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Comparison of GATK 
and DeepVariant by trio 
sequencing
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While next‑generation sequencing (NGS) has transformed genetic testing, it generates large 
quantities of noisy data that require a significant amount of bioinformatics to generate useful 
interpretation. The accuracy of variant calling is therefore critical. Although GATK HaplotypeCaller is 
a widely used tool for this purpose, newer methods such as DeepVariant have shown higher accuracy 
in assessments of gold‑standard samples for whole‑genome sequencing (WGS) and whole‑exome 
sequencing (WES), but a side‑by‑side comparison on clinical samples has not been performed. Trio 
WES was used to compare GATK (4.1.2.0) HaplotypeCaller and DeepVariant (v0.8.0). The performance 
of the two pipelines was evaluated according to the Mendelian error rate, transition‑to‑transversion 
(Ti/Tv) ratio, concordance rate, and pathological variant detection rate. Data from 80 trios were 
analyzed. The Mendelian error rate of the 77 biological trios calculated from the data by DeepVariant 
(3.09 ± 0.83%) was lower than that calculated from the data by GATK (5.25 ± 0.91%) (p < 0.001). 
DeepVariant also yielded a higher Ti/Tv ratio (2.38 ± 0.02) than GATK (2.04 ± 0.07) (p < 0.001), 
suggesting that DeepVariant proportionally called more true positives. The concordance rate between 
the 2 pipelines was 88.73%. Sixty‑three disease‑causing variants were detected in the 80 trios. Among 
them, DeepVariant detected 62 variants, and GATK detected 61 variants. The one variant called by 
DeepVariant but not GATK HaplotypeCaller might have been missed by GATK HaplotypeCaller due to 
low coverage. OTC exon 2 (139 bp) deletion was not detected by either method. Mendelian error rate 
calculation is an effective way to evaluate variant callers. By this method, DeepVariant outperformed 
GATK, while the two pipelines performed equally in other parameters.

Whole-exome sequencing (WES) by next-generation sequencing (NGS) has become an important tool in the 
diagnosis of inherited  diseases1. An increasing number of medical centers consider WES first-line genetic testing. 
As NGS yields tens of thousands of short-read sequences, accurate variant calling is thus crucial for subsequent 
variant prioritization.

Several variant callers have been  published2–6. Among them, GATK HaplotypeCaller is the most widely 
used. However, previous studies have also highlighted that different variant callers generated substantial 
 disagreement7–9. DeepVariant won the PrecisionFDA Truth Challenge in 2016, demonstrating a higher accuracy 
in single-nucleotide polymorphism (SNP) detection than  GATK6,10.

There are different ways to evaluate the performance of variant callers. Usually, reference DNA samples 
or FASTQ files are analyzed for this purpose. To evaluate variant callers on real-world data, in this study, we 
employed the Mendelian error rate and several other metrics to compare GATK and DeepVariant.

Results
General performance of the two pipelines. The pipelines were executed on a server equipped with a 
40 core CPU, 384 GB of RAM, and one V100 GPU. The execution time for one trio exome sequencing (patient, 
father, and mother) was 2 h 30 m for GATK and 1 h 30 m for DeepVariant (Fig. 1). The time required for variant 
calling was 3851 ± 253 s for GATK and 425 ± 0.6 s for DeepVariant (p = 0.046). Approximately 92,000–120,000 
changes were identified for each patient. GATK called more single-nucleotide variants (SNVs), insertions, dele-
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tions, and indels, but DeepVariant gave a higher transition-to-transversion (Ti/Tv) ratio (2.04 for GATK and 
2.38 for DeepVariant) (Table 1; Fig. 2). The Ti/Tv ratio is an important criterion for assessing the quality of SNV 
calling. For exome sequencing, the expected Ti/Tv ratio is approximately 3.011. A higher Ti/Tv ratio usually 
indicates a higher accuracy of SNV calling. The concordance rate between GATK and DeepVariant was 88.73% 
(Fig. 3).   

Mendelian error rate. The Mendelian error rate of 80 trios was calculated from the data generated by the 
GATK and DeepVariant pipelines. Excluding the 3 families without 2 biological parents, the Mendelian error 
rate for the 77 biological trios was lower in DeepVariant (GATK vs. DeepVariant, 5.25 ± 0.91% vs. 3.09 ± 0.83%, 
p < 0.001; Table 2). In conjunction with the Ti/TV ratio results, DeepVariant yielded a higher Ti/Tv ratio, which 
indicated that DeepVariant has a higher accuracy. For the excluded three trio samples, each trio had only one 
biological parent, and the other was an unrelated person. The Mendelian error rate for these 3 families was high 
for both pipelines. From this result, we know that the Mendelian error rate could be used to identify true biologi-
cal parents.

Diagnostic yield of trio exome sequencing analysis for pediatric patients. We previously pub-
lished the results for family 1–40 analyzed with GATK version 3.5 (Wu et al. 2019). In this study, we analyzed 
the same 40 families plus an additional 40 families using GATK version 4.1.2.0 and DeepVariant version 0.8.0. 
Following the same analysis procedures previously established for variant annotation and filtering (Wu et al. 

Figure 1.  Variant calling execution time of GATK and DeepVariant for one typical trio exome analysis.

Table 1.  Comparison of variant counts from the two pipelines (n = 77 trios).

DeepVariant GATK P value

Variant count

Total (SNVs + Ins + Del + Indels) 85,110 ± 2713 97,003 ± 4217  < 0.001

SNVs 77,338 ± 2103 83,723 ± 2973  < 0.001

Insertions 3786 ± 305 5641 ± 628  < 0.001

Deletions 3971 ± 339 7551 ± 666  < 0.001

Indels 14 ± 5 86 ± 26  < 0.001

Ti/Tv ratio

SNVs 2.38 ± 0.025 2.04 ± 0.07  < 0.001

Figure 2.  Numbers of SNVs/indels and Ti/Tv ratios from the 2 different pipelines (n = 77 trios).
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2019), the same 21 variants were found in the first 40 families; 42 more variants related to the phenotypes of the 
patients were found in family 41–80. Overall, 40 out of 80 families received a diagnosis, achieving a diagnostic 
rate of 50% (Table S1). Among the 40 families with a diagnosis, 11 (27.5%) carried autosomal dominant muta-
tions, 24 (60.0%) carried autosomal recessive mutations, and 5 (12.5%) carried X-linked mutations. For variant 
calling comparison, GATK identified 61 of the 63 variants (96.82%), while DeepVariant identified 62 variants 
(98.41%). The one variant that was differentially identified, NM_001101426.3: c.164G>A (p.Gly55Glu), which 
was called by DeepVariant, showed a quality score of 37.5. The reason why the GATK pipeline failed to call this 
variant might be due to its low coverage, with a read depth of 4. The other variant that was picked up by neither 
GATK nor DeepVariant was an OTC exon 2 deletion (139 bp). This miss was expected, as both tools are designed 
to call small variants (< 50 bp) but not large deletions.

Discussion
In this study, we performed a real-world comparison of GATK and DeepVariant in trio exome samples. Our goal 
was to understand the applicability and performance of DeepVariant in analyzing patient samples. Our approach 
included a comparison of the execution time, variant calling accuracy, Ti/Tv ratio, and Mendelian error rate. Our 
data showed that DeepVariant had a shorter execution time and a smaller Mendelian error rate. DeepVariant 
made fewer calls, but with a lower false positive rate in variants failing Sanger sequencing and a lower false nega-
tive rate in identifying variants of interest. This finding in clinical samples concurred with recent applications in 
research  cohorts12 and evaluations using simulated and gold-standard personal exome  data8,10. In addition, we 
observed that the Ti/Tv ratio was higher in DeepVariant than GATK in the joint genotyping algorithm, which 
is in concordance with a recent  report12.

It has been demonstrated that when used in joint genotyping, DeepVariant had better genotype quality 
(GQ) score calibration than GATK both in sequence-covered regions and by variant  type12. Although variant 
quality normalization by read depth (quality of depth; QD) has been noted as the most important feature for 
discriminating true variants from artifacts in GATK calls for large-scale analysis, GQ is more informative for 
single-sample  evaluation12,13.

There are several ways to perform variant caller comparisons. One method is to use gold-standard refer-
ence samples, such as HG001 or  HG0022,7,9, for comparison because the true variants are known and verified. 
Testing trio cases by calculating the Mendelian error rate is another method that can demonstrate accuracy by 
comparing variants from parents. Compared to singleton analysis, checking the Mendelian error rate may be a 
more realistic way to understand the performance of variant calling. Liang et al. performed an analysis on the 
NA12878 trio (HG002, HG003, HG004) for the detection of de novo SNVs using GATK, RTC, and  VarScan14. 
They found that GATK had better performance in identifying de novo SNVs in low GC-content regions, while 

Figure 3.  Venn diagram of variants identified by the two different pipelines (the number indicates the mean 
from 231 exomes; n = 77 trios).

Table 2.  Comparison of Mendelian error rates of variants from the two different pipelines.

Mendelian error rate %

GATK DeepVariant P value

Both biological parents (n = 77)

Mean ± SD (%) 5.25 ± 0.91 3.09 ± 0.83  < 0.001

Range (%) 3.84–8.72% 1.93–5.59%

One nonbiological parent (n = 3)

WES-A 19.84 18.94

WES-B 19.05 18.09

WES-C 19.71 18.84
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RTG had a higher error rate in high GC-content  regions14. In our observation, DeepVariant had better calling 
performance in the low coverage region than GATK. Since there was only one disease-causing variant with low 
coverage, further data comparison in low coverage regions will elucidate the differences between these two callers.

During comparison, we noticed that the quality scores of DeepVariant could not be linearly correlated with 
quality scores from GATK (Fig. S1). Even though DeepVariant has better calibrated quality scores, this discrep-
ancy still presents a challenge for integration because some of our downstream applications were trained using 
GATK quality scores. To overcome this issue, establishment of DeepVariant-specific criteria for downstream 
application will be needed.

One limitation of this study is the relatively small sample size. However, our data are consistent, and the 
standard deviation is small, indicating that our findings are correct. Another limitation of this study is that we 
did not use gold-standard reference samples for comparison. This is because the majority of studies have already 
used reference samples; therefore, here, we reported our real-world experience to share first-hand information.

Conclusions
Compared to GATK, DeepVariant had a shorter execution time and higher accuracy for clinical samples.

Methods
Subjects. Eighty patients suspected of having Mendelian disorders were referred for WES testing from June 
2017 to May 2019. A total of 240 peripheral blood samples were collected. Two hundred thirty-seven samples 
were from the patients plus their biological parents (trio). As blood was unavailable for one of the parents in 
family 16, 74, and 76, unrelated healthy individuals whose sex matched the missing parent were used. Clinical 
data were provided by the referring physician. Genomic DNA was extracted with a QIAamp DNA Mini Kit 
(QIAGEN). In short, two hundred microliters of blood samples were used, and DNA was eluted in a volume of 
100 µl. The quality and concentration of the extracted DNA samples were determined with a NanoDrop, and 
the samples were stored at 4 °C. This study was approved by the Institutional Review Board of National Taiwan 
University Hospital (IRB Nos. 201703073RINB and 20190057RIND). All methods were performed in accord-
ance with relevant guidelines and regulations. Written informed consent was obtained from each family who 
participated in the study.

Exome sequencing and variant calling. Library preparations and sequencing were performed one trio 
at a time. Exome capture was carried out with a TruSeq DNA Exome Kit (Illumina), covering 214,405 exons with 
a total size of approximately 45 Mb. The captured libraries were then sequenced with a NextSeq 500 sequencer 
(Illumina) to produce 2 × 75 bp reads. Raw sequencing reads were converted to standard fastq format using 
bcl2fastq2 conversion software v2.20 (Illumina). Quality control of the raw reads was performed with FastQC. 
For variant calling, two different tools were used (Fig.  4), GATK and DeepVariant. The GATK pipeline was 
based on the best practices workflow for germlines established by the Broad Institute (https:// gatk. broad insti 
tute. org/ hc/ en- us/ artic les/ 36003 55359 32- Germl ine- short- varia nt- disco very- SNPs- Indels). Briefly, reads were 
aligned to the reference genome using BWA-MEM. The human reference genome used here was GRCh37. Pic-
ard tools were then used to sort and mark PCR duplicate reads, generating BAM files. GATK version 4.1.2.0 was 
used to recalibrate BAM files with BaseRecalibrator and ApplyBQSR and to generate VCF and GVCF files with 
HaplotypeCaller. DeepVariant analysis was performed according to the online instruction for germline variant 
calling with Illumina whole-exome data (https:// github. com/ google/ deepv ariant). In summary, after installing 
DeepVariant version 0.8.0 Docker, VCF and GVCF files were created with one single command using the BAM 
files processed by Picard. The GVCF files created from each pipeline were combined separately for each trio to 
calculate the Mendelian error rate. The VCF files were used for annotation and analysis.

Figure 4.  Algorithm of the bioinformatics pipelines.

https://gatk.broadinstitute.org/hc/en-us/articles/360035535932-Germline-short-variant-discovery-SNPs-Indels
https://gatk.broadinstitute.org/hc/en-us/articles/360035535932-Germline-short-variant-discovery-SNPs-Indels
https://github.com/google/deepvariant


5

Vol.:(0123456789)

Scientific Reports |         (2022) 12:1809  | https://doi.org/10.1038/s41598-022-05833-4

www.nature.com/scientificreports/

Variant annotation and filtering. Variant annotation was performed by wANNOVAR (http:// wanno 
var. wglab. org). Variants were then filtered with various criteria: (1) quality score for GATK > 200 and DeepVari-
ant > 25, (2) pass filter, and (3) allele frequency < 0.05 in the population database, such as Exome Aggregation 
Consortium (ExAC), 1000 Genomes Project, ESP6500si, and dbSNP. Variants located in introns, 3’ or 5’ untrans-
lated regions (UTRs), upstream, downstream, or noncoding regions, or those that would cause synonymous 
mutations and in-frame indels were also not included, as the majority of variations occurring in these regions have 
insufficient evidence. Filtered variants were subsequently prioritized according to the patient’s clinical diagnosis 
and phenotypes. The probable mutations were evaluated in the order of the following consequences: initiation 
codon, stop loss/gain, splice site, frameshift, and missense. Candidate variants were classified into likely patho-
genic (LP)/pathogenic (P), likely benign (LB)/benign (B), or variants of unknown significance (VUSs) according 
to American College of Medical Genetics and Genomics (ACMG)  guidelines15. We looked at databases such as 
the Human Gene Mutation Database (HGMD) and Online Mendelian Inheritance in Man (OMIM), the effect of 
each change on the protein and splice site, and different scores such as nucleotide and amino acid conservation 
scores, SIFT, and PolyPhen-216,17. After variant prioritization, genotype–phenotype correlation was reviewed by 
physicians. Selected disease-causing variants were selected for Sanger sequencing. Assessment of the quality of 
sequencing and the variants was performed with Integrative Genomics Viewer (IGV). The coverage of exons in 
each gene was calculated. Those that did not have adequate coverage were highlighted.

Verification by Sanger sequencing. Sanger sequencing was carried out to verify the variants detected 
by NGS. Sixty-three disease-causing variants from each family were chosen based on genotype–phenotype cor-
relations after variant filtering (Wu et al. 2019) and ranking by our in-house AI_driven module (manuscript in 
submission). Sanger sequencing was performed on variants found in family 1 to family 32. After that, our labo-
ratory established internal criteria for Sanger sequencing of candidate variants as (1) SNVs with GATK quality 
scores less than 500 and (2) small indel variants. Specific primers were designed using Primer3 v.0.4.0 (http:// 
bioin fo. ut. ee/ prime r3-0. 4.0/) and purchased from Bio-Protech. Genomic DNA was amplified by touch-down 
PCR using a GeneAmp PCR System (Applied Biosystems). For PCR products with GC contents exceeding 59%, 
5% DMSO was added to the mixture. Thermal cycles were performed with 1 cycle of 94 °C for 5 min; 14 cycles of 
touch-down PCR with 94 °C for 30 s, touch-down annealing temperature for 30 s, and 72 °C for 30 s; 25 cycles of 
94 °C for 30 s, 53 °C for 30 s, and 72 °C for 30 s; and finally, 1 cycle at 72 °C for 5 min. The annealing temperature 
of the touch-down cycles started at 60 °C initially and was decreased by 0.5 °C each cycle, ending at 53 °C. Aga-
rose gel electrophoresis was used to confirm PCR products, and all primer sets produced a single band. The PCR 
products were purified with a Gel/PCR DNA Fragments Extraction Kit (Geneaid), followed by direct sequencing 
using an ABI Prism Big Dye Dideoxy Chain Terminator Cycle Sequencing Kit and an ABI Prism 3100 genetic 
analyzer (Applied Biosystems).

Statistical analysis. The results from the GATK and DeepVariant pipelines were evaluated with RTG tools 
(https:// github. com/ RealT imeGe nomics/ rtg- tools). In addition to the number of variants called, the Ti/Tv ratio 
was also calculated by RTG-vcfstats and used as an indicator of potential sequencing error. Mendelian violation 
of the trio data was detected with RTG-mendelian. Additionally, concordance analysis between the pipelines was 
performed with SPSS v17. The significance was determined by Student’s t test.

Ethics approval and consent to participate. Written informed consent was obtained from all partici-
pants.

Consent for publication. Written informed consent was obtained from all participants.

Data availability
The datasets generated and/or analyzed during the current study are not publicly available due to the anonymity 
of the participants but are available from the corresponding author on reasonable request.
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