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Online learning for orientation 
estimation during translation 
in an insect ring attractor network
Brian S. Robinson1,7*, Raphael Norman‑Tenazas1,7, Martha Cervantes1, Danilo Symonette1, 
Erik C. Johnson1, Justin Joyce1, Patricia K. Rivlin2, Grace M. Hwang1,3, Kechen Zhang3,4,5 & 
William Gray‑Roncal1,6

Insect neural systems are a promising source of inspiration for new navigation algorithms, especially 
on low size, weight, and power platforms. There have been unprecedented recent neuroscience 
breakthroughs with Drosophila in behavioral and neural imaging experiments as well as the mapping 
of detailed connectivity of neural structures. General mechanisms for learning orientation in the 
central complex (CX) of Drosophila have been investigated previously; however, it is unclear how these 
underlying mechanisms extend to cases where there is translation through an environment (beyond 
only rotation), which is critical for navigation in robotic systems. Here, we develop a CX neural 
connectivity‑constrained model that performs sensor fusion, as well as unsupervised learning of visual 
features for path integration; we demonstrate the viability of this circuit for use in robotic systems 
in simulated and physical environments. Furthermore, we propose a theoretical understanding of 
how distributed online unsupervised network weight modification can be leveraged for learning in a 
trajectory through an environment by minimizing orientation estimation error. Overall, our results 
may enable a new class of CX‑derived low power robotic navigation algorithms and lead to testable 
predictions to inform future neuroscience experiments.

A fundamental problem facing both autonomous robots and biological organisms is the task of navigating com-
plex and time-varying environments. In the robotics field, this is a long- standing problem that has inspired dec-
ades of research into increasingly powerful  approaches1. Critical components of navigation approaches include 
state estimation of the robot using sensor data and sensor fusion, including classic approaches such as Kalman 
filtering, along with its nonlinear  extensions2,3, as well as loop closure, where storage of processed sensory data 
is used to recognize the return to specific locations in an  environment4,5.

Real time state estimation for compact platforms, such as small drones, remains dominated by visual odom-
etry due to the power and footprint requirements for more computationally intense  algorithms6. Many visual 
odometry approaches for state estimation  exist7, including high performing Visual-Inertial Odometry (VIO) 
systems for state estimation on rapidly moving  platforms6. In general, these approaches require simplifying 
linearization  assumptions8, which can be addressed with more computationally intensive approaches such as 
particle  filtering9. Nonlinear approaches which adapt to changes in the environment remain an ongoing research 
challenge. Additionally, visual odometry approaches do not perform loop closure and are prone to error accu-
mulation when used in isolation. In particular, observed visual features that have been previously encountered 
are not used to update pose estimation.

Algorithms for visual approaches to Simultaneous Localization and Mapping (SLAM), which perform loop 
closure, are extensively used on higher power  platforms10–13. Real time, efficient implementation of visual SLAM 
systems on embedded mobile platforms remains a major engineering  challenge14,15, often requiring custom 
hardware designs for bundle adjustment and loop  closure16. There are also emerging visual navigation and 
visual SLAM approaches based on deep learning, including self-supervised  approaches17. This has resulted in 
powerful approaches for monocular visual  odometry18, and also novel strategies such as vector navigation on 
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representations with grid-cell like  responses19 and predictive navigation in complex  environments20. Promising 
approaches in deep learning for unsupervised training of visual odometry approaches include the intermediate 
calculation of depth from images, which can be refined in tandem with pose estimation by offline network opti-
mization on a collected  dataset21. In general, however, training of the neural networks utilized in visual navigation 
are not performed during robotic system deployment due to computational requirements for training and the 
number of required training samples.

Neuromorphic processing is a promising path forward for embedded neural network navigation approaches 
considering the ability to process data from low-latency event-driven sensors, perform on-chip training, and 
execute power-efficient computation. Event-driven cameras and processing have been shown to produce low-
latency, high-performance VIO systems for  quadcopters22. The development of general purpose neuromor-
phic hardware, such as the  spinnaker23, IBM’s TrueNorth  chip24, and the Intel  Loihi25 enable the decoupling of 
neuromorphic algorithm design from custom hardware implementation. The Loihi is particularly well-suited 
for robotics applications, as it allows on-chip learning and has demonstrated efficiency in the classification of 
dynamic data in applications such as keyword  spotting26 and olfactory  signals27. Given the emergence of plat-
forms, such as Loihi, with well-documented power efficiency and where networks can be deployed with flexible 
online learning rules, a challenge for neuromorphic robotic approaches is the identification and development 
of underlying algorithms. Navigation strategies utilizing event-driven data and neuromorphic processing are 
particularly compelling for their potential to provide low-latency, adaptive navigation solutions with efficient 
implementations which motivates further algorithm development.

Biological systems are a natural source of inspiration for navigation algorithm development for neuromor-
phic processing, considering their navigation capabilities and low power utilization. Mammalian systems are 
among the most studied in neuroscience in relation to navigation with research breakthroughs over the past 
decades identifying several specialized cell types including head direction  cells28, grid  cells29, and place  cells30. 
There have been several approaches utilizing these representations and additional specialized mammalian cell 
 types31,32 to propose algorithms for neuromorphic robotic  navigation33–38. While mammals have been implicated 
in map-based navigation  strategies39, in insects, with drastically reduced nervous system sizes, place-cell like 
representations have not been identified and it is unknown if similar underlying cognitive map-like representa-
tions are  calculated40.

Head-direction cells are found across different mammalian  species31 as well as non-mammalian species such 
as the fly, Drosophila melanogaster41. The head-direction cells are conceptually the simplest among the spatial 
neurons because the internal representation is only one-dimensional with ring topology. Currently the leading 
theoretical models for the head-direction cells are ring attractor  networks42–44. Although many models have been 
 proposed45–48, they all share the same basic principle of using a stable equilibrium state of a ring network, which 
we call an activity bump, to represent the current internal sense of direction. The input from angular velocity of 
head movement serves to drive the activity bump around the ring of cells, and the input from sensed landmarks 
serves to anchor the peak position of the bump to the learned position. Although the mammalian head-direction 
systems have been intensely studied in the ensuing decades since their initial discovery, connections from the 
visual or vestibular systems to the conceptual ring topology have to go through multiple bilateral  structures49,50; 
consequently the detailed circuit diagram (i.e., connectome) has never been established. Thus, these theorized 
networks require a large set of design decisions often with minimal constraints from experimental observa-
tions or known anatomical connectivity. In particular, existing robotic studies inspired by the mammalian head 
direction systems all require solutions for head direction error accumulation with angular velocity integration 
without connectivity constraints at an observed cell-type  level35,51–56. One series of approaches to prevent error 
accumulation is to reset estimates at a signal derived from a particular  orientation52, reset at regular time inter-
vals from another reliable heading direction  measurement36, or to utilize a set of visual input features active at 
particular discrete  orientations57. In the absence of such well-defined external orientation cues, other approaches 
implemented for robotic systems include utilizing learning between higher-level map-like representations at 
mammalian-inspired place cells to learn the correspondence between sensory input and a heading  direction38. 
Additionally, the parallax of close landmarks, which have sensed visual features that vary with position (as 
opposed to landmarks at an infinite distance on the horizon), has been less well studied in mammalian head 
direction computational  models58 and represents a necessary challenge in creating an orientation estimation 
system in cluttered environments during translation.

Compared to mammalian systems, insect systems are a compelling source for navigation algorithm devel-
opment because of their low size, weight and power (SWaP), the relative compactness of the networks, and an 
enhanced mechanistic understanding, where the detailed connectivity patterns are known. Recent experimental 
breakthroughs in Drosophila have identified a candidate set of “compass” neurons involved in a ring attractor 
network for representing heading direction in a neural region called the central complex (CX). Elucidating the 
structure and function of Drosophila is an active area of study and large-scale wiring diagrams are being recon-
structed, providing a rich substrate for analysis, model refinement and  validation59–61. Compared to the theo-
retical plausibility of a ring attractor for heading direction in mammalian systems, experiments have observed 
and quantified an activity bump corresponding to the insect’s heading  direction41,62. Furthermore, neurons 
responsible for providing input into the ring attractor for angular  velocity63,64 and visual  features65,66 have been 
characterized experimentally. Correspondingly, the detailed anatomical connectivity patterns between neurons 
involved in the network have been  observed67 and investigated for their computational  role68–70 at the level of 
individual neuron type to support ring attractor dynamics. A unique opportunity exists, therefore, to derive 
mechanistic inspiration for a navigation system utilizing detailed connectivity patterns observed in Drosophila 
for representing heading direction in a ring attractor network.

In order to utilize visual landmark cues from an environment for orientation estimation, a mapping must 
be learned between the location of visual features on a sensor to an orientation referenced to a world frame 
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coordinate system. Theoretical models have been proposed for how Hebbian unsupervised learning can lead 
to the strengthening of connections between neurons receptive to visual features and heading direction ring 
attractor neurons that are co-active in order to learn the mapping between landmark cues and an orientation 
 estimate42,71 . Hebbian learning is a general type of synaptic mechanism for associative learning well studied in 
neuroscience and recent experimental evidence in Drosophila support a role for Hebbian learning for the map-
ping between neurons representing visual features and the compass  neurons66,72, however the performance of 
such Hebbian learning is unknown with changes of position, where the relative landmark angles change over 
time.

While there has been compelling insight into the Drosophila heading direction system at a cell-type level, an 
outstanding question is how amenable this approach may be for robotic applications that include a trajectory 
through an environment. In particular, the performance of the heading direction system has not been quantified 
when using cell-type specific connectivity patterns. Additionally, due to constraints of experimental approaches, 
both empirical observations and existing computational models have been limited to single location trajectories 
where there is rotation without translation. In particular, the coordinated learning of a visual feature mapping 
while traversing a trajectory through an environment is a necessary and challenging function for such a network 
that is not currently understood.

The key contributions of this work are to develop and evaluate a model for how a Drosophila connectivity-
constrained network can perform both sensor fusion and online learning for estimating orientation in a trajectory 
through an environment to better understand the mechanisms employed in biology and to enable neuromorphic 
visually guided robotic navigation. We evaluate the model through trajectories with noisy inputs in a simulated 
environment, investigate performance with measurements from a robotic platform, and quantify the potential 
power efficiency gains of neuromorphic implementation with such a compact network model. Furthermore, we 
propose a theoretical understanding of how distributed online unsupervised learning can be leveraged for learn-
ing in a trajectory through an environment in coordination with a ring attractor network that addresses current 
challenges in deployment time training of neural networks as part of a navigation algorithm.

Results
A connectivity-constrained network model with online learning is developed and evaluated with a series of 
targeted experiments to investigate (1) the coordination of insect cell-type connectivity with online learning, 
(2) the learning challenge where the relative orientation of visual cues changes over time with changing posi-
tion throughout an environment, and (3) network performance when utilized on a robotic platform. Finally, 
we analyze the network’s online learning from the perspective of objective function minimization and propose 
an updated online rule to enhance heading direction estimation accuracy which can be investigated further in 
behavioral experiments.

Connectivity‑constrained network for sensor fusion and online learning. Our model transforms 
angular velocity and visual features into a fused representation of orientation utilizing a total of 141 neurons 
distributed across five populations of neurons as specified in Fig. 1A, which are constrained by connectivity 
patterns of neuron types observed in Drosophila across glomeruli, and with plastic synaptic connections that 
enable the learning of visual landmarks. The five types of modeled neurons all synapse in either the protocer-
ebral bridge (PB) or ellipsoid body (EB) regions of the CX and include: (1) Ring neurons which are receptive to 
visual inputs, (2) PB-EB-Noduli (P-EN) neurons which receive angular velocity inputs, (3) EB-PB-Gall neurons 
(E-PG) neurons, (4) PB-EB-Gall (P-EG) neurons, and (5) intrinsic neurons of the PB (PIntr), also referred to as 
Δ7 neurons. Orientation is encoded in a population of E-PG neurons or “compass” neurons, which have been 
observed in experimental studies to have maximal activation in a position along the anatomical circumference 
of the ellipsoid body which rotates corresponding to the orientation of the fly. The modeled population of 18 
E-PG neurons is divided into left and right hemispheric groupings depending on whether the neuron projects to 
the left or right hemisphere of the PB. We utilize an orientation representation scheme where each of the 9 E-PG 
neurons per hemisphere is maximally active at a distributed preferred angle as demonstrated in Fig. 1C. The 
architecture of our model is constrained by the nine anatomically observed glomeruli observed per hemisphere 
in the PB representing a discretization in the heading direction system uniquely observed in insect  systems63.

A stable bump of activity in E-PG neurons can persist given the recurrent excitation to keep the bump active 
along with inhibition provided by PIntr neurons to prevent runaway excitation. Local recurrent excitation for 
maintaining bump activation in E-PG neurons is mediated by both P-EN and P-EG neurons. Notably, the PIntr 
neurons do not directly inhibit E-PG neurons, but rather inhibit the P-EN and P-EG as well as themselves in a 
more complex pattern of inhibition than would be strictly necessary to prevent runaway excitation among the 
E-PG neuron population. Positive angular velocity is encoded in the P-EN neurons in the right hemisphere, 
which when active, shifts the activity bump in the counter-clockwise direction. Conversely, negative angular 
velocity is encoded by P-EN neurons in the left hemisphere which shifts the activity bump in the clockwise 
direction (Fig. 1B).

Sensed visual features represented in ring neuron activation patterns can update the activity bump in E-PG 
neurons according to their connectivity weights (Fig. 1D). The intuition behind the online learning of visual 
features is that the activity bump is initially driven by angular velocity signals which serves as a noisy teaching 
signal to update a matrix of weights, Wr→c , between ring neurons and “compass” E-PG neurons. Each individual 
element, wnm , is the weight between the mth ring neuron and the nth E-PG neuron. The mechanism utilized 
for learning is a Hebbian learning rule, where the co-activation of neurons increases the effective connection 
weights between ring and E-PG neurons. In particular, a presynaptically-gated Hebbian learning rule is used 
to modify  weights72,
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where rm is the activation of the mth ring neuron, and cn is the activation trace of the  nth E-PG neuron. The rule is 
parameterized with a learning rate, η , as well as additional constants a and b . All utilized wnm weights are assumed 
to be negative, as in previous computational  studies68 given the inhibitory characteristics of ring  neurons66,73, so 
the maximum effective weight is zero, which can activate E-PG neurons through disinhibition. When the net-
work model is deployed for a simulated or physical environment, all other weights besides Wr→c are held fixed. 
The model’s orientation estimate is calculated as the center of the activity bump utilizing the preferred direction 
of each E-PG neuron to create a linear decoder applied to filtered spiking events. Additional details for model 
implementation can be found in the methods section.

Model performance with rotation. An initial evaluation of the network is performed in the case of a 
simple rotation in an environment without translation (Fig. 2). Ring neurons encode visual input, with a sepa-
rate set of ring neurons responsive to each landmark and each individual ring neuron with a receptive field tiled 
across a 270° field of view. As the simulated agent and field of view rotates, the index of the most active ring 
neuron in each sub-population shifts (Fig. 2B). A corresponding shift in a bump of activity is observed in E-PG, 
P-EN, and P-EG neurons (Fig. 2C–E), which appears as two bumps given the separate indexing of left and right 
hemisphere neurons. Angular velocity input is provided to the model by injecting current in the P-EN neurons, 
where a counter-clockwise rotation in the simulation corresponds to an observed increase in activation of right 
P-EN neurons (Fig. 2E). Throughout the trial, there is consistent activation of Pintr neurons (Fig. 2F), which 
provide inhibition to the network and prevents the model from going into a state of runaway excitation.

Three model configurations are compared in order to evaluate sensor fusion and online learning (1) initiali-
zation of Wr→c weights to an optimal set of offline calculated weights, (2) online learning of modeled weights 
according to Eq. (1) after random initialization, and (3) setting all Wr→c weights to zero such that angular veloc-
ity is the only input into the model. Due to the stochasticity of the neuron model, a total of 50 simulation seeds 

(1)�wnm = ηrm(acn + b− wnm)
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Figure 1.  Drosophila CX ring attractor model for sensor fusion and environmental learning. (A) Five neuron 
types found in the Drosophila central complex (CX) included in the ring attractor model. Input is provided 
to the model as visual features to the ring neurons and angular velocity to the P-EN neurons. P-EN neurons 
are preferentially activated by positive and negative angular velocities according to if they are located in the 
left or right hemisphere of the PB. Orientation is encoded in E-PG compass neurons. All neuron types are 
excitatory except for Pintr and ring neurons which provide inhibition. (B) The primary repeated pattern in the 
connectivity constrained ring attractor network organized by E-PG neuron projecting to glomeruli in the left 
and right hemisphere of the PB. Local recurrent excitation enables the sustained activation of an activity bump, 
with positive or negative angular velocities shifting the center of the activity bump across the ring attractor 
network. (C) The connectivity pattern utilized for all excitatory modeled neurons separated by PB hemisphere. 
Note that there is one additional modeled E-PG neuron per hemisphere than other neuron types. (D) A weight 
matrix, Wr→c , is learned, which specifies the strength of connections between ring neurons and compass 
neurons.
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are used to evaluate performance. An example of the decoded orientation from all three model configurations 
is shown in Fig. 2G, where all of the model configurations are able to track the orientation over time (with the 
optimal offline weights calculated weights having the best performance). The optimized weights (Fig. 2H) are 
calculated with regularization, which effectively select a subset of model ring neurons to utilize for angle esti-
mation. The weights that are learned over the course of the trial (Fig. 2I), have a similar banded structure to the 
optimized weights and increase in correlation over the course of the trial to an average value of 0.36 (Fig. 2J). 
Factors limiting higher correlation include (1) the effective “teaching” signal in the online training is from 
integrating angular velocity cues which are inherently noisy as well as (2) the inherent differences between the 
training approaches. Estimated orientation error accumulates over the course of the trial in the angular velocity 
only case (Fig. 2L), which is reduced when there is online learning. Overall, the average orientation root mean 
squared error (RMSE) is significantly reduced by 28% (1.03 to 0.74 radians, P = 0.0023, Mann–Whitney U-test) 
with the online learning verses angular velocity alone, compared to an 89% reduction with the set of optimized 
weights. Sources of error in the weight optimization process include: (1) Wr→c is optimized with regards to the 
feedforward visual input alone and target E-PG activity which does not explicitly compensate for the recurrent 

Figure 2.  Sensor fusion and online learning with rotation in simulation. (A) Visual and angular velocity inputs 
to network correspond to a rotation in a simulated environment with landmarks and a 270° field of view. (B–F) 
Neuron activation over time in each population supports sensor fusion of inputs into an activity bump that 
shifts in the E-PG neuron population during rotation. (G) Orientation estimation decoded from E-PG neuron 
activity (best seed example) with evaluated model configurations tracks the ground truth orientation. (H) 
Offline optimized Wr→c specifies an optimal mapping from visual landmarks encoded in ring neurons to E-PG 
“compass” neuron activation. Ring neuron indices are arranged sequentially according to receptive field center 
for each colored landmark. (I) In the model configuration with online plasticity, weights evolve over time to a 
similar structure as offline optimized weights. (J–K) Correlation between online learned weights and the offline 
optimized solution increases over time. (L) Estimated orientation over time drifts less with online plasticity then 
with angular velocity alone. (M) Average orientation RMSE. All group level analyses in (J–M) are performed for 
50 simulated seeds. (J, K, M) have 95% bootstrapped confidence bounds, (L) has standard deviation confidence 
bounds.
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activation from P-EG and P-EN neurons, (2) there is an inherent time lag in spiking neuron activation given 
the 20 ms modeled time constant with the leaky integrate and fire neurons, (3) the orientation is decoded from 
an estimate of the center of the bump from spiking activity of 18 neurons. Nevertheless, a RMSE of 0.11 radians 
(6.3°) in the optimized weights demonstrates that this network with a limited number of spiking neurons and 
recurrent excitation can effectively perform sensor fusion for accurate orientation estimation.

Model performance with translation. The network is next evaluated in a more challenging trajectory 
that involves translation through the simulated environment, where there is no longer an invariant transforma-
tion between egocentric visual landmark features referenced to a sensor frame and an orientation referenced to 
an allocentric world frame coordinate system (Fig. 3). The bump of E-PG activation follows the time-varying 

Figure 3.  Sensor fusion and online learning with translation in simulation. (A) Shifting of the activity bump in 
E-PG neurons in the online learning model corresponds to changes in orientation. (B) The decoded orientation 
estimation (best seed) with model configurations tracks the ground truth trajectory. (C) Two distant landmarks 
and one close landmark provide visual inputs to the network. Position estimates with path integration 
approximate ground truth (final positions denoted with a circle). (D) Offline optimized Wr→c has features 
preferentially tuned to distant landmarks. (E) Evolution of weights during online plasticity share structure with 
offline optimized weights. (F–G) Correlation between online learned weights and the offline optimized solution 
increases over time. (H) Average orientation RMSE with online plasticity is less than angular velocity alone 
model configuration. (I) Improvement in position error (average position error as a percentage of path length) 
additionally observed with online plasticity versus angular velocity alone. In orientation estimates (J) and 
position error as a fraction of path length (K), error accumulates less with online plasticity than angular velocity 
alone. Group level analyses in (F–K) are performed for 50 simulated seeds. (F–I) have 95% bootstrapped 
confidence intervals, (J–K) have standard deviation confidence intervals.
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orientation in the trajectory and is able to be decoded into an accurate orientation estimation over time (Fig. 3A–
B). In the trajectory through the environment, there are two distant landmarks, which individually have a rela-
tively invariant transformation between egocentric and allocentric representations, along with a proximal land-
mark which has a time-varying transformation between egocentric and allocentric representations (Fig. 3C).

The set of offline optimized weights for the network (Fig. 3D) preferentially selects visual features corre-
sponding to the distant landmarks. The evaluated network configuration with online plasticity learns weights 
with increasing correlation over time to the optimal weights (Fig. 3E–G). Similar general trends for orientation 
estimation accuracy are observed between network configurations as to the rotation only trajectories (Fig. 3H, 
J), where the orientation RMSE for online learning is between the angular velocity only case and the optimal 
set of weights. The RMSE of the angular velocity only network configuration in this trajectory with translation 
is similar to the simple rotation case (1.00 vs. 1.03 radians), but is compensated further by online learning (38% 
vs. 28% reduction in error).

Position estimation with path integration is more challenging than orientation estimation because of the 
accumulation of error driven by orientation estimation error. Similar trends are observed with average position 
estimation error (as a percentage of path length), where online learning has a position estimation error between 
the angular velocity alone and the optimized weights network configuration (6.7% vs. 8.6% and 4.8%, Fig. 3I). 
The decrease in average position error with online learning vs. angular velocity alone is 22% (P = 0.0021, Mann 
Whitney U-test). Sources of error for position estimation for path integration include the aforementioned error 
accumulation from orientation estimation that could be further reduced with neuro-inspired74 or traditional 
 approaches75.

Overall, network simulation results with translation demonstrate that an accurate allocentric estimation of 
orientation referenced to a world frame can be estimated with egocentric visual features despite the challenges 
of transforming information over time from proximal landmarks. The model configuration with online learning 
is correlated with the optimized set of weights and improves orientation and position estimation by an average 
of 38% and 22% respectively versus a configuration with angular integration alone. Simulation results suggest 
that improvements to the online learning rule (Eq. 1) may be beneficial to effectively select visual features from 
distal landmarks to further increase accuracy.

Model performance on a robotic platform. The model for orientation estimation and position estima-
tion is extended from simulated environments to measurements from a wheeled robotic platform (Fig. 4) in an 
arena with colored landmarks (Fig. 4B). Visual inputs are measured from a camera with two separated sensors 

Figure 4.  Model utilized with a robotic platform. (A) Modified Robotis Turtlebot3 “Burger,” equipped with 
a Nvidia Jetson TX2, and a Ricoh Theta S 360° camera. (B) Physical arena with colored landmark cues. (C) 
Example camera measurements with blob detection utilized to drive activation of visual neurons. (D–H) 
Neuron activation over time in each population driven by processed sensory data from the robotic platform, 
where visual landmark features encoded in ring neurons (D) drive shift in activity bump in E-PG neurons (G) 
in model configuration with online plasticity. (I) The estimated orientation from each model configuration (best 
seed) tracks the ground truth orientation with errors in the offline optimized weights at periods of prolonged 
visual dropout.
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offset at 180°, where the relative angle offset of landmarks is calculated from blob detection on color-masked 
images (Fig. 4C). The relative angle offset detected for the center of each of the green, yellow, and red colored 
landmarks are used to drive the activation of ring neurons (Fig. 4D) according to their receptive fields, which are 
mapped equivalently to the three populations of ring neurons mapped to simulated landmarks across a 270° field 
of view. Given the less than 360° field of view on the camera sensors, there are ring neurons selective to outside 
the camera’s field of view which will never activate. While several different neural visual encoding schemes are 
possible which would likely improve performance, mirroring the simplified visual encoding from simulations 
enables straightforward comparison between simulated and physically measured model performance. An added 
source of noise in the visual feature measurements is the intermittent dropping of recorded image frames due 
to maximum disk-writing speeds, which is apparent in the lack of ring neuron activity at intermittent periods, 
which further tests the network’s performance in relation to sensor fusion. The angular velocity measurements 
to drive the activation of P-EN neurons (Fig. 4E) are derived from an on-board IMU sensor.

The center of the bump of activity in the P-EG and E-PG neurons shifts over time (Fig. 4F–G), which leads 
to a decoded orientation that follows the ground truth orientation (Fig. 4I) and a position estimate utilizing 
ground truth linear velocity for path integration (Fig. 5). A comparison of the model performance is performed 
with the plasticity model, the angular velocity only model, and the optimized weights (Fig. 6). An example of 
the comparison between the optimized weights and the online learning of weights is shown in Fig. 6A–B, which 
again share a banded structure. The correlation of the optimized and online learned weights monotonically 
increases over time to a maximum average value of 0.29 (Fig. 6C–D). The orientation error accumulates over 
time fastest in the angular velocity only case with a slight decrease in error accumulation with online learning 
(Fig. 6G). Overall, the orientation RMSE is 14% less with online learning vs. angular velocity alone (average 0.80 
vs. 0.93 radians, P = 0.014, Mann–Whitney U-test), however the optimized weights have the lowest error. The 
position estimate similarly accumulates over time in all comparisons, with a notable increase in position error 
at 1.5 s in the weight optimized case due to a prolonged period of dropout of visual features (Fig. 6H). A minor 
decrease in the average position error with the online learning versus the angular velocity case alone is observed.

To analyze the potential power efficiency impact for neuromorphic implementation, we can estimate the 
amount of power required for the algorithmic computation of our model based on reported estimates from 
SPICE simulations of Intel’s Loihi neuromorphic  chip25. Utilizing figures for energy per synaptic spike operation, 
synaptic update, neuron update, and within-tile spike energy, we can approximate the power utilization necessary 
for the algorithmic computation of our model on neuromorphic hardware as 18.58 μW (11.42 μW for neuron 
update, 4.38 μW communication, and 2.77 μW for plasticity).

Online learning analysis. In all experiments, weights derived from online learning are correlated with an 
optimal solution and improve orientation accuracy after a single trajectory. A challenge for robotic translation is 
how to enhance estimation accuracy to further minimize error accumulation.

One approach is to identify the objective function that the utilized learning rule is minimizing. Upon further 
inspection (see “Methods” Eqs. 5–6), it follows that Eq. 1 is minimizing the overall objective function,

−1 0 1 2
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Angular Velocity Only
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Figure 5.  Trajectory estimation. In the arena, position estimates from each model configuration share features 
of the overall trajectory (best seed) with the ground truth trajectory. Landmark positions are denoted with 
colored circles. Final positions in the trajectory estimates are denoted with a small circle.
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where Ir→n =
∑

m
rmwn,m . The first term, −a

∑

n
cnIr→n , minimizes the objective function when the E-PG neuron 

activity and the total input current from all of the ring neurons are aligned. The second term, 
1
2

∑

n

∑

m
rm(b− wnm)

2 , effectively acts as a regularization term on the weight values, which is minimized the 
closer each weight value is to b . While the learning rule (Eq. 1) effectively maximizes the overlap from the input 
current from ring neurons and the E-PG neuron activation, it is not directly optimizing an objective function 
to minimize the squared error of the orientation estimate. An example of this is how the online learning model 
(Eq. 1) did not preferentially select distal over proximal landmark features. The success of utilizing a scaled ver-
sion of the offline optimized weights solution in preferentially selecting distal landmark visual features in simula-
tion (and increasing accuracy overall in simulations and on the robotic platform), lends support to using a set 
of directly optimized weights that minimize squared orientation error in future approaches. In order to directly 
minimize the objective function of the scaled squared orientation estimation difference, we can define the objec-
tive function for each E-PG neuron,

with a scaling factor, β . Upon further inspection, it follows that in order to minimize the objective function,ϕ , 
(see “Methods” Eqs. 7–8), a weight update rule is

This rule has a commonality to the previously utilized rule (Eq. 1), where weight modifications are presyn-
aptically gated; however, there is an additional term, Ir→n , that is utilized. We propose the learning rule above 

(2)φ = −a
∑

n

cnIr→n +
1

2

∑

n

∑

m

rm(b− wnm)
2

(3)ϕ =
∑

n

(cn − βIr→n)
2
=

∑

n

c2n − 2cnβIr→n + (βIr→n)
2

(4)�wnm = ηrm(cn − βIr→n)

Figure 6.  Model evaluation on a robotic platform. (A) Offline optimized Wr→c has a banded structure which 
represents an optimal set of weight to map visual features in ring neurons to orientation representation in E-PG 
neurons. (B) Evolution of weights during online plasticity increases in similarity to offline optimized weights 
over time. (C–D) The correlation between online learned weights and the offline optimized solution increases 
over time. (E) The average orientation RMSE (in radians) is less with online plasticity than angular velocity 
alone. (F) Average position error as a percentage of path length has similar trends as orientation estimation with 
less differentiation between online learning and angular velocity alone. (G) In estimated orientation RMSE over 
time, error increases in periods with visual feature dropout with offline optimized weights. (H) Position error as 
a percentage of path length over time. All group level analyses in (C–H) are performed for 50 simulated seeds. 
(C–F) have 95% bootstrapped confidence intervals, (G–H) have standard deviation confidence intervals.
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(Eq. 4) for utilization in future online robotic applications to enable an improvement in accuracy in learning 
an environmental mapping. Each of the terms utilized in Eq. (4) is biologically plausible, which could motivate 
future experimental evaluation. Furthermore, each term is a local variable specific to pairs of synaptically coupled 
neurons, which would be amenable for implementation in distributed learning on neuromorphic hardware.

Discussion
Our motivation is to investigate the potential to leverage details from Drosophila neurobiology and neuroanatomy 
for sensor fusion and online learning for orientation estimation as a basis for future low SWaP neuromorphic 
robotic navigation approaches. Central to our analysis is understanding how online learning in the underly-
ing insect neural circuit can incorporate visual features during changing positions in complex environments, 
a necessary functionality for both robotic and biological systems. We develop a compact model for Drosophila 
sensor fusion and online learning in a cell-type connectivity-constrained model for orientation estimation and 
environmental learning that integrates angular velocity measurements and visual features. Through a series of 
experiments in simulated environments, we demonstrate that improvement in orientation and position accuracy 
estimation is possible with online learning of visual features (versus angular velocity alone) over a single trajec-
tory and that online learned weights are correlated with a set of offline calculated optimal weights. The network 
model is adapted for use with sensors from a robotic platform and is demonstrated to have increased accuracy 
with online learning over a single trajectory. Finally, a theoretical understanding and weight update rule for 
distributed online learning with local variables is proposed that can be utilized to minimize estimation error.

There are many neuroscience-inspired robotic approaches for navigation that are largely inspired by the 
cell types observed in mammalian systems, e.g.33, with a subset of these utilizing a ring attractor to represent 
heading direction, e.g.53. In comparison to robotic approaches that utilize well-defined external  cues36,52,57, or 
projections to mammalian-inspired place  cells38 to reduce accumulation of error with angular velocity integra-
tion in a heading direction network, we demonstrate learning a mapping between neurons encoding visual 
features over receptive fields to neurons encoding heading direction which has been experimentally observed. 
We demonstrate that online learning can decrease heading direction estimation error by 14–38% in a single 
trajectory through the environment by emulating learning that has been observed in Drosophila at ring neuron 
to E-PG neuron  synapses66,72. A salient difference between insect and mammalian heading direction systems is 
the far fewer number of neurons that insects have in their heading direction system. Additionally, insect models 
benefit from the greater level of cell-type connectivity information available, as compared to mammalian systems. 
Models of ring attractor networks developed for mammalian heading direction estimation typically employ (1) a 
mechanism for self-sustained activation, (2) direct, non-recurrent inhibition, and (3) representations of heading 
direction based on large numbers of neurons that approach continuous  approximations42–48. In insect systems, 
however, network architectures identified in the heading direction system are more compact but more complex 
in network details, which include (1) additional paths of recurrent excitation facilitated by an additional class of 
neurons (P-EG), (2) a distributed population of inhibitory neurons, which do not directly inhibit the compass 
neurons, and (3) a discretization of the compass neurons into nine glomeruli per  hemisphere40. Computational 
studies have been performed outlining how this compact set of Drosophila cell types can have properties as a 
ring  attractor68,70, but we demonstrate here how the network can be operationalized for sensor fusion and ori-
entation estimation for robotic navigation. Considering that features of this Drosophila network are preserved 
across  insects70,76, which systemically differ from conventional rodent-based ring attractor networks, the naviga-
tion implementation proof of principle established here can inform future studies into enhanced mechanistic 
understanding and performance of this system.

We investigate how a heading direction system can learn sensory cues to maintain accuracy with a changing 
position across an environment from the perspective of objective function minimization. Previous computational 
modeling, focused on a fixed  location42,71,72, investigated Hebbian plasticity rule formulations which will lead to 
increasing the effective connectivity weights between co-active visual input feature neurons and compass neurons, 
but without minimizing an objective function for orientation estimation error. At a single location, our results 
show that a Hebbian rule is sufficient to learn mappings between landmark features, however when the spatial 
location is allowed to vary, a Hebbian rule formulation struggles to ignore uninformative landmark features. 
Indeed, at multiple spatial locations or when there are uninformative landmark features, estimating heading 
direction from a set of visual features can be  challenging58, without a set of network weights that can perfectly 
perform this mapping. Nevertheless, a set of network weights can be identified which minimize an objective 
function for heading direction estimation from visual features. We find that landmarks at a distance help anchor 
the heading system better than nearby landmarks through analysis of optimized visual feature weights, which is 
intuitive because a distant landmark provides a more consistent signal at different positions in an environment. 
A learning rule (Eq. 4) is proposed to directly minimize orientation estimation error in the network, which 
implicitly ignores visual features corresponding to less informative or less reliable landmark features, such as 
non-unique features or features corresponding to local clutter and can form the basis for performant distributed 
online learning in future robotic investigations.

One of the motivating factors for neural-inspired algorithm development for robotic applications is the 
potential for power savings and resource efficiency for neuromorphic implementations. Given recent innovations 
in neuromorphic hardware development with Intel’s Loihi  platform25, which is able to implement networks with 
online learning with considerable efficiency, a central challenge in the development of low power neuromorphic 
robotic applications is to identify performant algorithms utilizing online learning with a compact neural circuit. 
Conventional algorithms which perform online learning and loop closure with SLAM are power-intense with 
special-purpose FPGA implementations still requiring approximately 2 or more  watts77,78. By contrast, conven-
tional approaches without online learning with loop closure, such as VIO, have reduced power consumptions of 
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as little as 2mW on special purpose hardware  accelerators79. Neuromorphic approaches for robotic navigation 
show potential for reduced power utilization, such as 9mW in dynamic power consumption demonstrated for a 
mammalian-inspired network to perform uni-dimensional SLAM with 15,162  compartments80. In contrast, our 
approach utilizes an insect connectivity constrained network with 141 compartments (0.1% of the maximum 
allowable units on a Loihi chip) and we estimate computation power utilization of 18.6 μW, roughly five orders 
of magnitude less power than SLAM implementations, and two orders of magnitude less than VIO implementa-
tions. While these power estimates are based on published measurements from Loihi SPICE simulations and do 
not consider system elements such as static power requirements, sensor communication, and low-level visual 
processing, they nevertheless demonstrate the potential for drastic power savings utilizing inspect-inspired 
neuromorphic approaches for navigation.

Our modeling results can inform future experiments to better understand the computational mechanisms 
of heading direction estimation and visually guided navigation in Drosophila and the CX more generally. While 
a hallmark of a typical mammalian head-direction cell is that the preferred direction of the cell is the same 
regardless of the animal’s location, it is unknown whether a location-invariant heading direction representation 
is computed in Drosophila. In order to perform path integration, a navigation strategy widely observed across 
insect  species81 and implicated for Drosophila82, a location-invariant representation of heading direction rela-
tive to a world frame is computationally more  robust81 . Our modeling results demonstrate that online learning 
can be used to improve heading direction estimation and path integration error estimates relative to a world 
frame with a local learning rule, even in the case of position changes through the environment where relative 
landmark angles change. While the CX-dependent ability to utilize visual features for 2D navigation in an arena 
whose relative orientations change during movement has been demonstrated experimentally in Drosophila83, 
the extent to which the conversion of those visual features to a location-invariant heading direction representa-
tion has yet to be tested experimentally. We hypothesize that a local learning which forms a location-invariant 
heading estimation from visual cues will be a function of input current from multiple neurons, and not only as 
function of pre- and post-synaptic activity. Additionally, assuming a plasticity rule that drives learning through 
orientation estimation error rather than co-occurrence of landmark features and heading direction, we predict 
that the addition of new landmarks after learning should be effectively ignored after an accurate mapping has 
been developed.

There are several assumptions and simplifications utilized in the presented results. One simplification is that 
path integration is performed with a known linear velocity. Insect-inspired approaches for path integration in 
the CX that operate downstream from orientation  estimation74 are not included in our model. Furthermore, 
recently released synapse-level neural connectivity  data59,61 is not incorporated into our model. Another sim-
plification utilized in the network model is the processing of visual features by ring neurons with landmark 
specific tuning curves. We expect our findings to generalize across more visual feature encoding schemes such 
as more detailed models of the insect optic lobes, deep networks, or incorporation of processed dynamic vision 
sensor data which could be investigated in future work. Such encoding schemes could capture visual features 
that match the expected statistics of landmarks across more realistic environments and provide a richer substrate 
for learning an orientation mapping.

We present a critical proof of principle for translation of insect-inspired approaches to robotics navigation to 
enable a future class of low SWaP algorithms to perform online learning and heading representation constrained 
in detail from biology. Given that all neurons are modeled as dynamic integrate-and-fire neurons, the model is 
amenable to incorporating event-driven low latency sensors such as dynamic vision sensors to enable updating 
estimates with visual features detected during high velocity movement. One of the key model features is the ability 
to utilize previously encountered visual features to update an estimate of orientation, loop closure for orientation 
estimation, which is not possible in low power navigation approaches utilizing VIO. While this is less than loop 
closure capabilities of a complete pose in full SLAM systems, it still is a promising functionality due to the ability 
for the model to be implemented as a parallelized distributed network on neuromorphic hardware. Additionally, 
compared to deep neural network approaches utilized in visual navigation where networks are trained offline 
due to computational resource and large data size requirements, the weights in the network model are learned 
online and are used over a single trajectory to increase estimation accuracy.

In conclusion, we present a critical proof-of-concept for a low SWaP robotics navigation algorithm utiliz-
ing orientation estimation in a ring attractor network constrained using circuit details from Drosophila with 
online distributed learning amenable for neuromorphic implementation. By focusing on the objective function 
minimization necessary for a robotics implementation with a changing position, we establish a formalism for 
common computational goals underlying both biological and artificial systems and identify testable predictions 
and areas of focus for future neuroscience experiments.

Methods
All experiments are performed in a simulated or physical environment utilizing the same connectivity-con-
strained network model for performing orientation estimation.

Network model input. A total of 81 ring neurons are simulated which are selectively tuned to the position 
of landmarks in the visual field in order to abstract the initial visual processing in the optic lobes. Specifically, 
sets of 27 ring neurons are selective to each of three landmarks with a Gaussian tuning curve with a standard 
deviation of 6.44° and a maximum response offset by 10° across a 270° field of view (Fig. 7A). The standard 
deviation of the Gaussian is selected such that adjacent neurons had overlapping turning curves starting at half 
maximum values. The current provided to each simulated E-PG neuron in each time step is determined by the 
visual ring neuron activation multiplied by Wr→c.
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The 16 P-EN neurons are split into two hemispheres (right and left), such that the 8 right P-EN neurons 
encode positive angular velocities, and the 8 left neurons negative velocities. The current provided to each neuron 
as input is calculated such that with no other input, each P-EN neuron has a steady state maximum firing rate of 
250 Hz at 10 radians per second (Fig. 7B). In simulations, zero mean Gaussian noise is added to angular velocity 
with a standard deviation of 0.1 radians per second.

Network model and configurations. Neural activation of each ring, E-PG, P-EG, P-EN, and Pintr neu-
ron is modeled as leaky integrate and fire neurons utilizing the nengo software  package84 with a timestep of 1 ms. 
The external inputs driving the network activity are input currents from visual encoding to E-PG neurons and 
angular velocity encoding to P-EN neurons as described above. The connectivity pattern between E-PG, P-EG, 
P-EN, and Pintr neurons are based on previously reported biologically-constrained connectivity  patterns68. 
The network weights between neural subpopulations are 20 for all excitatory connections (E-PG → P-EN, 
E-PG → P-EG, E-PG → Pintr, P-EN → E-PG, P-EG → E-PG), -15 for all inhibitory connections to excitatory 
neurons (Pintr → P-EG, Pintr → P-EN), and -20 for all Pintr → Pintr connections. Stochasticity is introduced to 
the network with mean zero Gaussian noise with a standard deviation of 0.1 added to P-EG and Pintr neurons.

Three model configurations are used whose only difference is the weight of the ring neuron to E-PG connec-
tions. For the angular velocity only case, there is no visual input (the effective Wr→c is 0). For the offline optimal 
comparison, a supervised set of scaled Wr→c weights is solved for using linear lasso regularized positive regression 
to minimize the objective function for each compass neuron 

∑

t

(

c̃n(t)−
∑

m(−rm(t)w̃n,m)+ αn
)2

+ �
∑

mw̃n,m , 
where c̃n(t) is a target set of compass neuron activation at each simulation timestep generated with the preferred 
angle of each compass neuron. In order to enforce negative weights for wn,m , the weights used in simulation are 
a scaled version of the wn,m = −βw̃n,m , and β=0.0025, to optimize estimation accuracy. For the online learn-
ing rule comparison, the weights between ring neurons and E-PG neurons are updated according to Eq. 1 with 
parameter values of 1.7e−6, 1.7e−4, and 0.29 for a, b, and η , respectively.

Learning rule objective functions. In order to perform gradient descent on the objective function φ as 
defined in (Eq. 2) over time by modifying the synaptic weights, wnm , it follows from the chain rule that

 if we ignore the implicit dependence of cn on wnm assuming that the bump here is determined mostly by the 
recurrent weights. The discrete form of the gradient descent is

Similarly, to minimize the orientation error objective function, ϕ , as defined in (Eq. 3), it follows from the chain 
rule that

 with a discrete form of

 with a scalar learning rate parameter, η = 2βη̃.

Hardware translation. The robotic platform utilized is a modified Robotis Turtlebot3 “Burger,” equipped 
with a Nvidia Jetson TX2, and a Ricoh Theta S 360° camera. The Turtlebot has an OpenCR embedded motor 
controller and sensor suite, as well as two Dynamixel XL430-W250 servos for wheel control.

The relative angle of colored landmarks in the arena are detected from 360° camera images utilizing color 
masks and blob detection prior to activation of visual ring neurons as described above with Gaussian receptive 
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Figure 7.  Model input encoding. (A) Receptive fields for each set of ring neurons over the field of view. (B) 
Angular velocity encoding in P-EN neurons.



13

Vol.:(0123456789)

Scientific Reports |         (2022) 12:3210  | https://doi.org/10.1038/s41598-022-05798-4

www.nature.com/scientificreports/

fields with respect to the relative angle of each landmark. All sensor data was recorded in ROS and used as input 
to the network model. We accelerated the input stream by a factor of ten to facilitate an evaluation of time courses 
corresponding to those used in simulated environments.

The robot was run in an arena with an Optitrack system. IR-reflective markers were attached to the robot 
such that the position and orientation of the robot was tracked by the system. Red, green, blue, and yellow land-
marks were made out of posterboard and placed in the environment with their own IR markers. Data from the 
Optitrack system was used for comparison.

Power estimation. The estimated power consumption for algorithmic computation utilizes published energy 
per operation  values25 and is calculated seperately for the neuron update, ( eneuron = nneuron ∗ 81 pJ ), spike com-
munication ( ecomm =

1
T

∑T
t=1

∑nneuron
j=1

∑nneuron
i=1 yi(t)w

+
i,j ∗ 1.7pJ ), and plasticity ( eplasicity = nsynRC ∗ 120pJ/�p ), 

where nneuron is the total number of neurons in the network, T is the total number of timesteps, yi(t) is the binary 
spike output for each neuron in each time step t  , w+

i,j is a binary variable equal to 1 if there is a non-zero weight 
from neuron i to neuron j , nsynRC is the total number of synapses between ring and E-PG neurons, and the and 
�p is the number of time steps assumed to be 63 between synaptic update. The final power estimates assume 
1000 time steps per second.

Data availability
All data needed to support the conclusions in the paper are available via sources described in the paper or upon 
reasonable request to the authors.
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