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Influence of misorientation angle 
and local dislocation density 
on β‑phase distribution in Al 5xxx 
alloys
Jahnavi Desai Choundraj* & Josh Kacher

Al–Mg alloys undergo sensitization when exposed to elevated temperatures, making them 
susceptible to intergranular corrosion and stress corrosion cracking. Most of the existing research 
on microstructure effects on sensitization is centered on the effect of intrinsic grain boundary 
characteristics such as misorientation angle and coincident site lattice (CSL) values. Very few studies 
have systematically investigated the influence of extrinsic characteristics such as dislocation density. 
In this paper, the influence of local microstructure characteristics on the sensitization susceptibility 
of AA5456 was investigated using in situ optical microscopy corrosion experiments and electron 
back scattering diffraction analysis. The results show a clear trend between the local geometrically 
necessary dislocation (GND) density and β phase precipitation, with higher GND densities 
correlating with higher rates sensitized boundaries. This trend held true even for low angle grain 
boundaries. These results demonstrate the importance of considering factors beyond grain boundary 
characteristics in determining susceptibility to sensitization.

5xxx series Al alloys are non-heat treatable, moderate strength wrought alloys with 3–5% Mg. These alloys 
are widely used for marine, automotive, and military applications due to their high strength-to-weight ratio, 
mechanical properties, and corrosion  resistance1. However, at moderate and high temperatures (50–250 °C) these 
alloys are vulnerable to sensitization, which is precipitation of β phase  (Al3Mg2) preferentially at grain bounda-
ries (GBs)2. This β phase is more electrochemically active compared to the rest of the Al  matrix3–5. As a result, 
the β phase is preferentially dissolved when the alloys are exposed to corrosive environments such as salt water, 
making them highly susceptible to intergranular corrosion (IGC) and to some extent stress corrosion cracking 
(SCC)3,6,7. Multiple reports have correlated high degrees of sensitization values with increased corrosion fatigue 
crack growth  rates8 and the intergranular β phase coverage to intergranular stress corrosion cracking (IGSCC) 
susceptibility, which is the nucleation and growth of cracks along the corroded grain boundaries in the presence 
of stress, in Al–Mg  alloys3,4,6,7,9, motivating the search for sensitization-resistant Al alloys.

Studies on β phase formation have shown that super saturated solid solution of Mg is the starting point, 
from which GP zones (Guinier Preston Zones, also known as δ″) consisting of Mg rich clusters form. These 
are observed at relatively low temperatures up to the critical temperature range of 45–50 °C10,11. Once the criti-
cal temperature is reached, these clusters transform to β″ spherical particles with a composition of  Al3Mg12,13. 
The GP zones and β″ particles dissolve and β′ precipitates and vacancy voids/dislocation loops form at grain 
boundaries during annealing. This formation begins at 100 °C and accelerates at 150 °C14. At temperatures above 
200 °C, the stable equilibrium β phase forms from β′ and above 250 °C β phase forms from the direct decomposi-
tion of Al matrix super saturated solid  solution2,10,11. A recent study reported the existence of stable β at higher 
temperatures (325 °C)15. The precipitate formation was observed mainly at the grain boundaries and defects in 
the  material14,16. However, there exists a lack of information on which microstructural features influence the β 
precipitation during sensitization.

Several studies have been conducted to understand the influence of grain boundary character, especially the 
misorientation angle, on β precipitation. Work by Davenport et al. on sensitized AA5182 alloy reported that 
low angle grain boundaries are immune to sensitization as determined by a  H3PO4  etch17. Similarly, work by 
Kaigorodova suggested that β phase growth is more favorable on high angle grain boundaries compared to low 
angle grain  boundaries18. While most studies suggest that low angle boundaries are immune to precipitation due 
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to their low interfacial  energies17–19, Scotto D’Antuono et al.20 showed that precipitation exists at grain boundaries 
with low angle misorientation. Accelerated in situ transmission electron microscopy (TEM) heating experiments 
conducted on AA5456 H116 alloy revealed β precipitates on both on low and high angle grain  boundaries21. A 
recent study by Zhang et al. comparing the continuity of β phase on high angle and low angle grain boundaries 
found that high angle grain boundaries have higher continuity in precipitation, making them more vulnerable 
to  IGC22. These studies suggest that grain boundary misorientation angle alone does not dictate susceptibility to 
β phase formation, prompting the investigation of additional factors such as dislocation density and proximity 
to intermetallic particles.

Beyond grain boundary characteristics, there have been a few studies on the effect of dislocation density on 
β  precipitation4,23–27. Scotto D’Antuono et al. investigated the formation and growth of β precipitates in AA5456 
using in situ TEM annealing experiments at 300 °C. An increase in growth rate of the precipitates was reported 
due to pipe diffusion through dislocations near the grain  boundaries23. This study also reported favorable het-
erogeneous nucleation of precipitates at Mn-rich particles. A similar effect was observed in a nanocrystalline 
Al-7.5% Mg synthesized by cryomilling and hot pressing. Grain boundaries enriched with Mg were observed 
under high resolution TEM, which was attributed to the high concentration of dislocations closer to grain 
boundaries providing diffusion channels and accelerating the  sensitization24,25. Gronksy and Furrer reported 
that the presence of dislocations would dominate the precipitation reaction under certain  conditions26. These 
studies have in general relied on a relatively small number of grain boundaries, with questions remaining about 
the statistical importance of dislocation density on sensitization susceptibility. A study performed by Tan and 
 Allen4 used a thermomechanical treatment to enhance the corrosion resistance of AA5083 alloy and found that 
increases in the global dislocation density and low angle grain boundaries lead to better corrosion resistance. 
However, this study did not investigate the influence of the local microstructure state on IGC susceptibility.

In the current study, the combined influence of dislocation density and grain boundary misorientation 
angle on β precipitation was investigated using a correlative optical microscopy/electron backscatter diffraction 
(EBSD)-based approach. Previous work has shown that it is possible to quantify correlative relationship using 
EBSD to understand the effects of grain boundaries and secondary phase particles on dislocation  accumulation28. 
The current study uses a similar correlative microscopy approach to rapidly characterize hundreds of grain 
boundaries in terms of their misorientation angle, surrounding defect distribution, and prevalence of β phase 
precipitates and to establish quantitative correlations between them.

Materials and methods
Sample preparation. Commercial Al alloy 5456 H116 samples (obtained from McMaster-Carr) of dimen-
sion 1 × 1 × 0.6 cm (L × W × H) were used for carrying out the experiments in this study. The composition of 
this alloy is given in Table 1. The samples were cut directly from 0.6 cm thickness sheet after which they were 
sensitized by heat treating at 150 °C for 72 h in a furnace followed by air quenching. The samples were then 
polished using diamond suspensions down to 1 µm followed by colloidal silica suspension (0.05 µm). To remove 
the mechanical polishing-induced damaged layer for EBSD analysis, the polished samples were ion milled at an 
accelerating voltage of 3 kV, beam incidence angle of 60°, and 1 mm offset for 5 min under flat milling condi-
tions. The ion milled samples were then indented to create fiduciary markers using Vickers microhardness tester, 
using a force of 300 gf to generate an indented area of 250 × 250 µm.

The crystallographic microstructural information of the samples was obtained by EBSD using a Tescan MIRA 
scanning electron microscope (SEM) at an accelerating voltage of 20 kV and a step size of 0.5 µm. This step size 
was chosen to get an accurate estimate of the local GND (geometrically necessary dislocation) density while 
still being able to characterize relatively large areas. Figure 1a shows an inverse pole figure (IPF) map generated 
from the EBSD scan.

Table 1.  Elemental composition of AA5456 alloy.

Element Al Mg Mn Fe Si Cr Zn Ti Cu

Wt.% 92–94.8 4.7–5.5 0.5–1 0–0.4 0–0.25 0.05–0.2 0–0.25 0–0.2 0–0.1

Figure 1.  (a) IPF map with grains color coded based on the crystal orientation. Data points with confidence 
less than 0.1, as defined by the EDAX/TSL analysis software, are colored black. (b) Distance to grain boundary 
map used for calculation of GND density near the grain boundaries.
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In situ optical microscopy experiments. To directly observe dissolution of the β phase, the sensitized 
and polished samples were placed in a petri-dish under an optical microscope and the long transverse face of the 
samples were exposed to a thin layer of 1% phosphoric acid solution. This acid attacks the β phase of the material 
preferentially and causes intergranular corrosion (as β is the only anodic phase present on the grain boundaries) 
and has been used traditionally to reveal the locations of β2,3,17,19,29. The experiments were carried out for 40 min 
during which time corrosion events were recorded using an optical microscope with 20× magnification using a 
real-time video digital microscope. Still shots of the acid exposed samples were taken using 40× magnification 
to resolve the corroded grain boundaries more clearly.

Microstructure and GB characterization. As mentioned earlier, phosphoric acid was used to etch the β 
phase specifically, to locate the β particles in the matrix. Thus, the etched spots visible in the optical microscopy 
images correspond to the distribution of β phase in the material. These images extracted from the recorded vid-
eos were used to identify the corroded grain boundaries and to create corrosion maps spatially aligned with the 
EBSD data, using the EBSD image quality (IQ) maps and fiducial markers to manually align images from the two 
sources. With this spatial alignment, correlative relationships were established between grain boundary char-
acteristics, including the surrounding environment, and likelihood of grain boundary attack. Detailed analysis 
of the data was then used to understand the influence of microstructural parameters on β phase precipitation.

The microstructural parameters considered in this research included misorientation angle and GND den-
sity. This information was obtained from EBSD characterization. Each grain in the EBSD scans was assigned a 
unique numerical identifier. The grain boundaries could then be uniquely identified based off of the identities 
of the grains they separated, and the grain boundary information (misorientation angle and GND density) was 
calculated for each boundary. GND density was calculated using the Nye’s tensor-based  approach30–32. In this 
approach, the curvature tensor is first calculated by taking the curl of the orientation field. Assuming that elastic 
strain gradients are negligible, this tensor can be related to Nye’s dislocation density tensor using the relation-
ship developed by  Kroner33.

and the curvature tensor, к, is given by

where αik is the Nye’s dislocation density tensor, where rows correspond to the Burger’s vector direction and 
columns correspond to the line direction. ǫklj is the Levi–Civita permutation symbol, εelij  is the elastic strain ten-
sor and θk is the rotation vector.

As EBSD scans are limited to two dimensions, only five components of the dislocation density tensor can be 
accessed directly. The other components are assumed to be the average of the known components and the GND 
density is taken to be the L1 norm of Nye’s tensor, based off of the work by Ruggles et al.32.

To check the accuracy of the GND calculations, following equation was used to estimate the limiting disloca-
tion density  resolution31:

where ρGND
min  is the limiting dislocation density resolution or expected noise level, θmin is the chosen angular reso-

lution, L is step size of the scan and b is the magnitude of Burger’s vector of the material used. Using the above 
Eq. (3) and a step size of 0.5 µm, b value for aluminum as 2.86 ×  10−10 m and 0.5° of theta, the limiting resolution 
for dislocation density was found to be 6.08 ×  1013  m−234. Most of the GND values calculated are well above this 
limiting value, suggesting that the GND values are accurate.

The GND density was calculated at every point located within 0.5 µm of a grain boundary. This is based on 
the limitation of the equipment resolution and the step size used in our scans, which is 0.5 µm. An average value 
was then calculated and taken to represent the mean GND density of that grain  boundary28,30,35–37 (Fig. 1b shows 
the distance-to-grain boundary map calculated from the EBSD data).

To calculate the grain boundary misorientation angle, Bunge’s orientation matrix (g) was initially calculated 
for two grains separated by the grain boundary using the Euler angles measured by EBSD. The misorientation 
matrix between for these two grains (say A, B) was then obtained  from38;

where T denotes the transpose of the orientation matrix, which is also equivalent to the inverse. The misorienta-
tion angle was then obtained using the following equation:

Here, Tr represents the trace. Misorientation angle was calculated for each of the cubic symmetry operators 
applied to the matrix �gAB, and the minimum angle was taken as the misorientation angle.

(1)αik = κki − δki − ǫklj
∂εelij

∂xl

(2)κki =
∂θk

∂xi

(3)ρGND
min =

θmin

Lb
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T
B
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Thus, the proximal GND density was calculated for each grain boundary and the grain boundary misorien-
tation information was obtained. This information was used to define the grain boundary state and to perform 
qualitative and quantitative analysis.

IGC susceptibility in Al alloys is traditionally assessed using NAMLT (nitric acid mass loss test) values. The 
IGC spreading observed in this experiment is attributed to its high NAMLT value, which was found by the ASTM 
G67-18 test to be 75 mg  cm−2. This is in accordance with the earlier reports which suggest that only highly sen-
sitized conditions lead to IGC spreading due to the formation of a large network of nearly continuous β phase 
covered grain boundaries in close radial  proximity39.

Results
Low Ʃ boundaries were investigated, but did not show any correlation with β precipitation and so are not further 
discussed in this paper. Moreover, unlike Ni and  steel40,41, bulk Al does not form coherent twin boundaries or 
low Ʃ boundaries readily via grain boundary engineering, making this an unviable approach for reducing sus-
ceptibility to sensitization and IGC in these alloys.

In situ optical microscopy. Figure 2 shows images of the corroded samples at different stages of the in situ 
optical microscopy experiments. The attacked boundaries appear dark in the optical images. As can be seen, the 
fraction of corroded boundaries increases as the experiment time increases (Fig. 2a–c). The first appearance of 
grain boundary corrosion was seen after approximately 500–600 s of acid exposure. Corroded grain boundaries 
were manually identified at different stages of the testing to determine the fraction of attacked grain boundaries 
as a function of time. At the earliest stage of corrosive attack, after 600 s of exposure, approximately 3% of the 
total grain boundaries were corroded. This increased to approximately 6% of the boundaries being attacked at 
the 1200 s point, or roughly a doubling in the number of attacked grain boundaries as compared to the 600 s 
point. After 2400 s of exposure to the acid, 96% of the grain boundaries were attacked, showing a significant 
increase in the rate of attack as compared to the first 1200 s of the experiment. This increased attack included 
grain boundaries that were partially corroded at the beginning of the experiment, but fully corroded by the end 
(Fig. 2d–f).

Post-acquisition, the optical images were aligned with the EBSD maps, facilitating direct correlations between 
the attacked boundaries and microstructural characteristics. These correlations are highlighted in the following 
sections, dividing the analysis between the most susceptible boundaries (i.e. those that were attacked in the early 
stages of the experiment) and the most resistant boundaries (i.e. those that remained unattacked at the end of 
the experiment).

Figure 2.  (a)–(c) Optical images taken during the in situ optical microscopy corrosion experiment. Inset in 
(a) highlights a grain boundary attacked at the earliest stage of corrosion. (d)–(f) Different region on the same 
sample. Circles highlight corrosion progression of partially corroded GBs to fully corroded GBs. Experiment 
time is given in each panel.
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Early stage microstructure effects. Figure 3a shows an optical image of the sample after 600 s expo-
sure to phosphoric acid and an IPF map highlighting the identified corroded grain boundaries. The attacked 
boundaries were often associated with a single grain comprising of different grain boundaries with different 
grain boundary characteristics such as GND density and misorientation angle, as is highlighted in Fig. 3b. This 
suggests that grain characteristics and network effects, rather than grain boundary characteristics alone, can 
influence the susceptibility to intergranular attack. Out of a total of 952 unique grain boundaries in the charac-
terized area, a total of 14 grain boundaries were attacked. The misorientation angles of the corroded bounda-
ries ranged from 8° to 58°, suggesting that low angle grain boundaries are not necessarily resistant to β phase 
precipitation. Interestingly, it was found that there was a high dislocation density near the corroded low angle 
grain boundary (indicated by yellow in Fig. 3c, e), with a value of 6.4 ×  1014  m−2, compared to the average GND 
density around all the grain boundaries of 2.3 ×  1014  m−2. This grain boundary is highlighted in Fig. 3d, e. This 
indicates that dislocation density might have an important role in influencing the β precipitation, making them 
more susceptible to corrosion.

Late stage microstructure effects and quantitative analysis. Figure 4 shows an optical image of the 
sample obtained at the end of the in situ optical microscopy experiment with an accompanying IPF map showing 
the uncorroded grain boundaries. 38 grain boundaries out of 952 were identified as uncorroded and marked in 
the IPF map (Fig. 4b). These uncorroded grain boundaries were often associated with a single grain or part of a 
grain boundary network, again suggesting that grain and network characteristics can play an important role in 
susceptibility to attack.

The identified uncorroded boundaries and microstructure information was used to plot the fraction of uncor-
roded boundaries as a function of misorientation angle and GND density. Figure 5a shows the histogram of 

Figure 3.  (a) Optical image showing the grain boundaries corroded after 600 s of acid exposure and (b) 
corroded grain boundaries highlighted by black lines in the IPF map. (c) Log-scale GND density map of the 
same region. (d), (e) Magnified images showing the corroded grain boundaries and the corresponding GND, 
respectively. The corroded grain boundary is highlighted in black and indicated by an arrow in (d). Arrows in 
(e) indicate regions of high GND density.

Figure 4.  (a) Optical image showing the corroded microstructure after 2400 s exposure to  H3PO4. (b) IPF map 
of imaged area with uncorroded grain boundaries highlighted by blue lines.
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the fraction of uncorroded grain boundaries after 2400 s as a function of grain boundary misorientation angle. 
As can be seen, almost all boundaries, regardless of the misorientation angle, are attacked by the phosphoric 
acid. The fraction of low angle uncorroded boundaries is slightly higher than the remainder of the boundaries, 
though the difference is fairly small, suggesting that misorientation angle is not the primary factor dictating 
grain boundary attack.

The histogram of GND density near the 38 uncorroded grain boundaries is shown in Fig. 5b. The average 
GND density of these uncorroded grain boundaries is 2.03 ×  1014  m−2, which is slightly lower than the average 
value at all the grain boundaries. There is a clear correlation between the GND density and likelihood of attack, 
with grain boundaries with low GND density in the surrounding region being much less likely to be corroded. At 
high GND density, above 4 ×  1014  m−2, all boundaries were attacked. This clear trend with GND density implies 
that this parameter does have a crucial role in determining the favorability of β precipitation and corrosion of 
grain boundaries. This once again suggests that misorientation angle alone cannot be taken as an indicator for 
precipitation and the interplay of other microstructural features like dislocation density affect precipitation. 
It should be noted that the dislocation density considered here is the local dislocation density, close to grain 
boundaries, not the global dislocation density.

To explore the statistical significance of our results, we performed a t-test on the data and based on this 
the p-value has been calculated. p-value was found to be 0.000675, suggesting that the results are statistically 
significant.

Discussion
In the current study, in situ optical microscopy experiments were combined with EBSD analysis to determine 
the microstructure influences on β phase precipitation and intergranular corrosion. This combined approach 
facilitates the rapid characterization of a large number of grain boundaries (~ 1000 in this study), providing 
a statistical framework through which results from previous studies focused on a relatively small number of 
boundaries at high resolution can be understood. In most previous studies, TEM was employed to investigate the 
precipitation, providing direct resolution of the β precipitates, but limiting the number of boundaries that could 
be  analyzed17–23,42,43. In addition, the majority of these studies focused on a single aspect of the microstructure 
such as misorientation angle or the influence of dislocation networks on precipitation  kinetics23,25,43. The analysis 
conducted in the current study provides additional statistical support for these high-resolution studies and allows 
the relative effects of multiple aspects of the microstructure to be investigated simultaneously.

By the end of the 2400 s experiment, almost 96% of the grain boundaries exposed to phosphoric acid were 
found to be corroded. Both high and low angle boundaries were attacked (Fig. 5a). This shows that β precipi-
tates form even at the low angle grain boundaries, which are often reported to be very resistant to precipitation 
and acid  attack17–19,42. However, recent studies support the formation and existence of β particles on low angle 
grain  boundaries20,23. The analysis in the present work suggests that the local GND density may account for the 
variations in β phase precipitation at different boundaries. This influence was seen both at the early stages of the 
corrosion experiment, where a low angle grain boundary with high surrounding GND density was attacked, 
and at the late stages of the experiment where boundaries with low surrounding GND density were shown to 
be the most resistant to attack (Figs. 3, 5). This higher susceptibility to β phase precipitation in regions of high 
dislocation density is likely due to the dislocations providing a diffusion pathway for Mg accumulation at the 
boundaries. It is well known that diffusivity through dislocation cores is higher in many systems than the diffu-
sivity through the defect-free  lattice44. Goswami et al. suggested that, based on a Zener-Hillert diffusion model, 
pipe diffusion of Mg through dislocation cores could account for thicker than expected β phase precipitates 
forming at grain  boundaries24. Work done by Scotto D’Antuono et al. also made similar inferences. They dem-
onstrated that cold rolling or straining an AA5xxx sample increases the kinetics of β  growth23. This was again 
attributed to the enhanced diffusion of solute atoms via pipe diffusion due to the presence of dislocation bands 
close to the grain boundaries. There are few studies which suggest that increasing the dislocation densities via 
mechanical treatments, increases the resistance of these alloys to  IGC4,27. However, it should be noted that these 
studies considered the impact of the global dislocation density (including the grain interiors), unlike the current 
study and previously discussed reports, where the effect of local dislocation networks were considered. Based on 
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these observations, it is clear that local GND density plays an important role in dictating β phase precipitation 
in Al alloys.

It should be noted that the sample in this study was exposed to acid for 2400 s. If left further, the remaining 
uncorroded grain boundaries may have also been attacked. Further investigation is needed to determine whether 
the uncorroded grain boundaries lack β precipitates or if the state/size of the β precipitates on the boundaries 
delayed the attack. Also, we expect the indents to add some heterogeneity to the dislocation distribution. How-
ever, it is evident that the influence of both grain boundary characteristics and the state of the surrounding 
microstructure both play a role in determining susceptibility to IGC of individual boundaries.

Conclusions
An approach combining in situ optical microscopy corrosion experiments with EBSD analysis was used to 
understand microstructure influences on the susceptibility to β precipitation and intergranular corrosion of 
individual grain boundaries. The experimental results support the following conclusions:

• Grain boundary misorientation angle alone is not a determining factor in whether or not a grain boundary is 
susceptible to attack. Multiple examples of low angle boundaries attacked at the earliest stages of exposure to 
an acidic environment and high angle boundaries remaining uncorroded over the course of the experiment 
were seen in the presented experiments.

• GND density in the immediate vicinity of a grain boundary showed the strongest correlation with intergranu-
lar attack, with boundaries with low surrounding GND density showing the highest resistance to corrosive 
attack.

These observed trends demonstrate the importance of considering other factors beyond grain boundary 
characteristics when determining the susceptibility of individual grain boundaries to β phase formation.

Data availability
The datasets generated during and /or analyzed during the current study cannot be shared at this time as the 
data also forms part of an ongoing study, but are available from the corresponding author on reasonable request.
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