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Mathematical modelling 
to determine the greatest height 
of trees
Tohya Kanahama1 & Motohiro Sato2*

This study aimed to analyse the critical height of a column whose weight varies vertically in order to 
obtain a simple scaling law for a tree where the weight distribution considered. We modelled trees as 
cantilevers that were fixed to the ground and formulated a self-buckling problem for various weight 
distributions. A formula for calculating the critical height was derived in a simple form that did not 
include special functions. We obtained a theoretical clarification of the effect of the weight distribution 
of heavy columns on the buckling behaviour. A widely applicable scaling law for trees was obtained. 
We found that an actual tree manages to distribute the weight of its trunk and branches along its 
vertical extent in a manner that adequately secures its critical height. The method and findings of 
this study are applicable to a wide range of fields, such as the simplification of complicated buckling 
problems and the study of tree shape quantification.

Over the course of evolution, living organisms have acquired a remarkable degree of wisdom. For example, stand-
ing plants in nature have acquired mechanisms to efficiently resist various external forces, such as bending, shear, 
and  buckling1,2. Many previous studies have focused on the bamboo, which has a peculiar structure, investigating 
the rationality of this  structure3,4. A wild bamboo has an extremely long and slender body. The shape as such 
possesses a poor resistance to buckling. However, previous studies found that the bamboo reduces self-weight 
by incorporating a hollow structure, such that its buckling resistance is effectively improved by adjusting the 
node interval and the vascular bundle distribution.

Based on those prior results, this study focused on trees, which are self-standing plants similar to bamboo. The 
bamboo consists of a hollow cylinder with light branches and leaves. In contrast, trees have a solid cross-section 
and a heavy body. Therefore, the buckling risk under self-weight highly increases as trees grow taller. Neverthe-
less, trees in the wild naturally acquire appropriate heights and concomitant levels of mechanical stability that 
are adapted to harsh natural environments. This implies that mechanical strategies for avoiding self-buckling 
are incorporated in the forms adopted by trees.

Greenhill5 conducted a study on the self-buckling of trees. He modelled a tree as a cylindrical cantilever and 
derived the exact solution for the critical height for self-buckling as follows:

where E is the modulus of elasticity 
[

N/m2
]

 , γ is the unit volume weight 
[

N/m3
]

 , r is the radius [m] , and C is a 
constant ( C ≈ 1.959 ). Equation (1) shows that the critical height of a tree is proportional to the 2/3 power of 
the radius. McMahon proved that this law is correct for wild  trees6. This scaling law has been applied widely in 
forest science and  ecology7–10 owing to its simplicity. von Karman and  Biot11 solved the governing differential 
equation by using a series solution and derived a formula for the critical height, which is almost equivalent to 
Greenhill’s equation ( C ≈ 2.0).

Other factors that determine critical height are hydraulic  conditions12,13, wind force  effects14,15, and genetic 
 factors16. The scaling laws found by Greenhill correspond to the findings of  McMahon6, which indicated that 
the equation formulating the critical height for self-buckling includes scaling laws that are widely applicable 
to trees. Most of the prior studies of the scaling laws associated with trees considered that the critical height is 
determined by the self-buckling  condition17–19.
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Greenhill’s formula is widely applied in the fields of forestry science and ecology, and it is also the starting 
point for research on self-weight buckling in civil and mechanical engineering.  Grishcoff20 investigated a col-
umn that is loaded simultaneously with its self-weight and concentrated loads. Wang and  Drachman21 extended 
Grishcoff ’s study to an inverted column. Whereas these solutions were approximate, Chai and  Wang22 and  Duan23 
used different methods to obtain the exact buckling stresses under self-weight and concentrated loads.  Zorica24 
extended this problem to a diagonal cantilever beam.

The self-buckling problem of columns has been extended to tapered columns, which have recently been 
actively used in civil engineering  structures25. A study of tapered columns was initiated by  Smith26. He formulated 
the buckling problem for linearly tapered columns, which ignores the self-weight. Subsequent studies extended 
the problem scope to heavy columns with arbitrary taper ratios, using various  approaches27–29. An investigation of 
curvilinearly-tapered  columns30, another investigation that introduces a model that includes concentrated loads 
at arbitrary  positions31, theoretical consideration regarding post-buckling behaviours of heavy  columns32–34, and 
studies employing other  considerations35,36 have been performed. However, these studies are highly complicated, 
and none of them expresses a simple law such as Greenhill’s formula.

Previously, we theoretically derived a simple scaling law for a heavy tapered column for the first  time37 with 
the aim of applications in engineering as well as in ecology and forest science. We found that the critical height 
of a linearly tapered column is inversely proportional to the 1/6 power of the ratio of the radius of the free end 
to the radius of the fixed end. We also found that the Greenhill power law holds even in a tapered column.

As aforementioned, the critical buckling height of trees and the self-buckling of columns have been investi-
gated for various purposes and for various fields of application. However, the effects of branches and leaves, which 
are considered important factors for buckling resistance, were not considered in previous studies. A clarification 
of the relationship between the critical height and the weight and distribution of branches and leaves will have 
significant engineering implications, such as how to distribute weight in the design of tower structures and how 
to control or reduce the occurrence of buckling under self-weight. Furthermore, a simple scaling law for the 
buckling length and the leaf weight of trees, similar to Greenhill’s equation, would be of great value in forestry 
science, ecology, and other fields of research.

The purpose of this study is to derive the critical height of a column whose weight varies in the vertical 
direction. We modelled the trees as cantilevers that were fixed to the ground. We formulated a self-buckling 
problem that took account of various weight distributions by using the series solutions of von Karman and 
 Biot11. In considering real trees, the weight distribution of the trunk of a tree was assumed to be constant, and 
the branches were assumed to be variable quantities in the vertical direction. The formula for the critical height 
was derived in a simple form that did not include special functions, similar to the Greenhill formula. The effect 
of the weight distribution of heavy columns on the buckling behaviour was theoretically clarified, and a widely 
applicable scaling law was obtained.

The methods and results presented herein provide the buckling length of a heavy column consider-
ing its weight distribution. They also simplify the treatment of conventional complex buckling problems in 
 engineering29,30. Furthermore, they can be used to investigate the rationality of tree morphology, to study tree 
shape quantification in forest  science38,39, as well as in a wide range of other applications.

Methods
Density function. In previous studies, the density of a tree was treated as constant in the vertical direction 
( ρ(x) = const. ). However, in this study, the density was treated as a function of height to clarify the relationship 
between the weight distribution and the critical height of a tree. We considered the following density functions:

where ρ0 is the density at the reference point [kg/m3] and n is a parameter that controls the shape of the density 
distribution. An example of the distribution of each model is shown in Fig. 1. The coordinate axis was aligned 
with the neutral axis, with x = 0 at the free end and x = lc at the fixed end.

Model A is a model in which the density at the free end is constant and independent of parameter n 
( ρ(0) = ρ0 ) whereas the density at the fixed end is n times the density at the free end ( ρ(lc) = nρ0 ) . Model B 
in Eq. (3) is the inverted form of Model A, i.e., the density at the fixed end is constant (ρ(lc) = ρ0 ) whereas the 
density at the free end is n times the density at the fixed end ( ρ(0) = nρ0 ). For the same value of n in Models A 
and B, both models have the same total weight. Based on the observation that the total weight of the branches 
rarely exceeds the total weight of the  trunk40,41, we assumed that the range of n in Models A and B was 0 ≤ n ≤ 3 . 
Models C and D in Eqs. (4) and (5) are models in which the total weight of the system is independent of the 
parameter n if the height is invariant. The difference between Models C and D is whether the distribution is linear 
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or curved. In these models, the density distribution is constant in the vertical direction, as in Greenhill’s equa-
tion with n = 0 . Moreover, the weight is concentrated at the top when n = −1 and at the bottom when n = 1 . A 
summary of these results appears in Table 1. Not only to clarify the effect of weight distribution on the critical 
height, but also to ensure future expandability, we used the above four density distribution functions as they are 
geometrically simple and can represent various distribution shapes.

The calculation model was a cantilevered elastic column with a radius rl [m] and a length l [m] (see Fig. 2). 
Greenhill’s  formula5 that was verified by  McMahon6 and has been broadly used in various research, it had been 
derived by modelling trees as non-tapered cylinders. Furthermore, the geometrically simple models are desirable 
to obtain the wide applicability and extensibility. For the above reasons, we modelled trees as non-taper cylinders. 
The weight W(x) from the upper end to any point x is given by:

(6)W =

∫∫∫

ρ(x)g dx dy dz =

∫ x

0

ρ(x)Ag dx,

Figure 1.  Density functions for models A, B, C, and D, respectively.
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where A is the cross-sectional area [m2] . When the column buckles under its self-weight, the shear force S(x) at 
any point x is given by:

where θ is the deflection angle. Note that the deflection angle θ is not included in the integration of Eq. (6) with 
respect to x because this is only a volume integration to determine the weight W(x) . If we assume that θ is very 
small, sinθ can be approximated as θ . Therefore, Eq. (7) can be written as

From the elastic curve equation of the beam, the bending moment M(x) at any point x can be obtained as

where y is the deflection. Because the deflection angle θ is very small, Eq. (9) can be approximated as:

Governing differential equation. From the relationship between the shearing force S(x) of Eq. (7) and 
the end bending moment M(x) of Eq. (10), the governing differential equation is obtained as

Equation (11) is a second-order ordinary differential equation that has an independent variable x and depend-
ent variable θ(x) . We integrated the equations that are obtained by substituting the density functions in Eqs. 
(2)–(5) for ρ(x) in Eq. (11) and then applied the following transformation:

(7)S(x) = W(x)sinθ =

∫ x

0

ρ(x)Ag dx sin θ ,

(8)S(x) ≈

∫ x

0

ρ(x)Ag dx θ ,

(9)M(x) = −EI
d2y

dx2
,

(10)M(x) ≈ −EI
dθ

dx
.

(11)
d2θ

dx2
+

1

EI

∫ x

0

ρ(x)Ag dx θ = 0.

Table 1.  Calculation models and related numerical conditions.

Model Function Range of n Constant-density state

A ρ(x) =

(

n−1
lc

x + 1

)

ρ0 0 ≤ n ≤ 3 n = 1

B ρ(x) =

(

1−n

lc
x + n

)

ρ0 0 ≤ n ≤ 3 n = 1

C ρ(x) =

(

2n
lc
x + (1− n)

)

ρ0 −1 ≤ n ≤ 1 n = 0

D ρ(x) =

(

1− ncos

(

π
lc
x

))

ρ0 −1 ≤ n ≤ 1 n = 0

Figure 2.  Calculation model.
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where ω is a constant.
The governing differential equations were obtained in the following form:

If we consider the governing equations in their simplest form, the constant ω for all the models can be defined 
as

Critical height formula. The general solution of the governing equations was obtained by the series solu-
tion method using Mathematica. For example, in Model C, the series solution of Eq. (15) is obtained as follows:

where c1 and c2 are arbitrary constants.
We applied the following boundary conditions of the cantilever to the general solution of the governing dif-

ferential equations, deriving the following algebraic equation for the critical height:

By applying the boundary condition at the free end, we found that c2 = 0 in Eq. (18). Moreover, by applying 
the boundary condition in the fixed end, Eq. (18) can be rewritten as

By considering the condition for finding a non-trivial solution ( c1  = 0 ), we obtained the following algebraic 
equation with respect to ξ:

When n = 0 , Eq. (21) corresponds to the equation of von Karman and  Biot11. The critical height lc can be 
determined for any value of n by calculating the smallest positive real number ξc that satisfies Eq. (21) and sub-
stituting that value of ξc into the following equation (which follows from Eqs. (11), (15), and (17)):

where C is Greenhill’s constant ( C ≈ 1.959 ). Equation (22) is expressed in the form of the product of the coef-
ficient varying with the density distribution and the critical height in the constant-density column introduce by 
Greenhill. Equation (21) has only two variables, ξc and n . In other words, ξc varies only with n . This property is 
the same for all density models, and the critical height can be obtained using the same method.

Buckling mode. In this section, we describe the calculation of the buckling modes. First, we integrated 
Eq. (18) with respect to ξ , in order to obtain the deflection y(ξ):

(12)ξ(x) = ωx,

(13)Model A:
d2θ

dξ 2
+

(

n− 1

2lc

ξ

ω
+ 1

)

ξθ = 0,

(14)Model B:
d2θ

dξ2
+

(

1− n

2lc

ξ

ω
+ n

)

ξθ = 0,

(15)Model C:
d2θ

dξ 2
+

(

n

lc

ξ

ω
+ (1− n)

)

ξθ = 0,

(16)Model D:
d2θ

dξ2
+

(

1−
lc

π

ω

ξ
sin

(

π

lc

ξ

ω

))

ξθ = 0.

(17)ω =

(

γ0A

EI

)1/3

=

(

ρ0gA

EI

)1/3

.

(18)

θ(ξ) =

(

1−
1

6
ξ 3(n− 1)+

1

180
ξ 6(n− 1)2 + · · ·

)

c1+

(

ξ −
1

12
ξ 4(n− 1)+

1

504
ξ 7(n− 1)2 + · · ·

)

c2

(19)
{

dθ
dξ = 0(at x = 0)

θ = 0(at x = lc).

(20)
(

1−
1

6
ξ 3(n− 1)+

1

180
ξ 6(n− 1)2 + · · ·

)

c1 = 0.

(21)
(

1−
1

6
ξ 3(n− 1)+

1

180
ξ 6(n− 1)2 + · · ·

)

= 0.

(22)lc=
ξc(n)

(4C)1/3

(

C
E

γ
r2l

)1/3

,

(23)y(ξ) =

(

ξ −
1

24
ξ 4(n− 1)+

1

1260
ξ 7(n− 1)2 + · · ·

)

c1 + c3,
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where c3 is an arbitrary constant. By considering the boundary condition at the fixed end ( y(ωlc) = 0 ), c3 is 
given by:

Next, we substituted Eq. (24) into Eq. (23) and applied the condition ξ = ωlc , The deflection y(x) was obtained 
as follows:

Because Eq. (25) includes the unknown coefficient c1, we used the deflection ratio y(x)/ymax to eliminate it. 
The maximum deflection ymax appears at x = 0 , and the deflection ratio y/ymax to draw the buckling modes is 
given by

Therefore, by substituting lc into Eq. (26), the buckling modes under self-weight could be obtained. We 
obtained the buckling modes for other density models with the same method.

Example: application to real trees. In this section, we consider the effect of weight distribution on criti-
cal height in real trees by using the critical height formula derived by the aforementioned methods. Based on the 
investigation on the weight distribution of real  trees40,41, we used the following functions to add the trunk weight 
to Models C and D, respectively:

where ρB is the density of the branches [kg/m3], and ρT is the density of the trunk [kg/m3]. An example of the 
distributions in Eqs. (27) and (28) is shown in Fig. 3. In this study, we expressed the density ratio of the branches 
and the trunk, ρB/ρT , as a weight ratio WR because the density ratio of the branches and trunk is equal to their 
weight ratio. By using the same method as for the other models, the governing differential equations were 
obtained as follows:

Calculation. Method for solving the critical height equation. Algebraic solving of high-order equations such 
as Eq. (21) is impossible. Therefore, we used numerical computation to find the smallest positive real-valued 
solution that satisfies the high-order equation presented in this study. For the numerical method, we adopted the 
secant method, which does not require differentiation to allow for future extensions.

We rewrote Eq. (18) as follows:

By increasing the value of ξ , we explored the interval [ξ0, ξ1] where f (ξ0) • f (ξ1) < 0 . Using these values of 
ξ0 and ξ1 as initial values, we iterated using the following equation:

We used the following equation as a convergence criterion:

(24)c3 = −

(

ωlc −
1

24
(ωlc)

4(n− 1)+
1

1260
(ωlc)

7(n− 1)2 + · · ·

)

c1.

(25)y(x) =

(
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ω4

24
(n− 1)

(
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)

+
ω7

1260
(n− 1)2

(
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)

+ · · ·

)

c1 .

(26)
y
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(
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ω4
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(
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)
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+ · · ·

)

(
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ω4

24 (n− 1)
(
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)

+ ω7
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(
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)

+ · · ·

) .

(27)Model E: ρ(x) =

(
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lc
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)

ρB + ρT ,

(28)Model F: ρ(x) =

(
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(

πx
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))

ρB + ρT ,

(29)Model E:
d2θ

dξ2
+
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n

lc

ξ

ω
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)
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)
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(30)Model F:
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+
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π

ω

ξ
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π
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ξ

ω
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Convergence of series solutions. To determine the expansion order N of the series solution in the high-order 
equation, we defined the convergence judgement function as follows:

where �N is the increment of the expansion order and ξ(N) is the minimum positive real solution in the high-
order equation (Eq. (18)) when the expansion order is N . In many studies, the height of a tree is measured in 
 centimetres42,43. Therefore, we used the following judgement function to determine the expansion order:

We increased N by �N until the above condition was satisfied. The smallest expansion order N that satisfied 
Eq. (35) was the expansion order used in this study.

Relationship between critical height and parameter n. In this section, we clarify the relationship between the 
critical height lc and the density distribution parameter n . The critical height ratio f (n) was defined as follows:

where lc(n) was the critical height in the variable density model, and lcs was the critical height in the model with 
constant density. If the specification of each model is the same, the critical height is larger than the critical height 
of the density constant state when f (n) is larger than 1. In contrast, the critical height is smaller than the critical 
height of the state with constant density when f (n) is smaller than 1. Because lc(n) and lcs are given by Eqs. (22) 
and (1), respectively, the critical height ratio f (n) was obtained as follows:

In order to clarify the relationship between the critical height ratio f (n) and the density distribution param-
eter n , we obtained the regression curve (discretely calculated) from f (n) . By using this method, the critical 
height ratio f (n) was expressed as a simple function of n . By applying it to Eq. (22), the relationship between 
the critical height lc and the weight distribution was clarified. In Sect. 2.5, the critical height ratio f (n,WR) was 
defined as follows:

(34)f(N ,N+�N) =

∣

∣

∣

∣

ξ(N) − ξ(N+�N)

ξ(N+�N)

∣

∣

∣

∣

,

(35)f(N ,N+�N) ≤ 1.0× 10−4.

(36)f (n) =
lc(n)

lcs
,

(37)f (n) =
ξc(n)

(4C)1/3
.

Figure 3.  Examples of density distributions representing real trees.
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where lc(n,0) is the critical height when the trees have no branches, which is the same as Eq. (1). The quantity 
lc(n,WR) is the critical height when the density distribution parameter is n , and the weight ratio is WR . In other 
words, Eq. (38) replaces ξc(n) with ξc(n,WR) in Eq. (37).

We assumed the following models as regression models; each parameter was determined by regression analy-
sis using the non-linear least-squares method. Furthermore, the significance level α was 0.05:

The exponential model and the power-law model in Eqs. (39) and (42) are simple models expressed in 
monomial form. The linear and polynomial models in Eqs. (40) and (41) are more complicated than the above 
models, as they are both expressed in a polynomial form. In particular, the polynomial model in Eq. (41) is a 
quadratic polynomial and is the most complicated among the four models. The power-law model in Eq. (42) 
cannot be applied to data with n ≤ 0 . Therefore, we use only the data with n > 0 to perform regression analysis 
in the case of the power-law model.

Results and discussion
In this study, based on the physical characteristic values found  in43  and44, we used an elastic modulus 
E = 1.1× 1010

[

N/m2
]

 , a standard density ρ0 = 526 
[

kg/m3
]

 , a gravitational acceleration g = 9.81
[

m/s2
]

 , and 
a radius rl = 0.23[m].

Convergence judgement. The results of convergence judgement in each model are displayed in Fig. 4. 
Values for the initial expansion order Ni = 5 and the increment �N = 5 . Were used. The values of the conver-
gence judgement function f(N ,N+�N) are indicated on the vertical axes in the figure and the values of n are indi-
cated on the horizontal axes. In all models, the calculated values converged as the expansion order N increased. 
However, the convergence of Model D was inferior to the other models that had linear density distributions, i.e., 
Models A, B, and C. The specific convergence judgement function f(20,25) (indicated by the dashed line in each 
panel) satisfied Eq. (25) in Models A, B, and C. In contrast, this function did not satisfy Eq. (25) in Model D. The 
specific convergence judgement function f(25,30) (represented by the single-dotted line in each panel) satisfied 
Eq. (25) for all the models. Therefore, we selected N = 25 as the expansion order.

Effect of the density distribution on the critical height. The relationship between the critical height 
lc and the density distribution parameter n is illustrated in Fig. 5. The values of the critical height lc are indicated 
on the vertical axes in the figure, and the values of n are indicated on the horizontal axes.

In Model A, the critical height lc slowly decreased with increasing n , whereas the critical height lc showed a 
sharp decrease with increasing n in Model B. Comparing the two models in more detail, the critical in Model B 
was higher than that in model A in the interval 0 ≤ n < 1 , whereas the two models showed agreement at n = 1 . 
In the interval 1 < n ≤ 3 , the critical height in Model A was higher than that in Model B. The reason for these 
results was that Model A concentrated more weight at the top of the tree in the interval 0 ≤ n < 1 , whereas 
Model B concentrated more weight at the top in the interval 1 < n ≤ 3 . This result indicated that increasing the 
weight of the upper portion of the tree significantly reduced the critical height, as compared to the result for an 
increase in the weight of the lower portion.

In Models C and D, which have the same total weight regardless of n , the critical height lc displayed a cur-
vilinear increase n . Retaining the equal total weights, but with the weight distributed such that the upper and 
lower parts were lighter and heavier, respectively, the critical height showed a dramatic increase. The difference 
between Model C (straight line) and Model D (curved line) was negligible when n < 0 , the value for Model C 
being slightly higher. The difference between the two models became apparent at higher values of n . The values 
for Model D were higher than those for Model C when n > 0.

For all models, when the density was constant (in agreement with Greenhill’s model), we obtained a value of 
lc = 60.455[m] , which is almost the same as Greenhill’s solution. This indicates that when the governing differ-
ential equation is solved by the series solution method, the solutions are as accurate as those obtained by solving 
exactly if the number of terms N ≥ 25 is used. The solutions of von Karman and  Biot11 were derived using N = 6.

Derivation a simple scaling law by regression analysis. The relationship between the critical height 
ratio f (n) and the density distribution parameter n , and the regression curves obtained by non-linear regres-
sion analysis are displayed in Fig. 6. The values of the critical height ratio f (n) are indicated on the vertical axes 
in the figure, and the values of n are indicated on the horizontal axes. Detailed results of the regression analysis 
are listed in Table 2. All the parameters of all the regression models ( P1 ∼ P9 ) are valid because the p-values are 
consistently smaller than the significance level α = 0.05.

(38)f (n,WR) =
lc(n,WR)

lc(n,0)
=

ξc(n,WR)

(4C)1/3
,

(39)Exponential model : P1e
P2n,

(40)Linear model:P3n+ P4,

(41)Polynomial model:P5n
2 + P6n+ P7,

(42)Power-law model : P8n
P9 .
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In Model A, the critical height ratio (the ratio of the actual critical height lc to the value corresponding to the 
constant-density case) varies from 1.09 to 0.88 (depending on the parameter n ). Moreover, all regression models, 
except for the power-law model, are consistent with the theoretical solution. Based on the Akaike Information 
Criterion (AIC), the polynomial model is the most accurate model. However, for the purpose of obtaining a 
simple scaling law for trees, the simplicity of the regression model is very important. Therefore, the exponential 
model is a good regression model because it is superior in terms of both accuracy and simplicity.

In Model B, the critical height ratio varies from 1.60 to 0.73. The polynomial and power-law models are 
consistent with the theoretical solution. In contrast, the exponential and linear models are not accurate in the 
neighbourhood of n = 0 and n = 3 . Notably, the power-law model is not valid at n = 0. From the standpoint of 
AIC, the most accurate model is the power-law model. This model has good accuracy and simplicity.

In Model C, the critical height ratio varies from 1.25 to 0.87. All regression models, except for the power-law 
model, are consistent with the theoretical solution. The power-law model breaks down when n < 0 , and its error 
with respect to the theoretical solution is larger than that of the other models. Based on the AIC, the most accu-
rate model is the polynomial model. For the purpose of obtaining a simple scaling law for trees, the exponential 
model is a good regression model because it is superior in both accuracy and simplicity.

In Model D, the critical height ratio varies from 1.38 to 0.85. Regarding the regression models, all models 
except for the power-law model are consistent with the theoretical solution. The power-law model cannot account 
for the critical height when n < 0 , and its error with respect to the theoretical solution is larger than that of the 
other models. The exponential model shows good accuracy and simplicity.

To derive a simple scaling law such as Greenhill’s, we considered the use of simple fractions to express the 
critical heights. Simple expressions of the regression models considered optimal for each density model in terms 
of appropriate fractions are shown in Table 3. The limits of application for each formula are also listed in the table.

Application to real trees. The results of the application to a real tree, in which the balance of branch and 
trunk weights and their distribution on the critical height were investigated, are displayed in Fig. 7. The results 
for Models E and F are shown in panels (a) and (b), respectively.

In both models, the critical height increased with increasing n . Focusing on WR , it was possible to increase 
the critical height by making the top lighter, even when the same number of branches and leaves were used. 

Figure 4.  Convergence judgement.
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Comparing Models E and F, the quadratic distribution was more favourable when the top was lighter, and the 
linear distribution was more favourable when the top was heavier.

Based on King et al.’s study of the weight  ratio40 and Hirata’s study of the weight distribution of  trees41, the 
value ranges we used for WR and n for real trees were: 0.1 ≤ WR ≤ 0.6 and 0 ≤ n ≤ 1 . We found the following 
maximum and minimum values of f (n,WR) in these ranges:

The physical meaning of the quantities fmax and fmin in Eqs. (43) and (44) may be expressed as "the maximum 
and minimum values of the critical height ratio with respect to the case when all branches and leaves are cut off ". 
Even if a real tree has the most unfavourable configuration ( n = 0,WR = 0.6 ), the mechanical critical height is 
reduced by only about 15%.

Niklas reported that the critical height lc obtained by the Greenhill equation has a safety factor of approxi-
mately S = 4.0 ( S = lreal/lc ) with respect to the actual height of the tree, lreal45. Combining the results of Eqs. (43) 
and (44) with the results of Niklas et al., we can estimate that the safety factor for the critical height equation, 
considering the weight distribution of trees and the weight ratio of the trunk to the branches, lies approximately 
in the following range:

Actual trees have highly diverse weight distributions. However, by performing calculations using a density 
distribution function that can represent such a wide range of weight distributions and then refining the results 
using actual measurement data, it is possible to estimate the critical height more accurately than using the critical 
height equation which ignores existing branch and leaf weights.

Buckling modes under self-weight. The buckling modes under self-weight for all the density mod-
els are represented in Fig. 8. The vertical axis in each panel represents the dimensionless coordinate x/lc , and 

(43)Model E : fmax = 0.985, fmin = 0.855,

(44)Model F : fmax = 0.988, fmin = 0.855.

(45)3.4 ≤ S ≤ 3.9.

Figure 5.  Relationship between critical height lc and parameter n.
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Figure 6.  Critical height ratio and regression curve.

Table 2.  Non-linear regression analysis results.

Regression 
model Exponential Linear Polynomial Power-law

Parameter P1 P2 P3 P4 P5 P6 P7 P8 P9

Model A

Estimated 
value 1.081 − 0.073 − 0.071 1.077 0.010 − 1.002 1.091 0.978 − 0.067

p-value 2.0 ×  10–16 2.0 ×  10–16 2.0 ×  10–16 2.0 ×  10–16 2.0 ×  10–16 2.0 ×  10–16 2.0 ×  10–16 2.0 ×  10–16 4.2 ×  10–15

AIC − 2.311 ×  102 − 2.123 ×  102 − 3.407 ×  102 − 1.431 ×  102

Model B

Estimated 
value 1.381 − 0.254 − 0.230 1.315 0.109 − 0.556 1.473 0.972 − 0.210

p-value 2.0 ×  10–16 2.0 ×  10–16 2.0 ×  10–16 2.0 ×  10–16 1.1 ×  10–11 2.0 ×  10–16 2.0 ×  10–16 2.0 ×  10–16 2.0 ×  10–16

AIC − 7.314 ×  101 − 5.800 ×  101 − 1.078 ×  102 − 1.115 ×  102

Model C

Estimated 
value 1.016 0.190 0.191 1.023 0.068 0.191 0.999 1.207 0.085

p-value 2.0 ×  10–16 2.0 ×  10–16 2.0 ×  10–16 2.0 ×  10–16 2.0 ×  10–16 2.0 ×  10–16 2.0 ×  10–16 2.0 ×  10–16 5.6 ×  10–8

AIC − 2.154 ×  102 − 1.912 ×  102 − 3.196 ×  102 − 7.314 ×  101

Model D

Estimated 
value 1.025 0.243 0.245 1.036 0.110 0.245 0.998 1.282 0.115

p-value 2.0 ×  10–16 2.0 ×  10–16 2.0 ×  10–16 2.0 ×  10–16 2.0 ×  10–16 2.0 ×  10–16 2.0 ×  10–16 2.0 ×  10–16 1.3 ×  10–7

AIC − 1.753 ×  102 − 1.513 ×  102 − 2.620 ×  102 − 5.823 ×  101
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the horizontal axis in each panel represents the dimensionless deflection y/ymax . The buckling modes for 
n = 0, 1, 2 and 3 are shown for models A and B. The buckling modes for n = −1,−0.5, 0, 0.5 and 1 are shown 
for models C, D, E and F.

There were no significant differences in the buckling modes for any of the density models. The results are 
similar to those of the first-order mode in Euler buckling, where the deflection uniformly increases from the 
fixed end to the free end. No significant difference in the mode shapes was observed when the density distribu-
tion parameters n and the weight ratios WR were changed.

Conclusions
In this study, to clarify the effect of the weight distribution of trees on their critical height, the critical height for 
self-weight buckling was formulated for cylindrical models with various weight distributions and the critical 
height equations that include the influence of branch weight was derived for the first time. Regression analysis 
was performed on the discrete theoretical solutions, and a simple relationship between the weight distribution 
and the limit height was derived for each density model. Furthermore, using the obtained critical heights, the 
mode shapes under buckling under self-weight for various weight distributions were obtained. As a result, the 
following new findings were obtained:

Table 3.  Simplified formulas for critical height.

Model Formula Applicable limit

A lc =
11
10
e
−3n/40

(

C
E

γ
r
2
l

)1/3
0 ≤ n ≤ 3

B lc = n
−1/5

(

C
E

γ
r
2
l

)1/3
0 < n ≤ 3

C lc = e
n/5

(

C
E

γ
r
2
l

)1/3
−1 ≤ n ≤ 1

D lc = e
n/4

(

C
E

γ
r
2
l

)1/3
−1 ≤ n ≤ 1

Figure 7.  Relationship between the critical height and the branch distribution (contained in the weight ratio).
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Figure 8.  Buckling modes.
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(1) When a certain number of branches and leaves are distributed in the height direction, the risk of buckling 
due to self-weight can be reduced if the upper part of the trees is lighter and the lower part is heavier. This 
method of weight distribution can increase the critical height by a maximum of approximately 1.25 times 
for a linear distribution and by a maximum of approximately 1.38 times for a curvilinear distribution, com-
pared with a constant weight distribution in the vertical direction. In addition, the total allowable weight is 
approximately 2 times larger in the case of a linear distribution and approximately 2.6 times larger in the 
case of a curved distribution.

(2) The buckling mode when self-weight buckling occurs is similar to the first buckling mode in the case of 
general long columns, regardless of the weight distribution in the height direction. In addition, the mode 
shape hardly changes even if the distribution form changes in the same density model.

(3) Based on the weight distributions of real trees and the measurements of branch weights, it can be said that 
trees distribute their branches and leaves in a very rational way that has little effect on the critical height. 
Even if we consider the most unfavourable condition of a real tree ( n = 0,WR = 0.6 ), the critical height 
is only reduced by approximately 15% from the condition with no branches or leaves at all. Based on the 
findings of  Niklas45, it can be estimated that the safety factor of the actual trees is approximately 3.4 to 3.9 
in relation to the theoretical critical height of the present study, considering the branches. The method 
in this study can obtain more accurate critical height than previous methods that ignore branch weight 
because a safety factor of approximately 4 was reported in previous  research45.

In future work, based on the methods and findings of this study, the shape law and rationality of plant mor-
phology will be further explored from a theoretical point of view. Currently, we plan to investigate the effects of 
crown weight and position using more complex density function models and to extend the method to hollow 
cylindrical models such as bamboo and to solid and hollow models with a taper. In the future, we intend to 
summarise these findings and propose the next generation of material-saving and high-performance structural 
designs and rational new design methods.
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