit time (TT), the distribution coefficient ( α ) and the initial 

residual storage S′0 . The final residual storage S′Horizon−1 should be equal to the initial one S′0 in order to conserve 
the volume of the routed hydrograph.

In order to account for the complex objective functions involved in the calibration step, a genetic algorithm is 
used instead of traditional optimization algorithms. The Genetic Algorithm (GA) solver in MS Excel is coupled to 
a network model. Unlike classical optimization search methods, such as the simplex method and gradient-based 
methods, the genetic algorithm does not necessarily require well-defined functions or derivatives of functions. 
A genetic algorithm is a metaheuristic based on three bio-inspired operators: selection, crossover, and muta-
tion. In the optimization model, the population in GA is the vector ( TT ,α, S′0 ), and the constraints are defined 
through the network model.

Validation of the model. In order to evaluate the validity of the proposed model, it was tested on a 
hydrograph proposed by  Wilson33, which is a standard test event that has been extensively studied by other 
 researchers20,34–36. The inflows and outflows of the Wilson event, the model routed, and Muskingum outflows 
are given in Table 1.

The results of the RSM and Muskingum model are illustrated in Fig. 4.

(14)Minimize

Horizon−1
∑

t=0

(OMeasured
t − ORSM Model

t )2

(15)

∀n ∈ V \ {S,T}
∑

e∈γ (n)

�e =
∑

e∈γ (n)−1

�e

S′t+1 = α(S′t + It−TT )

α ∈ [0 : 1]

TT ≥ 0

S′0 = S′Horizon−1

Figure 3.  Network model corresponding to a reach, with TT = 1 and Horizon = 4.
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The root-mean-square (RMS) and the error (Error) are computed using Eq. (16):

For the two reconstructions of the outflow hydrograph, the root-mean-square (RMS), the error, and the model’s 
parameters are listed in Tables 2 and 3. The determination of K and x is performed by employing a least-square 
technique.

Figure 4 shows a good agreement between the RSM reconstructed outflow and the observed ones. For the 
Muskingum model, C0 and C1 are negligible compared to C2 which shows that the outflow at time t + 1 depends 

(16)
RMS =

√

∑

i(Q
observed
i − Qmodel

i )2

Horizon

Error = 100×

∑

i |Q
observed
i − Qmodel

i |
∑

i Q
observed
i

Table 1.  Recorded and reconstructed outflow for the Wilson event.

T(h) Recorded inflow ( m3
s
−1) Recorded outflow ( m3

s
−1)

Simulated outflow (RSM) 
(m3

s
−1)

Simulated outflow 
(Muskingum) ( m3

s
−1)

0 22 22 17.30 20.95

6 23 21 18.74 21.26

12 35 21 19.75 22.23

18 71 26 20.78 26.86

24 103 34 24.57 38.75

30 111 44 36.33 54.67

36 109 55 54.38 68.60

42 100 66 71.10 78.38

48 86 75 82.79 83.35

54 71 82 88.63 83.59

60 59 85 88.75 80.16

66 47 84 84.35 74.51

72 39 80 77.39 67.45

78 32 73 68.92 60.13

84 28 64 60.29 53.00

90 24 54 52.12 46.61

96 22 44 44.99 40.90

102 21 36 38.84 36.14

108 20 30 33.82 32.31

114 19 25 29.95 29.19

120 19 22 26.97 26.64

126 18 19 24.60 24.67

Figure 4.  Wilson event: recorded inflow and outflow, reconstructed outflow for the RSM and the Muskingum 
models.
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primarily on outflow at time t. Even if in the RSM model the influence of the output is only depending on the 
residual storage state and not directly on the output flow as in the Muskingum model, the observed results are 
similar. Referring to Table 2, the errors for the residual storage model and the Muskingum model is 4.73 and 4.48 
respectively; and the RMS is 8.37% and 9.32% respectively. With the recorded outflow peak time of t = 60hr , the 
RSM model was able to yield the same peak time with minor error. Whereas the Muskingum incorrectly predicted 
the peak time. The RSM also yields a very small RMS from practicing hydrologist point of view.

Figures 5 and 6 represent the absolute storage of the reach plotted against the outflow for the Muskingum 
method, and the residual storage of the reach plotted against the outflow for the RSM, respectively. Figure 5 

Table 2.  Calibration results for the Wilson event.

RSM Muskingum

RMS ( m3s−1) 4.73 4.48

Error ( %) 8.37 9.32

Table 3.  Parameter of the calibration results for the Wilson event.

TT(h) α S
′

0
 ( m3) �T (s) K X C0 C1 C2

RSM 11 0.94 270.13

Muskingum 5 10800 229117.15 0.023 12.345E − 05 0.047 0.952

Figure 5.  Absolute storage vs. outflow (Muskingum model).

Figure 6.  Residual storage vs. outflow (RSM).
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highlights the non-linear relationship between the absolute storage and the outflow assumed in the Muskingum 
model. The plot consists in a loop formed by a forward and a reverse path. The loop reflects the non-symmetrical 
relationship existing when the reach is storing or emptying. On the other hand, in Fig. 6, the loop is nearly closed 
and a highly linear relationship between the outflow and the residual storage can be observed. Figures 5 and 6 
emphasize that the outflow is more linearly correlated to the residual storage than the absolute storage of a reach.

Application
Application on the Arrats river. The RSM developed herein has been applied on a reach of the Arrats 
river. The Arrats river is an affluent of the Garonne river in the south west of France. The river is equipped with 
five hydrometric stations: Astarac (S1), Isle Arne (S2), Mauvezin (S3), Bives (S4), and St-Antoine (S5). Figure 7 
presents a synoptic of the river and the distances between the hydrometric stations, and Fig. 8 presents a map 
of the river and the hydrometric stations. In this case of study, we will focus on the last reach between Bives and 
St-Antoine, with a length of 40km. The aim of this study is to compare the outflow routed by the RSM and the 
measured outflow.

Figure 7.  Synoptic of the Arrats’ river (with KP indicating the kilometric point).

Figure 8.  Map of the Arrats’ river and the hydrometric stations created with QGis version 3.16 (www. qgis. org).

http://www.qgis.org
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Calibration. The hydrograph chosen for the calibration is a 200 hours’ event measured in the Bives and St-
Antoine hydrometric stations during the period 03/07/2018− 11/07/2018 . The total simulation time was 200 
hours starting at t = 0h , using a computation interval of one hour. The RSM was calibrated and the parameters 
TT ,α, andS′0 were found. The calculated parameters were TT = 11h,α = 0.82, andS′0 = 6.23m3 . In order to 
compare the RSM and the Muskingum model, the latter was also calibrated, and the calculated parameters were 
K = 58412.7, x = 0.07 and �T = 10580s ≈ 3h.

Figure 9 shows that the calibration of the RSM and Muskingum model indicates good performance. In fact, 
the errors for RSM and Muskingum model are only of: 5.07% and 4.48% , respectively.

Simulation. Once the RSM and Muskingum model were calibrated on the last reach of the Arras river, they 
were tested on other hydrological events in order to examine the constancy of the methodology and the param-
eters found in the calibration stage. The hydrograph chosen for the simulation was a 320 hours’ event measured 
in the Bives and St-Antoine hydrometric stations during the period 06/05/2018− 20/05/2018 . The param-
eters used to simulate the outflow at St-Antoine, were the ones found in the calibration stage. Recorded inflow, 
recorded outflow and simulated outflows with RSM and Muskingum model are illustrated in Fig. 10.

Figure 10 shows that the outflow simulated with the RSM is close to the measured one. It also shows that RSM 
results are similar to Muskingum’s results. The errors and root-mean-square for RSM and Muskingum model are: 
(7.1%; 0.44m3s−1) and (6.6%; 0.43m3s−1) , respectively, see Table 4 and Table 5. The simulation results analysis 
shows that the proposed routing model can be readily calibrated and provides pertinent results. The Muskingum 
routing model is convenient in deriving the outflow with given inflow hydrograph, however the result can be 
greatly affected by inappropriate K and X. There is no general rule of thumb of how the Muskingum K and X 
should be determined, thus uncertainties remain if these parameters are incorrected used. The routing method 

Figure 9.  Calibration: Recorded inflow in Bives, recorded outflow in St-Antoine, reconstructed outflow for the 
RSM and the Muskingum models.

Figure 10.  Simulation: Recorded inflow in Bives, recorded outflow in St-Antoine, reconstructed outflow for the 
RSM and the Muskingum models.
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incorporated with network flow presented in this paper is to minimize deviations between the observed and 
derived hydrograph before applying for outflow hydrograph derivation.

Operative results. The RSM model has been integrated into the operational management tool Rio used by 
the -CACG following the functional principle described in the Fig. 11. Feedback on measurement are operated 
directly by the optimization model. The feedback on progress loop previously presented on the Fig. 1, is reduced 
to non-hydraulic models such as streamflow or withdrawal models. This principle is more detailed and illus-

Table 4.  Simulation results for the Arrat’s reach.

RSM Muskingum

RMS ( m3s−1) 0.44 0.43

Error ( %) 7.1 6.6

Table 5.  Parameter of the simulation results for the Arrat’s reach.

TT(h) α S
′

0
 ( m3) �T (s) K X C0 C1 C2

RSM 11 0.82 16

Muskingum 5 10580 58412.7 0.0717 0.0185 0.1593 0.8222

Figure 11.  Scheme for the optimization strategy integrating hydraulic models.

Figure 12.  Hydrographic perimeter of the operational water resource system, created with QGis version 3.16 
(www. qgis. org).

http://www.qgis.org
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trated in Tahiri et al.37 where it was implemented in order to improve initial conditions for streamflow prediction 
using rainfall reconstruction algorithms.

RSM model is actually in operation on about thirty managed rivers in the south of France presented in Fig. 12. 
The Neste system is composed by the rivers in the yellow zone which form a singular system alimented by a 
single canal. All these rivers are left tributaries of the Garonne river except the most westerly river that provides 
another river named Adour (tributaries represented in orange in Fig. 12). The green and purple rivers in Fig. 12 
constitute part of the right tributaries of the Garonne river.

Rio integrates models to managed dams and canal intakes:

• 194 watersheds are modeled by rainfall-runoff model based on 3 interconnected reservoirs.
• 84 RSM models are used to represent the flow dynamics.
• Withdrawals are partially measured and forecasts are statistically interpolated.

Mid-term weather forecasts are obtained from GFS model (10 days). For the current day French model 
AROME rainfall forecasts are used. For both, 8 representative weather stations are consulted.

The rainfall event presented herein (Figs. 13, 14, 15) for 20 of the managed rivers occurred between the 
22/10/2019 and the 25/10/2019. During this period, weather forecast was particularly uncertain due to the stormy 
conditions. On the screenshot herein, discharge measurements are colored, full and bold lines. The model outputs 
are represented by a surface of the same color as that used for the measurement station. Vertical dotted green 
line corresponds to the time of the screen capture. In order to be accurate, the model outputs have to match the 
measured flows before this line and the forecast flows after. For each river, three screenshots from 22/10/2019 at 
6PM, 3/10/2019 at 6PM and 25/10/2019 at 10AM are displayed.

Conclusion
Real-time operation of multireservoir systems requires flood routing in river reaches. This issue has usually been 
solved by coupling a simulation model to the optimization model when it is based on an evolutionary approach. 
Conceptual models for channel routing like the Muskingum model can also be imbedded within the mathemati-
cal formulation of the optimization algorithm when it is linear. Nonetheless, even if network flow programming 
is a special form of linear programming, its special structure inhibits the integration of the Muskingum flood 
routing model in the network flow problem formulation. A new flood routing model destined primarily to be 
coupled with a network flow structure is developed. The routing model is considered as a network flow and the 
parameters are calibrated using a genetic algorithm. The model was approved on the Wilson standard test, studied 
by other researchers and known to present a nonlinear relationship between weighted discharge and storage. The 
methodology was tested and provided satisfying results on reaches of many rivers in the south west of France. 
This flood routing model was integrated to various operational systems since two years on several rivers and more 
recently experimented on the whole system for which calibration and weather forecast accuracy improvements 
are needed and are actually under studies. Thus, sensibility analysis hasn’t been studied in this paper, because of 
its importance, it is considered as the main perspective of this work.

Figure 13.  Right tributaries of the Garonne dashboards screenshots.
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Figure 14.  Left tributaries of the Garonne dashboards screenshots.
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