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Shared genomic architecture 
between COVID‑19 severity 
and numerous clinical 
and physiologic parameters 
revealed by LD score regression 
analysis
Jinyoung Byun1,2,6*, Younghun Han1,2,6, Kyle M. Walsh3,6, Amy S. Park1, Melissa L. Bondy4 & 
Christopher I. Amos1,2,5*

The COVID‑19 pandemic has produced broad clinical manifestations, from asymptomatic infection 
to hospitalization and death. Despite progress from genomic and clinical epidemiology research, risk 
factors for developing severe COVID‑19 are incompletely understood and identification of modifiable 
risk factors is desperately needed. We conducted linkage disequilibrium score regression (LDSR) 
analysis to estimate cross‑trait genetic correlation between COVID‑19 severity and various polygenic 
phenotypes. To attenuate the genetic contribution of smoking and BMI, we further conducted 
sensitivity analyses by pruning genomic regions associated with smoking/BMI and repeating LDSR 
analyses. We identified robust positive associations between the genetic architecture of severe 
COVID‑19 and both BMI and smoking. We observed strong positive genetic correlation (rg) with 
diabetes (rg = 0.25) and shortness of breath walking on level ground (rg = 0.28) and novel protective 
associations with vitamin E (rg = − 0.53), calcium (rg = − 0.33), retinol (rg = − 0.59), Apolipoprotein A 
(rg = − 0.13), and HDL (rg = − 0.17), but no association with vitamin D (rg = − 0.02). Removing genomic 
regions associated with smoking and BMI generally attenuated the associations, but the associations 
with nutrient biomarkers persisted. This study provides a comprehensive assessment of the shared 
genetic architecture of COVID‑19 severity and numerous clinical/physiologic parameters. Associations 
with blood and plasma‑derived traits identified biomarkers for Mendelian randomization studies to 
explore causality and nominates therapeutic targets for clinical evaluation.

Since the outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in December 2019, the 
global pandemic of coronavirus disease 2019 (COVID-19) has resulted in more than 205 million confirmed 
cases and 4.3 million deaths worldwide as of August 13,  20211. Genome-wide association studies (GWAS) have 
revealed the genetic underpinnings of complex human traits, helping to elucidate the heritability of susceptibility 
to both chronic diseases and infectious diseases—including COVID-192. Such complex diseases typically have 
multifactorial etiologies, with contributions from germline genetic variation and environmental  exposures3, and 
they frequently present with related, comorbid medical  conditions4.

SARS-CoV-2 is a highly contagious respiratory virus that also impacts additional organ systems. Several 
comorbid risk factors are known to be associated with developing severe COVID-19  illness5, including hyper-
tension, cardiovascular disease, chronic obstructive pulmonary disease (COPD), high body mass index (BMI), 
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and type 2  diabetes6. Diabetes, associated with immunosuppression and vascular and renal complications, has 
emerged as a critical comorbidity among severely ill COVID-19  patients7.

Leveraging GWAS data, we conducted cross-trait genetic correlation analyses to examine the sum effect of 
pleiotropy across all causal loci to determine if we could reveal shared genetic correlations between multiple 
polygenic traits. In addition, we determined the directionality of these associations, and whether the genetic 
architecture of two traits are correlated or anti-correlated8. Examining the shared genetic architecture underlying 
co-occurrence of disease can help elucidate their common genetic  etiology4, but there has been no comprehensive 
evaluation of the shared genetic architecture between COVID-19 disease severity and additional diseases or traits. 
Previous analyses of lung cancer risk reveal shared genetic architecture with emphysema, a common co-morbid 
condition, as well as with cigarette consumption, the leading cause of lung  cancer4. In the setting of COVID-19 
disease severity, such an evaluation has similar potential to identify co-morbid conditions and to uncover traits 
that are causally involved in worsening clinical course.

To identify polygenic traits sharing underlying genetic etiology with COVID-19 disease severity, we utilized 
summary statistics from prior GWAS and conducted cross-trait linkage disequilibrium (LD) score regression 
(LDSR)  analyses9,10. Results provide fundamental knowledge on traits and conditions that share genetic under-
pinnings with COVID-19 disease severity, reveal potential risk factors for developing severe COVID-19 disease 
subsequent to SARS-CoV-2 infection, and implicate several modifiable factors that merit further study and may 
ultimately help improve patient outcomes.

Methods
GWAS summary statistics for COVID‑19 critical illness and hospitalization. We downloaded the 
GWAS summary statistics (COVID19-hg GWAS meta-analyses round 5, released on January 18, 2021; https:// 
www. covid 19hg. org/ resul ts/ r5/) from the COVID-19 Host Genetics Initiative (COVID-19 HGI)11–13, com-
prising (1) A2 (critical illness)13: 4,606 very severe, respiratory-confirmed COVID-19 patients versus 702,801 
population-based controls (A2_ALL_eur_leave_23andme) and (2) B2 (hospitalization)13: 9,373 hospitalized 
COVID-19 patients versus 1,197,256 population-based controls (B2_ALL_eur_leave_23andme) (Table 1 and 
Supplementary Tables 1 and 2). While the summary statistics of COVID-19-hg GWAS meta-analyses across 
multiple populations have been deposited at the COVID-19  HGI11,13, we restricted analyses to European-ances-
try subjects (to align with the ancestral background of participants in GWAS of traits used in our downstream 
LDSR analyses) and did not include the 23andMe cohort (due to the data-use constraint, which makes only the 
top 10,000 SNPs publicly available)14. All methods were performed in accordance with the relevant guidelines 
and regulations.

GWAS summary statistics for additional traits. To estimate cross-trait genetic correlation patterns 
between COVID-19 disease severity and multiple polygenic traits, we harmonized publicly available GWAS 
summary-level data from the UK Biobank (UKBB), a prospective population-based cohort study consist-
ing of ~ 500,000 individuals, aged 40–69 years, who were recruited in the United Kingdom between 2006 and 
 201015,16. All methods were carried out in accordance with relevant guidelines and regulations.

GWAS summary-level data used for the LDSR analyses of UKBB traits are from publicly-posted results 
generated by the Neale lab (http:// www. neale lab. is/ uk- bioba nk/). These association analyses are adjusted with 
the first 20 principal components, which adjust for sources of population level variability in genetic allele fre-
quencies. The GWAS summary-level data of UKBB used in our study are restricted to “British ancestry” using 
the first 6 principal components to determine “British ancestry” and further filtered by self-reported ethnicity 
with “white-British”, “Irish”, or “White”. The sample sizes and more details for the tested traits are shown in Sup-
plementary Table 2.

Estimating SNP‑heritability and cross‑trait genetic correlation of COVID‑19. LD score regres-
sion analysis with 1000 Genomes Project European (EUR) samples as a reference for pattern of genome-wide LD 
quantifies the co-heritability of diverse  traits4,9,10,17 using GWAS summary statistics for common genetic variants 
(i.e., SNPs). In brief, LDSR method regresses χ2 statistics from GWAS on LD scores, allowing the estimation 

Table 1.  Study description.

Strata Trait Sample size SNPs

A2 very severe, respiratory-confirmed COVID-19 patients versus population-based 
controls COVID-19 A2 707,407 1,140,193

B2 hospitalized COVID-19 patients versus population-based controls COVID-19 B2 1,206,629 1,141,302

Exclusion of smoking-associated genomic regions

A2 very severe, respiratory-confirmed COVID-19 patients versus population-based 
controls COVID-19 A2⟂Smoke 707,407 1,001,866

B2 hospitalized COVID-19 patients versus population-based controls COVID-19 B2⟂Smoke 1,206,629 1,003,099

Exclusion of BMI-associated genomic regions

A2 very severe, respiratory-confirmed COVID-19 patients versus population-based 
controls COVID-19 A2⟂BMI 707,407 856,012

B2 hospitalized COVID-19 patients versus population-based controls COVID-19 B2⟂BMI 1,206,629 856,864

https://www.covid19hg.org/results/r5/
https://www.covid19hg.org/results/r5/
http://www.nealelab.is/uk-biobank/
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of genetic correlation without bias due to population stratification or cryptic  relatedness4,9,10,18,19. By regressing 
SNP-level associations for two traits, (i.e., the product of Z scores,  ZCOVID19_A2 ×  ZUKBB_BMI) and weighting each 
SNP by its LD Score (an estimate of the amount of total genetic variation tagged by each variant), one can esti-
mate the magnitude and direction of shared genomic architecture between these traits. To control the multiple 
testing burden, we restricted analyses to the tested UKBB traits showing heritability ≥ 1% and for which prior 
studies have suggested correlations between COVID-19 and risk for severe outcomes, or traits that were cor-
related with traits that have been associated with severe outcomes. We conservatively set the test-wise level of 
significance after Bonferroni correction to be 0.05/(6 × 64), adjusting for analysis of COVID-19 severity (A2 
and B2) with 64 UKBB traits, with and without removal of BMI and Smoking SNPs. We first implemented the 
command option of LD Score (https:// github. com/ bulik/ ldsc; ldsc v1.0.1) with “munge_sumstats.py” to generate 
the “.sumstats” format from the GWAS summary statistics after ~ 1.14 M HapMap3 SNPs with MAF > 1% were 
selected for the analysis as recommended. Multi-allelic SNPs and the major histocompatibility complex (MHC) 
region (Chr6:25–34 Mb) were excluded from summary statistics because of the complex and unusual LD pat-
tern and genetic architecture of the MHC  region4. We then applied “ldsc.py -rg covid19.A2.sumstats.gz, trait1.
sumstats.gz-ref-ld-chr eur_w_ld_chr/-w-ld-chr eur_w_ld_chr/-out covid19.A2_triat1”.

Exclusion of genomic regions related to smoking behavior and BMI. Although a clearer picture 
is emerging, the contribution of cigarette smoking to COVID-19 disease severity remains incompletely under-
stood, with most studies suggesting increased disease severity among former smokers versus never-smokers, 
but some studies observing a protective effect for current  smoking20 and others showing an increased risk for 
more severe symptoms in  smokers21. Since smoking behaviors are heritable traits that correlate with many other 
complex diseases, we performed sensitivity analyses by excluding chromosomal regions (± 500 kb) around 473 
SNPs previously associated with various smoking behaviors (⟂Smoke) to attenuate the genetic contribution 
of smoking-related  variants4. The removed genomic regions related to cigarettes per day, smoking initiation, 
smoking cessation, initiation age of regular smoking, and nicotine dependence (Supplementary Tables 3 and 4).

Although obesity increases risk of systemic inflammation, pulmonary clots, stroke, and myocardial infarction, 
it remains unclear whether reported associations between BMI and COVID-19 disease severity are confounded 
by socioeconomic status or concurrent health issues. We performed sensitivity analyses by excluding genomic 
regions (± 500 kb) around 941 SNPs previously associated with BMI (⟂BMI) to attenuate the genetic contribu-
tion of BMI-related variants (Supplementary Tables 4 and 5).

Results
We implemented cross-trait LDSR analysis to examine shared genetic contributions to COVID-19 disease sever-
ity and multiple clinical and epidemiologic traits using pairwise genetic correlations (rg) and the observed-scale 
heritability  (h2, representing the proportion of phenotypic variance explained by all common SNPs). The flow 
chart presented in Fig. 1 summarizes the steps from data preparation to LDSR analysis for COVID-19 severity 
versus 64 polygenic traits we studied. A prior GWAS  analysis13 of very severe, respiratory-confirmed COVID-
19 (phenotype A2: critical illness; 4606 cases, 702,801 controls in only European descent) identified loci on 
chromosomes 3, 12, 17, 19, and 21 that reached genome-wide statistical significance (P < 5.0 ×  10−8 shown in the 
red horizontal line), with a genomic inflation factor of 1.047, and an estimated  h2 of 0.35%. Sensitivity analysis 
excluding chromosomal regions known to be associated with smoking reduced the genomic inflation factor to 
1.041 and  h2 to 0.34%. Sensitivity analysis excluding chromosomal regions known to be associated with BMI 
increased the genomic inflation factor to 1.050 and  h2 to 0.35% (Fig. 2, Supplementary Table 6).

A prior GWAS analysis of hospitalized COVID-19 (phenotype B2: hospitalization; 9373 cases, 1,197,256 
controls in only European-descent) identified loci on chromosomes 3, 12, 19, and 21 at genome-wide statistical 
significance, with a genomic inflation factor of 1.041, and an estimated  h2 of 0.19% (Fig. 2). Sensitivity analysis 
excluding chromosomal regions known to be associated with smoking reduced the genomic inflation factor to 
1.038 and  h2 to 0.19%. Sensitivity analysis excluding chromosomal regions known to be associated with BMI 
reduced the genomic inflation factor to 1.035 and  h2 to 0.17% (Fig. 2, Supplementary Table 6).

Using these GWAS results, we next performed LDSR analyses with two phenotypes for COVID-19 severity 
(COVID-19 A2, and COVID-19 B2) considering four phenotypes for exclusions of genomic regions related 
to BMI and Smoking (COVID19_A2⟂BMI, COVID19_A2⟂Smoke, COVID19_B2⟂BMI, and COVID19_
B2⟂Smoke) and 64 UKBB polygenic traits that had SNP array-based heritability  (h2) ≥ 1% (to maximize study 
power and to provide reliable inferences). Twenty-three diverse traits showed moderate to strong co-heritability 
with COVID-19 disease severity (Table 2, Supplementary Table 7), including several at Bonferroni-corrected 
significance level (P < 1.30 ×  10−4). Very severe, respiratory-confirmed COVID-19 illness (A2) and COVID-
19 hospitalization (B2) showed strong genomic correlation with traits related to adiposity, diabetes, digestive 
diseases, smoking behaviors, hematologic traits, and selected nutrient levels (Fig. 3, Supplementary Table 7).

Among physical traits, the genetic architecture of COVID-19 disease severity was positively correlated 
with BMI  (rgCOVID19_A2 = 0.20,  PCOVID19_A2 = 1.51 ×  10−5;  rgCOVID19_B2 = 0.34,  PCOVID19_B2 = 1.99 ×  10−8), weight 
 (rgCOVID19_A2 = 0.17,  PCOVID19_A2 = 1.24 ×  10−4;  rgCOVID19_B2 = 0.27,  PCOVID19_B2 = 7.23 ×  10−7), and whole body fat mass 
 (rgCOVID19_A2 = 0.20,  PCOVID19_A2 = 7.81 ×  10−6;  rgCOVID19_B2 = 0.33,  PCOVID19_B2 = 2.24 ×  10−8). After excluding genomic 
regions previously associated with BMI, both BMI and whole body fat mass continued to show strongly signifi-
cant positive correlation with COVID-19 disease severity  (rgCOVID19_A2⟂BMI = 0.17 and  PCOVID19_A2⟂BMI = 2.37 ×  10−3; 
 rgCOVID19_B2⟂BMI = 0.28 and  PCOVID19_B2⟂BMI = 1.82 ×  10−5).

Among medical conditions, the genetic architecture of COVID-19 disease severity was positively cor-
related with shortness of breath walking on level ground  (rgCOVID19_A2 = 0.28,  PCOVID19_A2 = 2.87 ×  10−3; 
 rgCOVID19_B2 = 0.43,  PCOVID19_B2 = 4.56 ×  10−5), diabetes  (rgCOVID19_A2 = 0.54,  PCOVID19_A2 = 7.10 ×  10−4; 

https://github.com/bulik/ldsc
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 rgCOVID19_B2 = 0.31,  PCOVID19_B2 = 3.39 ×  10−5), diverticulosis  (rgCOVID19_A2 = 0.30,  PCOVID19_A2 = 4.31 ×  10−4; 
 rgCOVID19_B2 = 0.38,  PCOVID19_B2 = 1.66 ×  10−5), diseases of the digestive system  (rgCOVID19_A2 = 0.20, 
 PCOVID19_A2 = 3.48 ×  10−3;  rgCOVID19_B2 = 0.45,  PCOVID19_B2 = 1.86 ×  10−7), and diseases of the musculoskeletal system 
and connective tissue  (rgCOVID19_A2 = 0.24,  PCOVID19_A2 = 4.84 ×  10−4;  rgCOVID19_B2 = 0.34,  PCOVID19_B2 = 3.54 ×  10−6). 
Excluding genomic regions associated with smoking behaviors or BMI generally attenuated these correlations, 
although most remained nominally associated at P < 0.05 and the association between COVID-19 hospitaliza-
tion and diseases of the digestive system remained significant at Bonferroni-corrected levels after exclusion of 
smoking-associated loci  (rgCOVID19_B2⟂Smoke = 0.38,  PCOVID19_B2⟂Smoke = 2.30 ×  10−5).

Among smoking behaviors, current tobacco smoking  (rgCOVID19_B2 = 0.34,  PCOVID19_B2 = 2.01 ×  10−6) and expo-
sure to tobacco smoke at home  (rgCOVID19_B2 = 0.47,  PCOVID19_B2 = 1.73 ×  10−5) presented strongly significant posi-
tive genetic correlation with COVID-19 hospitalization, which were only modestly attenuated when removing 
known smoking-associated loci from analysis. Current tobacco smoking was more modestly associated with 
severe, respiratory-confirmed COVID-19 illness COVID  (rgCOVID19_A2 = 0.13,  PCOVID19_B2 = 0.021) and this asso-
ciation became non-significant after removing smoking-associated loci from analysis (Table 2), supporting a 
link between known smoking risk loci and risk for severe COVID-19 outcomes.

Examining hematologic traits, both high light scatter reticulocyte percentage and count were significantly 
positively correlated with COVID-19 hospitalization, as was immature reticulocyte fraction. These traits were 
also positively correlated with severe COVID-19 illness, but not at Bonferroni-corrected levels of statistical sig-
nificance. C reactive protein levels were also positively correlated with COVID-19 disease severity. Interestingly, 
serum (not urinary) albumin was negatively correlated with COVID-19 disease severity at nominal statistical 

Figure 1.  Flow chart of the analytical workflow in the study.
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significance  (rgCOVID19_A2 = − 0.12,  PCOVID19_A2 = 0.026;  rgCOVID19_B2 = − 0.16,  PCOVID19_B2 = 0.011), as were HDL, 
apolipoprotein A levels, and levels of serum IGF-1 (Table 2).

We also examined the pairwise genetic relationship between COVID-19 disease severity and nutrient-related 
traits in UKB. Although we were not able to observe any significant associations between COVID-19 criti-
cal illness and hospitalization and nutrient-related traits at Bonferroni-corrected levels, we identified sugges-
tive negative correlations with magnesium  (rgCOVID19_A2 = − 0.39,  PCOVID19_A2 = 2.28 ×  10−3;  rgCOVID19_B2 = − 0.36, 
 PCOVID19_B2 = 5.17 ×  10−3), retinol  (rgCOVID19_A2 = − 0.59,  PCOVID19_A2 = 0.041;  rgCOVID19_B2 = − 0.59,  PCOVID19_B2 = 0.029), 
and vitamin E  (rgCOVID19_A2 = − 0.53,  PCOVID19_A2 = 2.16 ×  10−3;  rgCOVID19_B2 = − 0.53,  PCOVID19_B2 = 3.10 ×  10−3) 
(Table 2 and Supplementary Table 7). Vitamin D levels were not associated with risk for severe COVID-19 
 (rgCOVID19_A2 = − 0.023,  PCOVID19_A2 = 0.67;  rgCOVID19_B2 = − 0.043,  PCOVID19_B2 = 0.44).

Discussion
We investigated the genetic correlations between COVID-19 disease severity (A2:critical illness and 
B2:hospitalization) with a variety of clinical and physiologic traits using summary-level GWAS data from 
extremely large patient cohorts, observing shared genomic architecture with a number of illnesses and biomarkers 
of somatic well-being. We identify a suite of medical conditions and physiological traits that appear to share the 
genetic architecture with that of COVID-19 severity. Many of these traits overlap those previously identified in 
the large databases of COVID-19 patient outcomes, including traits related to adiposity, kidney function, and 
pulmonary insufficiency. We also identified additional traits that have received comparatively little attention, such 
as blood and serum levels of several vitamins and nutrients. Although our datasets are quite large (COVID-19 
severity GWAS n = 707,407 and 1,206,629 for critical illness (A2) and hospitalization (B2), respectively; UKBB 
GWAS n = 361,194), larger datasets would likely identify many of these same associations and could potentially 
bring some of the nominally associated associations to a corrected level of statistical significance.

Using an orthogonal genomics-driven approach that complements previous COVID-19 clinical epidemiology 
research, we confirm a link between the development of severe COVID-19 illness and both elevated BMI and 
diabetes. We also clarify associations with current smoking status, observing that it was positively correlated with 
COVID-19 disease severity, and note new associations with diverticulosis and reticulocyte traits. Additionally, 

Figure 2.  Manhattan plots of the COVID-19 GWAS meta-analysis for pre- and post-removal of genomic 
regions associated with smoking behaviors and BMI in European descnt population. A2: very severe respiratory 
confirmed COVID-19 cases versus population: 4606 cases and 702,801 controls, B2: hospitalized COVID-19 
cases versus population: 9373 cases and 1,197,256 controls.
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we observe a suggestive association between increased disease severity and reduced levels of IGF-1—a marker 
of nutritional status—and additional suggestive protective associations with magnesium, retinol, and vitamin 
E levels.

COVID-19 is primarily a respiratory illness. We observed that higher forced vital capacity (FVC) was nega-
tively (protectively) associated with COVID-19 disease severity and observed a strongly positive correlation 
between the genetic architecture of ‘shortness of breath while walking on level ground’ and development of 
severe COVID-19 illness. Chest pain and discomfort have previously been associated with COVID-19 hos-
pitalization and the U.S. Centers for Disease Control and Prevention (CDC) announced that individuals with 
chronic lung diseases including emphysema, chronic bronchitis, COPD, and interstitial lung disease are at high 
risk for becoming critically ill from SARS-CoV-21. Our study demonstrates a positive correlation between the 
genetic architecture of these risk factors and COVID-19 disease severity through LDSR analyses. In this study, 
a differential diagnosis of COPD was strongly positively correlated with COVID-19 hospitalization, regardless 
of the exclusion of genomic regions related to BMI and smoking behaviors. Since chronic inflammation is an 
important feature in developing both emphysema and bronchitis, these finding suggest a potential shared genetic 
contribution between COPD and COVID-19 hospitalization separate from the contributions of known BMI and 

Table 2.  Cross-trait genetic correlations of COVID-19 on inclusion/exclusion of genomic regions associated 
with BMI and smoking. P-values in bold indicates P ≤ 1.30 ×  10−4. COVID19_A2, very severe respiratory 
confirmed covid versus population including whole genomic regions; A2⟂BMI, very severe respiratory 
confirmed covid versus population with exclusion of genomic regions related to BMI; A2⟂Smoke, very severe 
respiratory confirmed covid versus population with exclusion of genomic regions related to smoking behaviors; 
COVID19_B2, hospitalized covid versus population including whole genomic regions; B2⟂BMI, hospitalized 
covid versus population with exclusion of genomic regions related to BMI; B2⟂Smoke, hospitalized covid 
versus population with exclusion of genomic regions related to smoking behaviors.

Traits

COVID-19 critical illness (A2) COVID-19 hospitalization (B2)

A2 A2⟂BMI A2⟂Smoke B2 B2⟂BMI B2⟂Smoke

rg P rg P rg P rg P rg P rg P

Physical measurement

BMI 0.200 1.51 × 10−5 0.165 2.37 ×  10−3 0.171 3.07 ×  10−4 0.343 1.99 × 10−8 0.280 1.82 × 10−5 0.292 1.42 × 10−6

Weight 0.169 1.24 × 10−4 0.138 9.60 ×  10−3 0.145 2.24 ×  10−3 0.269 7.23 × 10−7 0.211 6.86 ×  10−4 0.223 4.23 × 10−5

Whole body fat mass 0.201 7.81 × 10−6 0.170 2.00 ×  10−3 0.178 1.49 ×  10−4 0.329 2.24 × 10−8 0.273 2.32 × 10−5 0.287 8.51 × 10−7

Medical condition

Shortness of breath walking on 
level ground 0.283 2.87 ×  10−3 0.198 0.107 0.272 8.33 ×  10−3 0.433 4.56 × 10−5 0.372 5.94 ×  10−3 0.395 4.01 ×  10−4

Diabetes diagnosed by doctor 0.254 7.10 ×  10−4 0.202 0.032 0.252 1.95 ×  10−3 0.309 3.39 × 10−5 0.225 0.018 0.256 8.00 ×  10−4

Diagnoses—main ICD10: K57 
Diverticular disease of intestine 0.297 4.31 ×  10−4 0.228 0.019 0.315 6.64 ×  10−4 0.380 1.66 × 10−5 0.305 2.84 ×  10−3 0.355 2.01 ×  10−4

Diseases of the digestive system 0.201 3.48 ×  10−3 0.097 0.292 0.183 0.020 0.446 1.86 × 10−7 0.348 1.14 ×  10−3 0.384 2.30 × 10−5

Diseases of the musculoskeletal 
system and connective tissue 0.243 4.84 ×  10−4 0.121 0.170 0.223 5.96 ×  10−3 0.338 3.54 × 10−6 0.174 0.038 0.272 4.62 ×  10−4

Smoking

Current tobacco smoking 0.135 0.021 0.014 0.858 0.081 0.223 0.339 2.01 × 10−6 0.285 6.57 ×  10−4 0.237 3.33 ×  10−3

Exposure to tobacco smoke at 
home 0.404 1.67 ×  10−4 0.358 0.013 0.470 1.16 ×  10−3 0.470 1.73 × 10−5 0.418 7.79 ×  10−3 0.429 4.62 ×  10−3

Nutrient

Magnesium − 0.389 2.28 ×  10−3 − 0.411 0.015 − 0.407 1.81 ×  10−3 − 0.364 5.17 ×  10−3 − 0.378 0.035 − 0.335 0.013

Calcium − 0.329 0.033 − 0.457 0.020 − 0.347 0.017 − 0.222 0.137 − 0.340 0.067 − 0.219 0.121

Retinol − 0.591 0.041 − 0.888 0.027 − 0.484 0.081 − 0.588 0.029 − 1.00 0.018 − 0.473 0.076

Vitamin E − 0.527 2.16 ×  10−3 − 0.883 0.010 − 0.540 1.26 ×  10−3 − 0.528 3.10 ×  10−3 − 0.804 0.022 − 0.484 5.08 ×  10−3

Blood Assay

Albumin (g/L) − 0.119 0.026 − 0.071 0.229 − 0.128 0.017 − 0.161 0.011 − 0.086 0.225 − 0.156 0.020

Apoliprotein A (g/L) − 0.134 6.17 ×  10−3 − 0.093 0.138 − 0.126 0.016 − 0.118 0.024 − 0.061 0.369 − 0.101 0.047

C-reactive protein (mg/L) 0.187 1.88 ×  10−4 0.139 0.015 0.218 1.50 ×  10−4 0.278 3.04 ×  10−4 0.237 2.79 ×  10−4 0.294 2.98 × 10−5

HDL cholesterol − 0.174 5.20 ×  10−4 − 0.126 0.048 − 0.166 1.60 ×  10−3 − 0.164 2.25 ×  10−3 − 0.097 0.161 − 0.141 6.93 ×  10−3

High light scatter reticulocyte 
count 0.153 7.13 ×  10−4 0.163 5.33 ×  10−4 0.132 6.74 ×  10−3 0.208 1.23 × 10−5 0.191 1.83 ×  10−3 0.151 4.73 ×  10−3

High light scatter reticulocyte 
percentage 0.155 4.13 ×  10−4 0.168 1.78 ×  10−4 0.131 5.68 ×  10−3 0.209 7.66 × 10−6 0.198 8.04 ×  10−4 0.150 5.12 ×  10−3

IGF-1 (nmol/L) − 0.148 4.99 ×  10−3 − 0.155 0.017 − 0.153 5.64 ×  10−3 − 0.090 0.077 − 0.116 0.064 − 0.083 0.118

Immature reticulocyte fraction 0.173 1.58 ×  10−3 0.156 0.010 0.155 6.05 ×  10−3 0.264 1.05 × 10−5 0.219 3.92 ×  10−3 0.199 3.59 ×  10−3

Platelet distribution width − 0.108 0.017 − 0.130 0.011 − 0.109 0.020 − 0.038 0.440 − 0.060 0.256 − 0.038 0.432
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smoking-related variants. Variants located in immune-related genes and contributing to increased pulmonary 
inflammation could be evaluated in future work.

Traits related to smoking behaviors were generally associated with increased COVID-19 disease severity in 
our analyses, including current smoking, exposure to tobacco smoke either at home or outside home, in utero 
tobacco smoke exposure, and cumulative pack-years. Conversely, never-smoker status showed negative genomic 
correlation with COVID-19 disease severity. Although UKBB does not delineate former smokers in ascribing 
smoking status, our analyses indicate that the genetic determinants of current smoking are associated with 
increased COVID-19 disease severity and do not support the clinical observations that current smoking may 
protect against severe COVID-19 illness.

Given the lack of a COVID-19 vaccine during the first year of the pandemic and continued supply scarcity 
in numerous regions, many studies have sought to identify alternative strategies to minimize risk of developing 
severe COVID-19 following SARS-CoV-2 infection and also to treat severe COVID-19. In addition to evaluations 
of existing pharmacologic agents (e.g., ivermectin, hydroxychloroquine, azithromycin, and dexamethasone), 
vitamin and nutrient supplementation has been widely studied. Global mortality rate differences associated 
with latitude and clinical observations of low serum 25-hydroxyvitamin D levels among hospitalized COVID-
19 patients has perhaps garnered greatest  attention22, but we did not observe a significant association between 
genetic determinants of vitamin D levels and COVID-19 severity. However, we observed nominally significant 
protective effects for less-studied nutrient-related traits, including magnesium, calcium, retinol, and vitamin E. 
A combined vitamin D/magnesium/vitamin B12 combination was associated with a reduction in the propor-
tion of elderly COVID-19 patients requiring oxygen support and intensive care support in a small prospective 
 cohort23, and lower plasma retinol levels have also been observed in hospitalized COVID-19  patients24. We did 
not observe a significant association between serum Vitamin D levels and risk for COVID-19 or severe out-
comes. Vitamin E levels have not been widely examined in the context of COVID-19, but deficiency is frequently 
associated with intestinal malabsorption rather than dietary insufficiency and thus may reinforce the observed 
genetic correlation between COVID-19 disease severity and diverticular disease in our analyses. In our study, 
we do observe an association between higher levels. Further, we observe protective associations for both HDL 
and serum concentration of apolipoprotein A, a major component of the HDL complex involved in clearing fat. 
HDL is involved in vitamin E absorption and contains approximately 40% of circulating α-tocopherol, the main 
dietary source of vitamin  E25.

Integration and harmonization of extant large-scale GWAS datasets has become a popular approach to reveal 
novel epidemiologic associations. Still, access to individual-level GWAS datasets remains limited, because of data 

Figure 3.  The pairwise genetic correlation of COVID-19 disease severity and selected traits.
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use restrictions. The LDSR method does not require individual-level genotype data or LD pruning and can quan-
tify the shared genetic architecture of traits having undergone GWAS analysis. However, LDSR analysis assumes 
absence of population stratification in the underlying summary statistics used and necessitates incorporation 
of GWAS data from populations expected to have similar genomic architecture. This assumption restricted our 
analysis to use of GWAS data from British-ancestry individuals, limiting our ability to make conclusions about 
the shared genetic architectures among other racial/ethnic groups. Given that COVID-19 disease severity has 
been associated with racial/ethnic background, as well as socioeconomic status and somatic well-being, it is 
imperative that efforts be made to enrich future genetic epidemiology studies for participants of non-European 
descent to expand generalizability of results. Interpretation of our results is also limited by the strong correla-
tion between many of the traits studied with BMI and smoking behaviors. Although we made efforts to limit 
the impact of BMI and smoking-associated genetic variation by excluding known loci from LDSR analysis, such 
sensitivity analyses cannot account for polygenic contributions not yet having reached genome-wide statistical 
significance in prior research.

To estimate cross-trait genetic correlation, we restricted the range of UKBB traits with an arbitrary thresh-
old of  h2 ≥ 1% to improve reliability. For instance, there were additional subtypes of diabetes derived from 
the various medical records in UKBB and their estimates of SNP-heritability showed  h2

Type 1 Diabetes = 0.3% and 
 h2

Type 2 Diabetes = 0.4%. Therefore, we did not include results from them. The type of diabetes reported in Table 1, 
described as “Diabetes diagnosed by doctor” (UKBB Field Identifier:2443), is not specified for the type of dia-
betes, but given the age of participants and the general prevalence of T2D versus T1D, the association between 
diabetes and COVID-19 severity is ostensibly driven by the shared genetic architecture between COVID-19 
severity and the genetic architecture of T2D. Furthermore, LDSR analysis relies on the common genetic variants 
with MAF > 1% and therefore it can fail to capture the SNP-heritability on the observed scale due to underlying 
low-frequency or rare  variants4. If a polygenic trait in UKBB shows a significant genetic correlation with COVID-
19 severity, this does not imply a causal association. Both the tested trait and COVID-19 severity risk may be 
jointly influenced by an unmodeled trait that is independently associated with  each19. Although our study relies 
on associations with common genetic variants (generally, MAF > 1%), the inclusion of additional rare genetic 
variants might be valuable as it could increase the overall trait heritability being modeled. Inferences from LDSR 
rely on normality assumptions that may be violated when rare variants are studied, and we therefore restricted 
analysis to more common variants. Additionally, LDSR does not explicitly model confounding effects which 
can arise when studying multiple correlated traits. Therefore, the method identifies novel associations that can 
be further studied using Mendelian Randomization or direct analyses of the nominated trait phenotypes for 
further confirmation of causal relationships. LDSR is a useful approach for identifying potential novel associa-
tions that will warrant further epidemiological analysis to tease apart causal associations from associations that 
are influenced by confounding.

Our findings support previously identified risk factors for severe COVID-19 illness, including elevated BMI, 
diabetes, and numerous pulmonary conditions (e.g., COPD, reduced FEV, shortness of breath during mild activ-
ity). We also observe protective associations between the genetic underpinnings of COVID-19 severity and that 
of non-smoking, serum albumin, apolipoprotein A, HDL cholesterol level, and several nutrients. Further studies 
using Mendelian randomization approaches may help to dissect causal associations between COVID-19 disease 
severity and these traits, potentially nominating targets for therapeutic intervention.

Data availability
The datasets supporting the conclusions of this article are publicly available in the COVID-19 HGI website for 
COVID-19 severity GWAS summary statistics [https:// www. covid 19hg. org/ resul ts/ r5/] and Neale’s lab repository 
for UK Biobank GWAS summary statistics [https:// github. com/ Neale lab/ UK_ Bioba nk_ GWAS], and therefore 
no approvals were required.
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