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Deep learning based diagnosis 
for cysts and tumors of jaw 
with massive healthy samples
Dan Yu1, Jiacong Hu2, Zunlei Feng2, Mingli Song2 & Huiyong Zhu1*

We aimed to develop an explainable and reliable method to diagnose cysts and tumors of the jaw 
with massive panoramic radiographs of healthy peoples based on deep learning, since collecting and 
labeling massive lesion samples are time-consuming, and existing deep learning-based methods lack 
explainability. Based on the collected 872 lesion samples and 10,000 healthy samples, a two-branch 
network was proposed for classifying the cysts and tumors of the jaw. The two-branch network is 
firstly pretrained on massive panoramic radiographs of healthy peoples, then is trained for classifying 
the sample categories and segmenting the lesion area. Totally, 200 healthy samples and 87 lesion 
samples were included in the testing stage. The average accuracy, precision, sensitivity, specificity, 
and F1 score of classification are 88.72%, 65.81%, 66.56%, 92.66%, and 66.14%, respectively. The 
average accuracy, precision, sensitivity, specificity, and F1 score of classification will reach 90.66%, 
85.23%, 84.27%, 93.50%, and 84.74%, if only classifying the lesion samples and healthy samples. 
The proposed method showed encouraging performance in the diagnosis of cysts and tumors of the 
jaw. The classified categories and segmented lesion areas serve as the diagnostic basis for further 
diagnosis, which provides a reliable tool for diagnosing jaw tumors and cysts.

Odontogenic cysts and tumors of the jaw are the second most common disease after tooth impaction in the 
oral and maxillofacial areas. The cysts and tumors of the jaw are usually painless and asymptomatic unless they 
grow so large as to involve the entire jawbone, causing noticeable swelling or weakening it to cause pathologic 
 fractures1,2. Those manifested symptoms pose a severe threat to patient life quality. The majority of these cyst 
and tumor lesions can be identified at an earlier stage through a routine radiographic exam called the pano-
ramic radiograph or  orthopantomogram3. The treatment modalities for different types of cysts and tumors are 
different. Keratocystic odontogenic tumors (KCOTs), like other cystic lesions, are usually enucleated without 
radical jaw segmentation. Ameloblastomas (ABs), on the other hand, require more radical surgical removal than 
KCOTs, which drastically affects patients’ lives, causing facial deformity and subsequent social and emotional 
 incompetence4,5.

Accurate diagnosis of different types of cysts and tumors is a challenging task. Some cysts and tumors have 
very similar radiological characteristics. In the orofacial region, accurate differentiation between various cystic 
lesions and ABs can be challenging. This is mainly due to their common presentations on conventional den-
tal panoramic  radiographs6. The main differentiating feature in diagnosing KCOT from ABs is the signifi-
cant anteroposterior extension of the unilocular radiolucent lesion in the posterior mandible marrow space. 
KCOTs can sometimes also present as multilocular lesions, which further complicate its differentiation from 
 ameloblastomas4. Misdiagnosis between these two lesions is therefore a common clinical pitfall. So, an auxiliary 
diagnostic method for cysts and tumors is significant.

Recently, deep learning approaches have achieved promising results in the medical image analysis  area7. 
Inspired by the successful application of deep learning, several  works8–21 adopted Convolutional Neural Network 
(CNN) to diagnose radiolucent lesions in the oral and maxillofacial area. Lee et al.11 adopted deep convolutional 
neural networks to screen orthognathic surgery, where the Grad-CAM22 is adopted to visualize whether the deep 
learning AI model considered and evaluated the correct region. However, the performance of deep learning-
based methods heavily relies on a large number of labeled datasets. Existing CNN-based  methods18,23,24 first 
pre-train the whole classification network on  ImageNet25, and then finetune the network on several hundreds 
of lesion samples. The domain difference between normal image dataset  ImageNet25 and medical radiographs is 
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huge, which heavily reduces the robustness and performance of the above transfer learning-based  methods18,23. 
On the other hand, the explainability of auxiliary diagnostic methods is an essential factor for diagnosing cysts 
and tumors. However, existing deep learning-based methods lack explainability, which is a disadvantage for 
diagnosing cysts and tumors. Furthermore, sufficient labeled samples can effectively improve the performance 
of deep learning-based methods. However, collecting and labeling massive lesion samples are time-consuming 
and heavily relies on the professional doctor’s experience. On the contrary, collecting massive healthy panoramic 
radiographs is more accessible and does not require a professional doctor’s annotation.

Therefore, the aim of this study is to develop an explainable and reliable method to diagnose cysts and 
tumors of the jaw with massive panoramic radiographs of healthy people based on deep learning. We develop 
a two-branch framework for diagnosing cysts and tumors of the jaw, where the position consistency constraint 
between the segmentation results and the response maps of classification is adopted to improve the reliability 
and explainability of the predicted results. Experiments show that the proposed two-branch network can simul-
taneously predict the category and area of lesion samples, which can serve as the diagnostic reference for further 
diagnosis of doctors.

Related works
Recently, the deep learning technique has achieved promising results in tumor image analysis  tasks12, such as 
brain tumor image  analysis13, breast tumor  analysis14, and liver tumor  analysis15. Inspired by the successful 
application of deep learning techniques, several works are proposed to diagnose radiolucent lesions in the oral 
and maxillofacial area, which can be divided into classification methods and detection methods.

For the former category, Poedjiastoeti et al.23 adopted the VGG-16 network for classifying the ameloblastomas 
and KCOTs. The VGG-16 network is pretrained on the ImageNet dataset and finetuned with 400 image samples. 
Lee et al.18 adopted the pretrained GoogLeNet Inception-v3 architecture to classify odontogenic keratocysts, 
dentigerous cysts, and periapical cysts with 1140 panoramic and 986 CBCT images. For the latter category, Ariji 
et al.16 proposed the first object detection framework (a pre-trained fully convolutional network) to detect the 
lesion area and classify them. Kwon et al.17 developed a deep CNN modified from YOLOv3 for detecting and 
classifying odontogenic cysts and tumors of the jaw with 1282 panoramic radiographs. Yang et al.26 adopted the 
YOLOv2 for detecting and classifying dentigerous cyst, odontogenic keratocyst (OKC), and ameloblastoma with 
1603 panoramic radiograph samples.

However, due to limited lesion samples, most above deep networks are firstly pretrained on other datasets 
such as ImageNet, then are finetuned with the jaw panoramic radiographs. The domain differences have severe 
limitations on the robustness and performance of those pre-trained networks. What’s more, deep learning based 
diagnosis methods for cysts and tumors of the jaw have a potential deficiency noninterpretability, which severely 
constrains the application of existing deep learning based methods. In several  works11,23, the Grad-CAM22 tech-
nique is adopted to visualize the category-related areas, the reliability of which will be disturbed by the inaccurate 
prediction.

Materials and methods
Dataset. This study was conducted at the First Affiliated Hospital, Zhejiang University School of Medicine. 
Waiver of informed consent for data collection was approved by the Clinical Research Ethics Committee of the 
First Affiliated Hospital, Zhejiang University School of Medicine (IIT20200430A-R2). Since 2005, the World 
Health Organization (WHO) has labeled OKCs as keratocystic odontogenic tumors (KCOTs) and has classified 
OKCs as tumors according to their behavior. Based on histopathological examinations by a board-certified oral 
pathologist at First Affiliated Hospital, Zhejiang University School of Medicine, we collected 10,000 panoramic 
radiographs of healthy peoples and 872 lesion samples, which contains 356 dentigerous cysts (DC) samples, 
292 periapical cysts (PC) samples, and 94 ameloblastoma (AB) samples, 130 keratocystic odontogenic tumor 
(KCOT) samples. Those samples were acquired between December 2018 and February 2020. Even if histologi-
cally confirmed, all difficult to distinguish cases because of the severe distortion, artificial noise, blur, and poor 
quality in the radiographic image were excluded. For each lesion sample, an experimental dentist annotates 
the lesion area mask and lesion category. In our experiment, healthy panoramic radiographs are split into 9500 
samples for pretraining and training, 300 samples for validation, and 200 samples for testing. For lesion samples, 
70%, 20%, and 10% samples are used for training, validation, and testing. Figure 1 summarizes more details 
about the collected dataset.

Image preprocessing and augmentation. The size of the original panoramic radiograph is about 
3000 × 1500, which is too large for the normal deep network. What’s more, through statistical calculation of 
lesion area position, we find that peripheral areas don’t contain lesions. So, we get the common center areas by 
throwing away useless peripheral areas, which can maintain lesion-related patches and remove useless parts 
as much as possible. In the experiment, the cropped patches are resized into 512 × 256. The data augmentation 
strategies we adopted include horizontal flipping, cut-and-pasting, and patch-covering based on the character-
istics of medical images. The cut-and-pasting strategy denotes cutting the lesion area and pasting it on a healthy 
sample. The patch-covering denotes covering the lesion area and healthy area with a gray patch of lesion samples 
to augment lesion samples’ diversity. We survey lesion area size on all lesion samples, which gives the minimal 
and maximal size of the lesion area. For the lesion area of a lesion sample, the cover-patch size is randomly 
generated between the size of the lesion area and the maximal size. For the healthy area of a lesion sample, the 
cover-patch size is randomly generated between the minimal and the maximal sizes. In our experiment, a lesion 
sample will be covered with 20 patches, where half the patches are generated for covering the lesion area and the 
rest half the patches are used for covering the healthy area of the lesion sample. It’s worth noting that the patch-
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covering can generate very similar samples for the same lesion sample, which is an advantage for enhancing the 
reliability of predicted output’s interpretability.

Model architecture. The performance of deep learning-based methods highly relies on the number of 
training samples. The human can observe abnormity through mass observation of massive healthy samples. 
Inspired by the above fact, we propose a deep learning-based diagnosis method for cysts and tumors of the jaw 
with massive healthy samples. The proposed framework is composed of two parts: a self-supervised network and 
a two-branch network. The self-supervised network is adopted to learn basic knowledge from massive healthy 
samples. Then, the knowledge of the self-supervised network is used in the two-branch network by replacing the 
encoder of the two-branch network with the pretrained encoder of the self-supervised network.

For improving the reliability and explainability of diagnosis results, the two-branch network is devised to 
be composed of a classification sub-branch and segmentation sub-branch. The segmentation sub-branch will 
predict the lesion area, which can serve as the diagnosis reference for dentists and oral surgeons to diagnose the 
jaw tumors and cysts further.

In the experiment, the self-supervised network we adopted is  MoCoV227. We adopted  Unet28 as the segmenta-
tion sub-branch. The classification sub-network, the self-supervised network, and the segmentation sub-branch 
share the same encoder. The remaining part of the classification sub-branch contains an average pooling layer, 
2048 fully connection layers. The two-branch network architecture is given in Fig. 2.

Model training and inference. In the experiment, the whole model is trained in two stages. The self-
supervised network is firstly trained on 9500 healthy samples with the default parameter setting in the work of 

Figure 1.  The dataset statistic of panoramic radiographs. KCOTs: Keratocystic odontogenic tumors; Abs: 
Ameloblastomas; DC: dentigerous cysts; PC: periapical cysts. In our experiment, healthy panoramic radiographs 
are split into 9500 samples for pretraining and training, 300 samples for validation, and 200 samples for testing. 
For lesion samples, 70%, 20%, and 10% samples are used for training, validation, and testing.

Figure 2.  The two-branch network architecture.
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Chen et al.27. Then, the pre-trained encoder is used to initialize the encoder of the two-branch network. Next, 
the classification sub-branch and segmentation sub-branch are trained with CrossEntropy loss LCE and Mean 
Squared Error on 872 lesion samples and 500 healthy samples as follows:

where, K is the number of training samples, yk and pk denote the ground-truth and predicted probability of k-th 
sample, Mk and Mk  denote the ground-truth and predicted mask of the k-th sample. For the classification and 
segmentation sub-branches, the learning rates are 1e−3 and 1e−2 , respectively. In the training stage, the weights 
for the classification loss LCE and segmentation loss LMSE are set to 1:1. 872 lesion samples are composed of 648 
cyst samples (DCs: 356, PCs:292) and 224 tumor samples (ABs: 94, KCOTs: 130). Healthy samples used in the 
training stage are also used in the pretrain stage.

To improve the reliability of the predicted results, we adopted the annotated segmentation mask to constrain 
the consistency between the segmentation results and classification results. Grad-CAM22 can visualize the high 
response to the final predicted probability. For the lesion samples, the feature of the lesion area should have a 
major contribution to the final classification, while the healthy areas should have no contribution. So, we adopted 
the annotated lesion mask to constrain the lesion area and healthy area with high gradient responses and no 
gradient responses regarding the final classification label. The constrain Lconstrain is implemented by maximizing 
the responses around the lesion areas and minimizing the responses in the unrelated background area as follows:

where, N is the multiplication of width and height of the last layer feature map, Rk[n] is Rk , Md
k  denotes the dilated 

lesion mask with disk strel of radius d (a random value between 6 and 12). For the healthy samples, the constraint 
will be omitted. Only the two-branch network is adopted to classify the lesion category and segment the lesion 
area in the testing stage. We can get the predicted lesion category (DC, PC, AB, KCOT, and healthy) and the 
predicted lesion area mask for each input panoramic radiograph. Meanwhile, Grad-CAM22 can visualize the high 
response to the final predicted lesion category. The predicted lesion area mask and high response map visualized 
by Grad-CAM can be used as the diagnosis reference for the doctor to diagnose the cysts and tumors of the jaw.

Results
Lesion classification performance. In the experiment, the numbers of training, validation, and testing 
samples for each category are given in Fig. 1. The diagnosis of jaw cysts and tumors contains the binary clas-
sification and five-class classification. The five-class classification distinguishes the detailed category of the cyst, 
tumor, and healthy sample. Table 1 shows the five-class classification performance. The proposed method’s aver-
age accuracy, precision, sensitivity, specificity, and F1 score are 88.72%, 65.81%, 66.56%, 92.66%, and 66.14%, 
respectively. Our method achieves better classification performance than the existing three methods. Figure 3 
shows the ROCs and AUC scores of the five-class classification, where we can see that the AUC scores of DCs, 
PCs, ABs, KCOTs, and healthy samples are 0.83, 0.81, 0.81, 0.82, and 0.84, respectively.

Setting the ground-truth label as binary allows the two-branch network to be changed into the classifier 
for lesion and healthy samples. In the binary classification setting, the classification branch only classifies the 
lesion samples and healthy samples. Table 2 gives binary classification results of our method and other three 
works (Ariji et al.16, Kwon et al.17, and Yang et al.26). For our method, lesion and healthy samples both achieve 
90.66% accuracy, which is higher than the average accuracy score of the five-class classification. Our method 
still achieves better binary classification performance than the existing three methods. Figure 4 shows the ROCs 
and AUC scores of the binary-class classification, where we can see that the AUC scores of the lesion and healthy 
samples are both 0.89.

Lesion area segmentation performance. Except for the classification performance, we give the seg-
mentation performance of lesion samples. Furthermore, detection results of lesion areas are calculated by com-
paring the bounding boxes of predicted lesion masks between the ground-truth bounding boxes. Table 4 gives 
the segmentation and detection results of different lesion categories. For the binary classification and segmenta-
tion network, the segmentation and detection performance of lesion samples are given in Tables 5 and 6, where 
85% of lesion samples can be detected by the proposed two-branch networks.

Explainable results. Deep learning-based methods usually lack explainability, which is the primary draw-
back of deep learning-based methods. Medical image analysis requires that the predicted results are reliable 
and explainable. The proposed method can simultaneously predict the lesion category and area, increasing the 
reliability and explainability of the predicted results. Meanwhile, a position constraint is proposed to constrain 
the consistency between the segmented results and the response map of classification in the proposed method. 
Figure 5 gives the visual results of the original input, segmentation results, response map w/o the constraint, and 
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Table 1.  The five-class classification performance of cysts, tumors and healthy samples. Our method achieves 
higher scores than the other three methods on most metrics. For our method, all cysts and tumors have 
superior accuracy and specificity. Cysts (DCs and PCs) achieve higher sensitivity/recall scores than tumors 
(ABs and KCOTs).

Category\index Accuracy (%) Precious (%) Sensitivity (%) Specificity (%) F1-score (%)

Ours

DCs 86.32 78.79 74.29 91.46 76.47

PCs 88.89 68.18 71.43 92.71 69.77

ABs 91.45 45.00 50.00 94.91 47.37

KCOTs 91.45 58.33 58.33 95.24 58.33

Healthy 85.47 78.75 78.75 88.96 78.75

Means 88.72 65.81 66.56 92.66 66.14

Ariji et al.16

DCs 72.03 53.85 49.30 81.82 51.47

PCs 71.19 22.92 26.19 80.93 24.44

ABs 85.17 18.52 27.78 89.91 22.22

KCOTs 83.05 22.22 24.00 90.05 23.08

Healthy 65.68 49.28 42.50 77.56 45.64

Means 75.42 33.36 33.95 84.05 33.37

Kwon et al.17

DCs 69.79 49.09 38.57 83.03 43.20

PCs 74.89 33.33 40.48 82.38 36.56

ABs 85.11 16.00 22.22 90.32 18.60

KCOTs 82.98 24.14 28.00 89.52 25.93

Healthy 66.38 50.67 47.50 76.13 49.03

Means 75.83 34.65 35.35 84.28 34.66

Yang et al.26

DCs 70.09 50.00 34.29 85.37 40.68

PCs 74.36 32.00 38.10 82.29 34.78

ABs 84.62 17.86 27.78 89.35 21.74

KCOTs 80.77 13.79 16.67 88.10 15.09

Healthy 63.68 46.84 46.25 72.73 46.54

Means 74.70 32.10 32.62 83.57 31.77

Figure 3.  The ROCs and AUC scores of the five-class classification. Healthy samples achieve the highest AUC 
score than Cysts (DCs and PCs) and tumors (ABs and KCOTs).
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response map with the constraint. The response map is visualized by the Grad-CAM22. For response maps w/o 
constraint, there are some inaccurate response areas, which will disturb the final classification and diagnosis. 
The response maps with the constraint have more concentrated response values than response maps w/o the 
constraint. There are some slight responses in the left part of the image in the first row and the last column. The 
contrast between the slight responses and the high responses is large. The constrain can reduce the disturbance 
of unrelated responses dramatically. With the accurate segmentation results and response maps as references, 
doctors can further confirm the diagnosis results.

Discussion
From Table 1, we can see that all cysts and tumors have superior accuracy and specificity. What’s more, cysts (DCs 
and PCs) achieve higher sensitivity/recall scores than tumors (ABs and KCOTs), which means that tumors are 
more likely to be misclassified. From Tables 3 and 4, we can see that cysts (DCs and PCs) have better segmenta-
tion and detection performance than tumors (ABs and KCOTs), which means that cysts have easily identifiable 
features for the deep model. This is consistent with the classification performance in Table 1 that cysts (DCs and 
PCs) achieve higher sensitivity/recall scores than tumors (ABs and KCOTs).

Table 2.  The binary classification performance of lesion and healthy samples. Healthy samples achieve lower 
sensitivity/recall scores than lesion samples, which indicates that part of healthy samples tends to be classified 
as lesion samples. Our method achieves higher scores than the other three methods. The binary classification 
of our method achieves higher accuracy (90.66%) than the average accuracy score (88.72%) of the five-class 
classification in Table 1.

Category\index Accuracy (%) Precious (%) Sensitivity (%) Specificity (%) F1-score (%)

Ours
Lesion 90.75 75.24 88.77 91.33 81.44

Healthy 90.75 96.48 91.33 88.76 93.84

Ariji et al.16
Lesion 81.20 92.97 77.27 88.75 84.40

Healthy 81.20 66.98 88.75 77.27 76.34

Kwon et al.17
Lesion 85.04 92.81 83.77 87.50 88.05

Healthy 85.04 73.68 87.50 83.77 80.00

Yang et al.26
Lesion 82.05 93.08 78.57 88.75 85.21

Healthy 82.05 68.27 88.75 78.57 77.17

Figure 4.  The ROCs and AUC scores of the binary classification. Lesion and healthy samples achieve the same 
AUC score.
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Tables 1 and 2 show that the binary classification achieves higher accuracy (90.66%) than the average accu-
racy score (88.72%) of the five-class classification, which means that the binary classification network is more 
suitable for distinguishing lesions from healthy samples. In Table 2, healthy samples achieve lower sensitivity/
recall scores than lesion samples, which indicates that part of healthy samples tends to be classified as lesion 
samples. Furthermore, Tables 5 and 6 show that only distinguishing the lesion samples from the healthy samples 
can achieve more accurate segmentation and detection performance. Lesion samples have higher sensitivity/
recall scores than healthy samples. For the healthy samples misclassified as lesion samples, the doctor can further 
verify the diagnosis results. This is an advantage of the binary classification network.

In total, the binary classification achieves about 5–10% improvement than the five-class classification. We 
find that most misclassified lesion samples are classified into other kinds of lesions through statistics of mis-
classified samples. The tumors and cysts are easily misclassified, which is consistent with the clinical diagnosis. 

Figure 5.  The segmentation results and visual results using Grad-CAM29. The segmentation results can locate 
the lesion areas. The response map can be used as the cause for explaining the classification results. For response 
maps w/o constraint, there are some inaccurate response areas, which will disturb the final classification and 
diagnosis. The response maps with the constraint have more concentrated response values than response maps 
w/o the constraint. With the accurate segmentation results and response maps as references, doctors can further 
confirm the diagnosis results.

Table 3.  The segmentation performance of different cysts and tumors. Cysts (DCs and PCs) have better 
segmentation performance than tumors (ABs and KCOTs).

Category\index Pixel accuracy (%) Sensitivity (%) Specificity (%) Intersection over union (%)

DCs 71.32 73.27 71.42 73.26

PCs 68.43 67.51 72.53 72.34

ABs 67.25 51.35 68.90 67.54

KCOTs 65.42 64.22 69.71 70.23

Means 68.11 64.09 70.64 70.84

Table 4.  The detection performance of different cysts and tumors. Cysts (DCs and PCs) have better detection 
performance than tumors (ABs and KCOTs), which is consistent with the classification performance in Table 1 
that cysts (DCs and PCs) achieve higher sensitivity/recall scores than tumors (ABs and KCOTs).

Category\index Average precision (%) Precious (%) Sensitivity (%) Intersection over union (%)

DCs 72.02 61.32 72.36 71.26

PCs 69.54 57.50 63.49 72.34

ABs 65.43 49.88 51.12 68.58

KCOTs 64.32 51.19 63.37 69.77

Means 67.83 54.97 62.59 70.49
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Odontogenic tumors and cysts do not reveal their distinct radiological characteristics until they reach a certain 
size. Early radiological appearances of odontogenic cysts and tumors are so indistinguishable from each other 
that even experienced oral and maxillofacial specialists are unable to guarantee their diagnosis results. In con-
sideration of the better performance of the binary classification network, the results of the binary classification 
network can be used as the primary diagnostic reference. The predicted results of the five-class classification 
can be used for further diagnosis references. In clinical diagnosis, overall consideration of predicted binary and 
five-class classification networks results will achieve more reliable results.

Deep learning-based methods have achieved promising results in the medical image analysis  area7–9. However, 
the deep learning-based methods have a severe deficiency that the inference process and predicted results are 
not unexplainable. Medical image analysis is a special scene that requires the diagnosis results have high reli-
ability and explainability. For increasing the reliability and explainability, we add the segmentation branch in the 
proposed method. Meanwhile, the proposed position constraint, which constrains the consistency between the 
segmented results and the response map of classification, also improves the reliability and explainability of the 
predicted results. Figure 5 intuitively visualize the segmentation and response map results. The segmentation 
and response maps are an essential reference for the further diagnosis of doctors, which is the advantage of the 
proposed two-branch network. There are two factors for increasing reliability and explainability. Firstly, the seg-
mented result of the lesion sample can be used as the diagnostic basis for the doctor to make further verification. 
Secondly, the patch-cover strategy is adopted to cover the random area of the lesion sample, which can increase 
the reliability of the prediction. For the lesion sample, the network should predict it as healthy if the lesion area 
is covered with a patch. On the contrary, the lesion sample is still predicted as a lesion if only the healthy area is 
covered with a patch. From Fig. 5, we can see that the lesion areas are accurately segmented. Table 7 shows that 
the classification performance will drop by about 5% accuracy without the segmentation branch, which indicates 
that the segmentation improves the explainability and the classification performance.

Another deficiency of deep learning-based methods is that the performance of deep learning-based methods 
is very dependent on massive samples. However, collecting and annotating massive lesion samples is time-
consuming and relies on the specialized knowledge of doctors. In this paper, we proposed a deep learning-based 
diagnosis method for cysts and tumors of the jaw with massive healthy samples. Table 7 gives the performance 
without pretrain on massive healthy samples, where we can see that the classification results will drop by about 
13% accuracy without the pretrain on massive healthy samples. Like humans can learn prior knowledge from the 
normal samples, it is verified that deep learning-based methods can also learn some necessary knowledge from 
healthy samples. It’s an inspiration for further study on deep learning-based medical image analysis.

Overall, with massive healthy samples, the two-branch network achieves promising results for diagnosing 
cysts and tumors of the jaw. Except for the predicted categories, the two-branch network provides the segmenta-
tion results of lesion samples, which significantly improves the reliability and explainability of results predicted 
by deep learning-based methods. However, the proposed method can’t give the symptom causes why the lesion 
sample is classified as the specific lesion category, which is a significant research direction. In the future, we will 
focus on mining the symptom features of jaw cysts and tumors by adding attention mechanism.

Table 5.  The detection performance of lesion samples for the binary classification task. 85% lesion areas can 
be detected by the proposed two-branch networks.

Category\index Average precision (%) Precious (%) Sensitivity (%) Intersection over union (%)

Lesion 85.18 88.37 85.39 79.09

Table 6.  The segmentation performance of lesion samples for the binary classification task. Lesion samples 
achieves 82.56% pixel accuracy, which is consistent with the detection performance in Table 5.

Category\index Pixel accuracy (%) Sensitivity (%) Specificity (%) Intersection over union (%)

Lesion 82.56 84.62 81.79 73.94

Table 7.  The performance without pretrain and segmentation. ‘-pretrain’ and ‘-segment’ denote the network 
without the pretrain on healthy samples and segmentation branch, respectively. ‘whole’ denotes the whole 
framework.

Category\index Accuracy (%) Precious (%) Sensitivity (%) Specificity (%) F1-score (%)

-pretrain 75.33 34.45 35.67 84.48 34.22

-segment 84.35 54.23 59.01 89.78 53.32

whole 88.72 65.81 66.56 92.66 66.14
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Conclusion
The cysts and tumors of the jawbone are usually painless and asymptomatic, which poses a serious threat to 
patient life quality. Proper and accurate detection at the early stage will effectively relieve patients’ pain and 
avoid radical segmentation surgery. Similar radiological characteristics of some cysts and tumors pose a severe 
challenge for the accurate diagnosis of cysts and tumors.

In this paper, we propose a deep learning-based method for diagnosing the cysts and tumors of the jaw. Unlike 
existing transfer learning-based methods, our proposed method can achieve promising diagnosis performance 
with massive healthy samples. We firstly collect 872 lesion panoramic radiographs and 10,000 healthy panoramic 
radiographs. Some data augmentation strategies are adopted to increase the diversity of training samples. Then, 
an encoder is pretrained on those massive healthy panoramic radiographs with self-supervised learning. Next, 
based on the pretrained encoder, a two-branch network is devised to classify the lesion category and segment 
the lesion area simultaneously. In the two-branch framework, the segmentation sub-network can effectively 
improve the classification performance and enhance the model’s explainability, which is advantageous for doctors 
to confirm the diagnosis result further. Further, the location consistency constraint is devised for constraining 
the consistency of predicted results between the segmentation sub-network and classification sub-network, 
which can effectively enhance the reliability and explainability of models. Exhaustive experiments demonstrate 
that the deep learning-based method achieves excellent results. The segmentation results can be served as reli-
able references for further diagnosis. It provides an effective tool for diagnosing cysts and tumors of the jaw. It’s 
worth noting that the proposed consistency constraint can be extended to other medical analysis areas, such as 
breast cancer analysis, hepatocellular carcinoma grading, brain diseases diagnosis. The predicted results with 
the consistency constraint are interpretable, which is more suitable for real medical diagnosis applications. The 
experiment results verify that the pretraining way effectively relieves the deep learning-based diagnosis method 
from relying on massive lesion samples, inspiring for future medical diagnosis tasks. Furthermore, we will focus 
on studying more techniques for improving the explainability of the medical diagnosis model in the future.

Data availability
The dental panoramic radiographs in the dataset used to develop the method and analyze the findings of this 
study are not publicly available due to the restriction by the First Affiliated Hospital, Zhejiang University School 
of Medicine in order to protect patients’ privacy.
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