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Identification of novel leads 
as potent inhibitors of HDAC3 
using ligand‑based pharmacophore 
modeling and MD simulation
Navanath Kumbhar1, Snehal Nimal1, Sagar Barale2, Subodh Kamble3, Rohit Bavi4, 
Kailas Sonawane2,3 & Rajesh Gacche1*

In the landscape of epigenetic regulation, histone deacetylase 3 (HDAC3) has emerged as a prominent 
therapeutic target for the design and development of candidate drugs against various types of cancers 
and other human disorders. Herein, we have performed ligand‑based pharmacophore modeling, 
virtual screening, molecular docking, and MD simulations to design potent and selective inhibitors 
against HDAC3. The predicted best pharmacophore model ‘Hypo 1’ showed excellent correlation 
(R2 = 0.994), lowest RMSD (0.373), lowest total cost value (102.519), and highest cost difference 
(124.08). Hypo 1 consists of four salient pharmacophore features viz. one hydrogen bond acceptor 
(HBA), one ring aromatic (RA), and two hydrophobic (HYP). Hypo 1 was validated by Fischer’s 
randomization with a 95% of confidence level and the external test set of 60 compounds with a good 
correlation coefficient (R2 = 0.970). The virtual screening of chemical databases, drug‑like properties 
calculations followed by molecular docking resulted in identifying 22 representative hit compounds. 
Performed 50 ns of MD simulations on top three hits were retained the salient π‑stacking,  Zn2+ 
coordination, hydrogen bonding, and hydrophobic interactions with catalytic residues from the active 
site pocket of HDAC3. Total binding energy calculated by MM‑PBSA showed that the Hit 1 and Hit 
2 formed stable complexes with HDAC3 as compared to reference TSA. Further, the PLIP analysis 
showed a close resemblance between the salient pharmacophore features of Hypo 1 and the presence 
of molecular interactions in co‑crystallized FDA‑approved drugs. We conclude that the screened hit 
compounds may act as potent inhibitors of HDAC3 and further preclinical and clinical studies may pave 
the way for developing them as effective therapeutic agents for the treatment of different cancers and 
neurodegenerative disorders.

Epigenetic dysregulations are the major causes of cancer which may initiate the oncogenes transcription and 
inactivation of tumor-suppressor  genes1. These epigenetic alterations are closely associated with cancer progres-
sion and  metastasis2. Amongst the variety of epigenetic modulations, the post-translational acetylation of lysine 
residues in the tail of histone proteins by histone acetyltransferases leads to chromatin remodeling and tran-
scription  activation3. In contrast, the lysine deacetylation by histone deacetylases (HDACs) is associated with a 
more condensed chromatin state and altered gene transcription which results in cancer  progression4,5. Therefore, 
HDACs have been identified as an attractive therapeutic target for the development of novel anti-cancer agents. 
The vorinostat, panobinostat, belinostat and romidepsin are some of the HDAC targeting drugs currently used 
for treating human  cancers6,7. HDACs are the class of zinc-dependent metalloenzymes that profoundly take part 
in cellular migration and invasion in many cancer subtypes. Based on their structure, functions, and evolution-
ary conservation, the 18 isomers of mammalian HDACs are classified into Class I (HDAC 1, 2, 3, and 8), Class 
II (HDAC 4, 5, 6, 7, 9, and 10), Class III (Sirtuins 1–7), and Class IV (HDAC 11)8.

Among Class I HDACs, the HDAC3 is aberrantly expressed in many malignancies and plays a significant 
role in the progression of cancer and many other human  diseases9,10. High expression of HDAC3 promotes 
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cell proliferation, differentiation, migrations, stemness, and chemoresistance in human colorectal  cancer11,12. 
The elevated expression of HDAC3 has been attributed to the downregulation of a series of tumor suppressor 
micro-RNAs including miR-296-3p, miR-451, and miR-495-3p in colorectal, melanoma, and prostate cancer, 
 respectively13–15. Moreover, the high expression of HDAC3 is linked with tumorigenesis and breast cancer brain 
 metastases14. Therefore, HDAC3 acts as an independent prognostic biomarker for brain metastasis-free sur-
vival in breast cancer patients. HDAC3 is an epigenetic regulator of a variety of cell signaling pathways, also 
the knockdown of HDAC3 promotes the G0/G1 cell cycle arrest which subsequently induces cell apoptosis in 
acute myeloid leukemia, prostate, melanoma, and colorectal  cancer13–17. A plethora of literature describes the 
pathophysiological role of HDAC3 in a variety of human cancers, neurodegenerative disorders, diabetes, inflam-
matory and cardiovascular  diseases18–25.

Therefore, considering the important role of HDAC3 in variety of cancer subtypes and various other human 
ailments, many studies have been performed for design and development of selective HDAC3  inhibitors10,26–31. 
For example, HDAC3 inhibition by selective inhibitor RGFP966 has restored the expression of the BRM tumor 
suppressor gene in renal cell carcinoma and inhibited the growth of glioma stem  cells19,32. In addition, the 
RGFP966 also decreased the expression of Aβ protein and improved the learning, memory ability in Alzheimer’s 
patients and also protected the ischemic brain damage by down-regulating the absent in melanoma 2 inflam-
masome in  microglia22,33. Moreover, HDAC3 inhibitors were effectively tested on various cancer subtypes, neu-
rodegenerative disorders, cardiac diseases, atherosclerosis, human immunodeficiency virus, and inflammatory 
 diseases5–7,34–37. However, besides a better therapeutic profile, the present HDAC3 inhibitors have demonstrated 
disappointing clinical outcomes due to serious side effects and off-target toxicity in treated patients. To circum-
vent these issues, many computational strategies have been employed for the design and development of novel, 
safe and selective inhibitors of  HDAC338–40.

In the mainstream of drug discovery, the three dimensional quantitative structure relationship (3D-QSAR) 
and ligand/structure-based pharmacophore modeling approaches have established a reputation towards design-
ing novel, potent and selective inhibitors against  HDACs38–42. For example, the QSAR modeling was performed 
using k-nearest neighbor (kNN) and support vector machines (SVM) to design the structurally novel bioactive 
compound against  HDAC143,44. Pharmacophore-based virtual screening and MD simulations were used to design 
the novel hydroxamic acids and non-hydroxamate derivatives as potential inhibitors of HDAC2, HDAC4, and 
 HDAC645–48. Series of similar in silico settings have been undertaken to identify potential inhibitors of HDAC8 
using docking-enabled pharmacophore, comparative molecular field analysis CoMFA) and comparative molecu-
lar similarity indices analysis (CoMSIA)  techniques49,50.

A vast body of literature has accumulated in the recent past linking the role of 3D-QSAR and pharmacoph-
ore modeling in the discovery of class I and II HDAC inhibitors (1, 2, 4, 6, and 8). Few computational studies 
have also been performed to understand the structural and physicochemical properties of benzamide-based 
HDAC3 inhibitors using the 3D-QSAR (CoMFA/CoMSIA) approach and HDAC3i-Finder online  tool51,52. The 
virtual screening and in-vitro studies were performed to discover the potent and selective inhibitors against 
 HDAC353. Considering the important role of HDAC3 in pathophysiological conditions of many human diseases, 
the knowledge of pharmacophore features is required for the development of selective HDAC3 inhibitors remains 
elusive. Therefore, in the present investigation, we performed ligand-based pharmacophore modeling, virtual 
screening, and MD simulation studies, Molecular mechanics-Poisson-Boltzmann solvent accessible surface area 
(MM-PBSA), and principal component analysis (PCA) to identify potent HDAC3 inhibitors with different 
structural scaffolds.

Results
Pharmacophore model generation. A dataset of 24 chemically diverse HDAC3 inhibitors with  IC50 val-
ues spanning over the four orders of magnitude (0.84 nmol/L to 260,000 nmol/L) was selected for the generation 
of the 3D-QSAR pharmacophore model using the HypoGen algorithm (Fig. 1).

A total of 10 hypotheses were generated that correlated the experimental and predicted HDAC3 inhibitory 
activity values of the training set inhibitors. The best pharmacophore hypothesis (Hypo 1) was selected based 
on the statistical parameters such as lowest total cost values, highest cost difference, high correlation coefficient, 
and smallest RMSD values. The cost difference is the difference between the null cost and the total cost of each 
generated hypothesis. The null cost, fixed cost, and configuration costs for the top 10 scored hypotheses were 
found to be 217.69, 91.93, and 16.80, respectively. A cost difference greater than 60 indicates a high correlation 
between the experimental and estimated activities whereas, a cost difference less than 40 represents the pre-
dictive ability of the model is below 50%. The configuration cost value (16.80) of all ten generated hypotheses 
indicating the generated hypotheses are reasonably of good quality (Table 1). The Hypo 1 consisted of four salient 
chemical features including one HBA, one RA, and two HYP (Fig. 2 and Table 1). The 3D-spatial arrangement 
of chemical features and distance constraints between them are depicted in Fig. 2. Hypo 1 showed the lowest 
cost value (102.519), the highest cost difference (124.08), the maximum correlation coefficient (R2 = 0.994), and 
the smallest RMSD (0.373) value.

The cost difference (124.08) greater than 60 indicates that the model has good predictive accuracy, represented 
the 90% of the true correlation. A total cost (102.519) of Hypo 1 was almost close to the fixed cost (98.65). This 
confirms that the Hypo 1 was not generated by chance. The high correlation coefficient represented a good 
predictive ability of the Hypo 1 whereas, the lower RMSD value indicated a small deviation in the experimental 
and estimated activity values. Therefore, Hypo 1 was used to predict the HDAC3 inhibitory activity amongst 
the 24 training set compounds that conversely determined the predictive ability of Hypo 1. The most active 
 (IC50 = 0.84 nmol/L) and least active  (IC50 = 260,000 nmol/L) compounds from training set were aligned to 
Hypo 1 (Fig. 3).
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The most active compound has mapped all pharmacophore features from Hypo 1 whereas, the least active 
compound has mapped only two (HBA and HYP) features and missed RA and HYP features. Hypo 1 efficiently 
discriminated the active, moderately active, and inactive compounds from the training set with a high degree 
of accuracy (Table 2). Hypo 1 has predicted the inhibitory activity values of all compounds in the same order of 
magnitude, except for one active compound which was underestimated as moderately active (Table 2). The ratio 
between the experimental and estimated activity values of training set compounds has been termed the error 
value. The small error value represents the high correlation between experimental and estimated activities and 
vice-versa. Hypo 1 was validated using Fischer’s randomization method and the external test dataset.

Hypothesis validation. Fischer randomization. Fischer’s randomization method was employed to assess 
the statistical significance of each generated pharmacophore model to ensure that the chosen pharmacophore 
model was significantly better than the nine others obtained from the combinations of pharmacophore features 
(Fig. 4).

In the Fischer randomization run, a set of 19 random spreadsheets were generated from the random combina-
tions of the pharmacophore features at a 95% confidence level and compared to the ‘Hypo 1’. The fixed cost value 

Figure 1.  A representation of the 24 chemically diverse training set compounds used for pharmacophore 
generation. The experimental  IC50 values (nmol/L) are shown in parentheses for each compound. The figure is 
drawn using ChemDraw Ultra v12.0.2.



4

Vol:.(1234567890)

Scientific Reports |         (2022) 12:1712  | https://doi.org/10.1038/s41598-022-05698-7

www.nature.com/scientificreports/

of these 19 random models along with the best pharmacophore model is given in Fig. 4. The total cost value of 
Hypo 1 was the least as compared to other hypotheses in the generated random spreadsheets. Thus, Fischer’s 
randomization results indicated that Hypo 1 is far more superior compared to all other random hypotheses and 
not generated by chance.

Test set validation. The predictive ability of Hypo 1 was further assessed by performing external test set vali-
dation to predict and classify the compounds according to their correct activity range (Table 3, S1 Table 1). 

Table 1.  Statistical results of ten pharmacophore hypotheses generated by HypoGen. a Cost difference, the 
difference between the null cost and the total cost. The null cost of ten scored hypotheses is 226.602, the fixed 
cost value is 98.657, and the configuration cost is 16.80. All costs are represented in bit units. b RMSD: deviation 
of the log (estimated activities) from the log (experimental activities) normalized by the log (Uncertainties). 
c HBA: Hydrogen Bond Acceptor, HYP: Hydrophobic, RA: Ring Aromatic.

Hypo no Total cost Cost difference RMSDb Correlation (R2) Max fit Featuresc

Hypo 1 102.519 124.08 0.373 0.994 10.524 HBA, HYP, HYP, RA

Hypo 2 105.239 121.36 0.516 0.989 11.142 HBA, HYP, HYP, RA

Hypo 3 109.977 116.63 0.852 0.970 10.749 HBA, HYP, HYP, RA

Hypo 4 110.475 116.13 0.837 0.971 11.148 HBA, HYP, HYP, RA

Hypo 5 111.065 115.54 0.921 0.965 10.541 HBA, HYP, HYP, RA

Hypo 6 111.336 115.27 0.970 0.960 9.998 HBA, HYP, HYP, RA

Hypo 7 112.760 113.84 0.975 0.960 10.793 HBA, HYP, HYP, RA

Hypo 8 112.979 113.62 0.905 0.967 11.620 HBA, HYP, HYP, RA

Hypo 9 113.090 113.51 0.998 0.958 10.678 HBA, HYP, HYP, RA

Hypo 10 115.965 110.64 1.199 0.938 8.376 HBD, HYP, HYP, RA

Figure 2.  The best pharmacophore model ‘Hypo 1’, with distance constraints. Hypo 1 contains one hydrogen 
bond acceptor (HBA: green), one ring aromatic (RA: orange), and two hydrophobic regions (HYP: cyan).The 
figure is drawn using DS v3.5.

Figure 3.  Alignment of Hypo 1 to training set compounds; (A) Most active compound 1  (IC50 = 0.84 nmol/L) 
and (B) Least active compound 24  (IC50 = 260,000 nmol/L). The most active compound mapped to all four 
features in Hypo 1, whereas the least active compound missed the RA and HYP features. The figure is drawn 
using DS v3.5.
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Table 2.  The experimental and predicted activity of training set compounds based on Hypo 1. a Values 
in the error column represent the ratio of the estimated activity (Pred  IC50) to the experimental activity 
(Exp  IC50) or its negative inverse if the ratio is < 1. b Activity scale:  IC50 < 100 nmol/L = +++ (active), 
100 nmol/L ≤  IC50 < 10,000 nmol/L =  ++ (moderate active),  IC50 ≥ 10,000 nmol/L =  + (inactive).

Compd. no Fit value Experimental  IC50 (nmol/L) Predicted  IC50 (nmol/L) Errora Experimental  scaleb Predicted  scaleb

1 10.140 0.84 1.3 1.60 +++ +++

2 9.820 2.0 2.8 1.40 +++ +++

3 9.580 2.3 4.7 2.10 +++ +++

4 9.610 5.0 4.5  − 1.10 +++ +++

5 9.470 6.5 6.1  − 1.10 +++ +++

6 9.230 12 11  − 1.10 +++ +++

7 8.740 26 33 1.30 +++ +++

8 8.840 51 26  − 2.0 +++ +++

9 8.240 60 110 1.80 +++ ++

10 7.980 120 190 1.60 ++ ++

11 8.160 135 120  − 1.10 ++ ++

12 7.700 239 360 1.50 ++ ++

13 7.700 350 360 1.0 ++ ++

14 7.440 858 660  − 1.30 ++ ++

15 7.200 1568 1100  − 1.40 ++ ++

16 7.100 2311 1400  − 1.60 ++ ++

17 6.390 5480 7500 1.40 ++ ++

18 6.670 8000 3900  − 2.10 ++ ++

19 6.080 18,000 15,000  − 1.20 + +

20 5.720 39,040 34,000  − 1.10 + +

21 5.170 80,000 120,000 1.50 + +

22 5.260 98,000 99,000 1.0 + +

23 5.020 161,000 170,000 1.10 + +

24 5.220 260,000 110,000  − 2.40 + +

Figure 4.  A graphical representation of the total cost values of Hypo 1 and each of ten hypotheses generated 
from 19 random spreadsheets during Fischer’s randomization run. A confidence level of 95% was used. The 
figure is drawn using Microsoft Excel 2013 v15.0.
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Compd. no Fit value Experimental  IC50 (nmol/L) Predicted  IC50 (nmol/L) Errora Experimental  scaleb Predicted  scaleb

1 10.15 2.7 1.25  − 2.16 +++ +++

2 10.09 2.8 1.44  − 1.94 +++ +++

3 10.17 2.8 1.20  − 2.34 +++ +++

4 9.65 3.0 3.98 1.32 +++ +++

5 10.12 3.1 1.36  − 2.27 +++ +++

6 8.74 3.2 3.39 1.05 +++ +++

7 9.93 3.2 2.08  − 1.53 +++ +++

8 9.90 3.8 2.26  − 1.6 +++ +++

9 10.10 3.9 1.40  − 2.78 +++ +++

10 9.77 4.2 3.00  − 1.4 +++ +++

11 9.99 5.5 1.83  − 3 +++ +++

12 9.52 9.0 5.40  − 1.66 +++ +++

13 9.89 9.3 2.29  − 4.06 +++ +++

14 9.25 13 10.11  − 1.28 +++ +++

15 9.50 13 5.70  − 2.2 +++ +++

16 9.34 13 8.14  − 1.59 +++ +++

17 9.60 13.9 4.48  − 3.09 +++ +++

18 9.59 15 4.60  − 3.2 +++ +++

19 9.22 16.3 10.66  − 1.52 +++ +++

20 9.33 17 8.31  − 2.04 +++ +++

21 9.38 20 7.52  − 2.65 +++ +++

22 8.71 20 35.24 1.76 +++ +++

23 9.29 21 9.25  − 2.27 +++ +++

24 8.63 23 42.14 1.83 +++ +++

25 9.21 24.7 10.96  − 2.25 +++ +++

26 9.33 30 8.39  − 3.57 +++ +++

27 8.83 34 26.72  − 1.27 +++ +++

28 8.74 42.5 32.74  − 1.29 +++ +++

29 8.91 62 22.03  − 2.81 +++ +++

30 8.94 63 20.34  − 3.09 +++ +++

31 8.55 74 50.41  − 1.46 +++ +++

32 8.33 100 82.74  − 1.2 +++ +++

33 8.66 100 38.78  − 2.57 +++ +++

34 8.69 110 36.58  − 3 ++ +++

35 8.47 187 60.57  − 3.08 ++ +++

36 7.64 276 408.24 1.47 ++ ++

37 8.01 310 176.33  − 1.75 ++ ++

38 7.50 330 559.72 1.69 ++ ++

39 8.01 354 174.64  − 2.02 ++ ++

40 7.88 374 238.12  − 1.57 ++ ++

41 7.44 464 651.11 1.37 ++ ++

42 7.83 495 267.27  − 1.85 ++ ++

43 7.86 719 247.03  − 2.91 ++ ++

44 7.03 887 1658.49 1.86 ++ ++

45 7.17 967 1219.99 1.26 ++ ++

46 7.06 1700 1575.90  − 1.07 ++ ++

47 7.00 2400 1809.01  − 1.32 ++ ++

48 6.81 3000 2795.99  − 1.07 ++ ++

49 6.69 3200 3663.62 1.14 ++ ++

50 7.09 3600 1451.96  − 2.47 ++ ++

51 6.86 3700 2459.29  − 1.5 ++ ++

52 6.95 4989 1992.83  − 2.5 ++ ++

53 6.89 6200 2326.25  − 2.66 ++ ++

54 6.73 6330 3359.50  − 1.88 ++ ++

55 6.32 12,000 8480.08  − 1.41 + ++

56 5.81 18,000 27,941.10 1.55 + +

Continued
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The dataset of 60 structurally diverse compounds having HDAC3 inhibitory activity was categorized as active, 
moderately active, and inactive based on their activity scale, respectively (Table 3 and S1 Table). The estimated 
activity values of test set compounds and their predicted activity scale along with the error between them are 
given in Table 3. Hypo 1 was able to classify all test set compounds according to their activity ranges except 
for two moderately active and one inactive compound, which were overestimated as active and moderately 
active, respectively. The simple regression between the experimental and estimated activity values of the test 
set compounds showed a strong correlation coefficient value of 0.970, which is evident by the low error values 
(Fig. 5). Thus, these results confirm that Hypo 1 has an excellent predictive capability to discriminate the active 
compounds from the moderately active and inactive compounds from both training and test datasets (Table 3).

Virtual screening and drug‑likeness filtration. The chemical features of the best pharmacophore model 
play a critical role in the mapping and screening of novel hit compounds from the chemical databases containing 
structurally different scaffolds and diversified functional groups. The novel HDAC3 inhibitors were discovered 
by searching the Maybridge (53329), Asinex (175516), NCI (255070), and Chembridge (711990) databases using 
Hypo 1 as a 3D structural query. A total of 418625 hit compounds were retrieved which mapped all chemical 
features of Hypo 1 (Fig. 6). Using the estimated  IC50 value < 0.84 nmol/L and maximum fit value > 10.14 (the 
highest fit value for the active compound from the training set) as a cut-off, the retrieved hit compounds were 
sorted to 3457. Further, the obtained hits were tested for drug-likeness properties using Lipinski’s Rule of Five 
and ADMET property calculations. The 2209 hits successfully satisfied Lipinski’s rule, and calculated properties 
were helpful to investigate the good oral bioavailability of drugs. The ADMET calculations were performed to 
assess the pharmacokinetic properties of hit compounds in the human body.

Drug properties including the BBB penetration, solubility, hepatotoxicity, human intestinal absorption, 
CYP450 2D6 inhibition, and plasma protein binding were calculated for 2209 hit compounds. The 174 hit 
compounds were selected based on the drug-like properties that fulfilled the values of 3, 3, and 0 for the BBB, 
solubility, and absorption, respectively. The molecular docking study was performed to check the binding affinity 
and relative orientation of 174 hit compounds in the catalytic pocket of HDAC3.

Compd. no Fit value Experimental  IC50 (nmol/L) Predicted  IC50 (nmol/L) Errora Experimental  scaleb Predicted  scaleb

57 5.73 18,000 33,447.30 1.85 + +

58 6.32 23,000 8475.24  − 2.71 + +

59 5.26 48,200 98,932.50 2.05 + +

60 5.77 50,200 30,552.50  − 1.64 + +

Table 3.  Evaluation of predicted and experimental activity  (IC50) values of test set compounds using Hypo 1.

Figure 5.  Correlations between the experimental activities and the predicted activities using Hypo 1 with the 
test set and training set compounds. The figure is drawn using Microsoft Excel 2013 v15.0.
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Molecular docking of hit compounds with HDAC3. The molecular docking studies of 174 screened 
hit compounds and training set compounds were performed with HDAC3 using the GOLD software. Only one 
crystal structure of HDAC3 (4A69.PDB) is available with acetate ion present in the active site pocket that coor-
dinated with zinc  (Zn2+)  ions54. The HDAC3 has sequence and structural similarities to HDAC8 and possesses 
conserved catalytic active site  residues55. The crystal structure of HDAC8 (1T64.PDB and 3EW8.PDB) con-
tains TSA and 4-(dimethylamino)-N-[7-(hydroxyamino)-7-oxoheptyl] benzamide (B3N)  inhibitors56. The exact 
superimposition of HDAC8 crystal structures on HDAC3 showed structural similarities and the co-crystallized 
inhibitors were likely coordinated with  Zn2+ and formed molecular interactions similar to acetate ion (Figure 
S1). The most active compound from the training set was a TSA. Therefore, we selected the TSA-HDAC8 active 
site XYZ coordinates for molecular docking studies of screened hit compounds and training set compounds 
with HDAC3. The GOLD fitness score of the most active compound from the training set was selected as the 
cutoff for the selection of hit compounds. Goldscore (70.49) of the TSA was used as a cut-off for the screening 
of compounds, and a total of 22 compounds were selected. Further, the Chemscore was used as the rescoring 
function during docking studies and estimates the total free energy change that occurs upon ligand binding to 
the active site pocket of HDAC3. The hit compounds having lower Chemscore (− 37.15) values were selected for 
further analysis. The docking complexes of top scored hit compounds were analyzed for binding pattern and 
intermolecular interactions (Table 4).

The selected three top-scored hit compounds mapped all chemical features from Hypo 1 (Fig. 7). The HDAC3 
is a  Zn2+-dependent enzyme, therefore the hit compounds coordinated with  Zn2+ and interact with His and Tyr 
residues from the active site pocket HDAC3 were selected for the MD simulations studies.

Molecular dynamics simulation study of hit compounds with HDAC3. Molecular dynamics simu-
lations of 50 ns for each hit compound complexed with HDAC3 were performed to investigate the effect of 

Figure 6.  The summary of the virtual screening using Hypo 1. The figure is drawn using Microsoft PowerPoint 
2013 v15.0.

Table 4.  Comparison of gold fitness score, chemscore and average binding energy of docking complexes of 
reference inhibitor (TSA)/Hit 1/Hit 2/Hit 3 with HDAC3.

Complex name Database Gold fitness score Chemscore

HDAC3 + Hit 1 Chembridge 80.67  − 38.55

HDAC3 + Hit 2 Asinex 76.01  − 42.93

HDAC3 + Hit 3 Chembridge 71.00  − 43.86

HDAC3 + TSA Reference 70.49  − 37.15
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explicit water solvent on the stability of reference inhibitor (TSA) and hit compounds in the catalytic pocket 
of HDAC3. The simulations were analyzed to assess the binding affinity of the final hit compounds towards 
HDAC3. The conformational stability of HDAC3 and hit compounds were investigated by calculating the root 
mean square deviation (RMSD) and root mean square fluctuations (RMSF) of the protein backbone atoms and 
side chains of residues, respectively (Fig. 8A, B). The averaged RMSD values are 0.25 nm, 0.23 nm, 0.26 nm, 
and 0.26 nm for the TSA, Hit 1, Hit 2, and Hit 3, respectively. RMSD for all the simulated complexes was below 
0.3 nm which indicated the overall stability of hit compounds in the catalytic pocket of HDAC3 (Fig. 8A).

The Hit 1 showed the lowest RMSD as compared to reference inhibitor (TSA), Hit 2, and Hit 3 compounds 
throughout the 50 ns of simulations. The calculated RMSF values for all the simulated complexes were below 
0.3 nm which signifies the good stability for simulated complexes of hit compounds and HDAC3 during simu-
lation. The catalytic residues involving in hydrogen bonding and hydrophobic interactions with TSA and hit 
compounds showed the least fluctuations throughout 50 ns of simulations which is evident by the < 0.1 nm 
RMSF value of respective residues (S2 Table). The large fluctuations (0.2 nm to 0.54 nm) were noticed for the 
loop regions of HDAC3 during the simulations (S2 Table). Further, the binding modes of TSA and three hit com-
pounds were analyzed by superimposing the representative structures which showed a similar binding pattern 
in the catalytic pocket of HDAC3 where they coordinated with the  Zn2+ (Fig. 9). Furthermore, the compactness 
of HDAC3 in presence of hit compounds were assessed by calculating the radius of gyration (Rg) (Fig. 8C). 
The Rg predicts the compactness of the protein owing to the spatial arrangement of secondary structures. The 
Rg values (1.92 nm to 2.0 nm) of HDAC3 represent the compactness of HDAC3 during simulations due to the 
stable behavior of secondary structures.

The intermolecular hydrogen bonding, π-stacking, and hydrophobic interactions between the simulated 
complexes of HDAC3 with TSA and hit compounds are depicted in Figs. 8D, 10 and Table 5. TSA was involved 
in hydrogen bonding interaction with catalytic Asp258 residue of HDAC3 by maintaining a 2.94 Å distance 
(Fig. 10A, Table 5).

The non-classical CH…O hydrogen bonding interactions were also analyzed for simulated complexes due to 
their importance in the stabilization of protein–ligand  complexes57. TSA participated in CH…O type of hydrogen 
bonding interactions with Asp91, His171, Pro200, and Gly295 residues of HDAC3 (Table 5).

TSA was coordinated with  Zn2+ by 2.07 Å distance. The Hit 1 was involved in hydrogen bonding interactions 
with Met23, His133, Gly142, and Phe199 from the active site pocket of HDAC3 (Fig. 10B). Hit 1 was coordinated 
with catalytic  Zn2+ by maintaining a 2.18 Å distance. The Hit 1 also formed hydrophobic and van der walls 

Figure 7.  Final hit compounds mapped to the best pharmacophore model, Hypo 1; (A) Hit 1, (B) Hit 2 and (C) 
Hit 3. The HBA, RA, and HYP features are displayed in green, orange, and cyan, respectively. Hit compounds 
are represented as stick models. The figure is drawn using DS v3.5.

Figure 8.  RMSD plots for checking the overall stability of the systems during 50 ns MD simulations; (A) 
RMSD profile of HDAC3 in presence of hit compounds, (B) RMSF of simulated complexes of HDAC3 with hit 
compounds, (C) Radius of gyration of HDAC3 with bound hit compounds and (D) Time dependent hydrogen 
bonds between HDAC3 and hit compounds. The figure is drawn using Microsoft Excel 2013 v15.
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interactions with catalytic residues of HDAC3 that could provide structural stability to Hit 1 in the catalytic 
pocket of HDAC3 (Table 5). The Hit 1 was involved in π-alkyl interactions with Pro22 and Leu265, and π-lone 
pair interactions with Asp91. The fluorine mediated weak interactions between Hit 1 with Gly20, Gly90, Asp91 
and Asp92 were observed in the simulated complex.

Further, the Hit 2 and HDAC3 complex was found stable during the simulation (Fig. 8). In this complex, the 
catalytic Phe199 residue participated in the bifurcated interaction with Hit 2 (Fig. 10C). Hit 2 was involved in the 
weak CH…O interactions with His171, Phe198, and Pro200 catalytic pocket residues of HDAC3 (Table 5). Hit 2 
was coordinated with  Zn2+ by retaining 2.0 Å distance. The benzene ring of Hit 2 participated in two π-stacking 
interactions with His133 and His134 residues. The Leu132, Cys144, Phe199, Leu265, and Gly295 residues were 
contributed in hydrophobic interactions with Hit 2 (Fig. 10C). The Hit 3 participated in weak interactions 
with Gly131 and Tyr297 residues and coordinated with  Zn2+ from the catalytic pocket of HDAC3 (Fig. 10D 
and Table 5). Hit 3 was involved in π-alkyl interactions with His133, His134 and Pro200 residues. The residues 
Leu132, His133, His134, Phe143, His171, Phe199, and Pro200 contributed to hydrophobic interactions with Hit 
3. The hydrogen bonding, π-interactions, and hydrophobic contacts from three hit compounds are comparable 
to the TSA. Therefore, these hit compounds may act as potent and selective inhibitors of HDAC3 and may be 
used for the treatment of cancer subtypes. The 2D structures of final hit compounds are given in Fig. 11.

Binding free energy calculation by using the MM‑PBSA method. The binding affinity of TSA, Hit 
1, Hit 2, and Hit 3 toward the HDAC3 were investigated by calculating the MM-PBSA (Table 6). Total binding 
energy (ΔGbinding) of TSA, Hit 1, Hit 2, and Hit 3 in complex with HDAC3 was found as − 61.08 ± 29.11, − 62.3
9 ± 27.34, − 150.78 ± 17.81, − 39.17 ± 77.79 kJ/mol respectively. This suggested that Hit 1 and Hit 2 have a strong 
binding affinity toward HDAC3 as compared to the reference inhibitor TSA. The VDW energy (ΔEvdw) has a 
major contribution to the total binding energy and is more favorable to complex formation with all three hit 
compounds as compared to TSA.

Similarly, the ∆Gnon-polar energy was lowest for all three hit compounds as compared to TSA. This signifies that 
the ΔEvdw and ∆Gnon-polar energies participated in the favorable binding of all hit compounds to HDAC3. How-
ever, the ∆Eelec energy of TSA was lowest as compared to all three hit compounds. The estimated total binding 
energy suggested that the screened hit (Hit 1 and Hit 2) compounds have a better binding profile as compared 
to reference TSA and therefore these hits can be acts as a good inhibitor of HDAC3.

To investigate the residual contribution of each residue of HDAC3 in complex formation with TSA and all 
three hits, we estimated the residual binding free energy decomposition using the MM-PBSA (Fig. 12). The 
Pro22, Asp91, Asp92, Pro94, His134, Phe143, Phe199, Gly295 and Gly296 residues of HDAC3 were favorably 
contributed in binding with TSA (Figs. 10, 12). The Met23, Asp91, Asp92, Cys93, Pro94, Gly142, Phe143, Leu170, 
Phe198, Phe199, Leu265, Gly295, Gly296 and Tyr297 were involved in binding with Hit 1.

Figure 9.  The binding patterns of the reference inhibitor (TSA) and three hit compounds in the active site 
pocket of HDAC3. The figure is drawn using DS v3.5.
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Further, the Leu132, Cys144, Phe198, Phe199, Leu265, Gly295, Gly296 and Tyr297 participated in favorable 
binding with Hit 2. Similarly, the Met23, Leu132, His134, Phe143, Phe199, Gly294, Gly295 and Tyr297 were 
involved in binding with Hit 3. The Met23 and Phe199 were involved in hydrogen bonding interactions with 
Hit 1 and Hit 2. The His134 was π-stacked with Hit 2. The Leu132, His134, Cys144, Leu265 and Gly295 were 
involved in π-alkyl interactions with Hit 1, Hit 2 and Hit 3. The Pro22, Asp91, Asp92, Pro94, Gly142, Phe143, 
Leu170, Phe198, Gly294, Gly295 and Gly296 were involved in van der Waals interactions with TSA and all three 
hits (Fig. 10). The van der Waals energy was contributed more to the total binding energy of all complexes which 
was supported by the large number of residual interactions observed in simulated structures (Fig. 10).

Principle component analysis (PCA). To assess the impact of binding of hit compounds on the overall 
collective motions of HDAC3 in complex with TSA and hit compounds, we have performed PCA using simu-
lated trajectories (Fig. 13). The covariance matrix was constructed for all simulated complexes which predicted 
the trace values for complexes of HDAC3 with TSA, Hit 1, Hit 2 and Hit 3 are 22.24  nm2, 14.42  nm2, 16.17  nm2 
and 21.63  nm2, respectively. These trace values indicated that the Hit 1, Hit 2, and Hit 3 showed less atomic 
flexibility in complex with HDAC3 as compared to the HDAC3-TSA complex. Interestingly, Hit 1 exhibited the 
lowest amplitude of fluctuations at the atomic level when compared to Hit 2 and Hit 3. Further, the eigenvectors 
and their respective eigenvalues were calculated by using the diagonalized covariance matrix to investigate the 
projection of eigenvectors in the conformational space with their amplitude. The first two eigenvectors (1 and 
2) were used to evaluate the concentrated motions of HDAC3 upon the binding of hit compounds. The 2D plots 
of projections of the first two vectors showed that the predicted clusters of all hit compounds have an extended 
nature in conformational space with PC 1, as compared to PC 2 (Fig. 13). The binding of Hit 1 to HDAC3 pro-
duced favorable conformational changes with the formation of confined clusters as compared to TSA (Fig. 13A). 
However, the perturbed direction of motions of HDAC3 was observed in Hit 2 and Hit 3 (Fig. 13B, C). Further-
more, the magnitude of eigenvector (0.01153 nm) was found lowest for the Hit 1-HDAC3 complex as compared 
to TSA (0.01779 nm), Hit 2 (0.01730 nm), and Hit 3 (0.012 nm). This indicated that the binding of Hit 1 to 
HDAC3 was more favorable than TSA and other hits.

Figure 10.  Intermolecular hydrogen bond, hydrophobic and Zinc co-ordinated interactions between the 
simulated complexes of HDAC3 and Hit compounds; (A) Reference (TSA), (B) Hit 1, (C) Hit 2 and (D) Hit 3. 
The figure is drawn using DS v3.5.



12

Vol:.(1234567890)

Scientific Reports |         (2022) 12:1712  | https://doi.org/10.1038/s41598-022-05698-7

www.nature.com/scientificreports/

Protein–ligand interaction profile (PLIP) analysis of training set (FDA approved drugs) and 
final simulated hit compounds. The results of PLIP analysis of training set compounds and simulated 
hits showed a concrete relationship between the salient chemical features (Hypo 1) present in training set com-

pounds (FDA approved drugs) and molecular interactions observed in simulated hits in complex with HDAC3. 
The structural information for five drug molecules such as TSA (5EEF, 16), LBH (5EF8, 1), JNJ-26481585 
(6HSK, 2), ACY-1215 (5WGL, 1), and SHH (4LXZ, 11) was retrieved from the crystal structures whereas, for 
NVP-LAQ824, MS-275 and VPA drugs were obtained from the earlier docking  studies58–60. Total 31 co-crystal 
structures of these five drugs were downloaded from the protein data bank and analyzed for protein–ligand 
interactions profiles using PLIP online server and DS. Out of these, one representative interaction profile of each 
drug is compared to the interaction profiles of simulated hits (Tables 5 and 7). These seven drugs coordinated 
to the catalytic  Zn2+ in all crystal structures and docking studies performed against HDACs. These drugs were 

Table 5.  Molecular interactions between simulated complexes of TSA and screened Hit compounds with 
HDAC3 (4A69.PDB).

Molecule name Atoms involved in H-bonds Distance 1–2 in (Å) Angle (°) Hydrophobic and Van der Walls contacts Fig. Ref

TSA-4A69

TSA-O21-H…OD2-Asp258 2.94 127.87

His133, His134, Phe143, His171, Pro200, Gly142, Pro22, Asp91, Asp92, Pro94, 
His172, Phe199, Gly295, Gly296 10a

TSA-C-H…O-Asp91 2.41 143.49

TSA-O11…H-C-His171 2.84 124.60

TSA-O11…H-C-Pro200 2.11 165.06

TSA-O22…H-C-Gly295 2.31 139.66

TSA-O22…Zn2+ 2.07 –

Hit 1-4A69

Hit 1-O33…H-N-Met23 2.80 91.06

His21, Pro22, Pro94, Leu265, Cys93, Leu132, Gly142,Cys144, Phe143, Ile170, 
Lys193, Tyr197, Phe198, Gln254, Gly256, Asp258, Gly295, Gly294, Gly296, 
Tyr297, Phe199

10b

Hit 1-N–H…NE2-His133 2.29 123.18

Hit 1-N…O-Gly142 3.39 102.35

Hit 1-N–H…OD1-Asp169 2.71 125.26

Hit 1-N–H…O-Phe199 2.58 156.93

Hit 1-F…H-C-Pro22 2.65 118.53

Hit 1-F…H-C-His21 2.41 149.55

Hit 1-F…H-C-Pro94 2.33 128.57

Hit 1-F…H-C-Asp92 2.91 109.52

Hit 1-O5…Zn2+ 2.18 –

Hit 2-4A69

Hit 2-N–H…NE2-His134 2.66 153.60

π-Stacked_His133,  π-Stacked_His134, Leu132, Cys144, Phe199, Leu265, Gly295, 
Met23, Asp92, Gly131, His133, His134, Gly142, Phe143, Tyr197, Phe198, Gln254, 
Gly294, Tyr297

10c

Hit 2-O33…H-N-Phe199 1.94 121.45

Hit 2-O33…H-N-Phe199 2.00 146.15

Hit 2-O33…H-C-His171 3.09 111.28

Hit 2-O33…H-C-Phe198 2.77 122.40

Hit 2-O34…H-C-Phe198 2.24 130.34

Hit 2-C-H…O-Pro200 2.87 116.38

Hit 2-O5…Zn2+ 2.00 –

Hit 3-4A69

Hit 3-N–H…NE-His134 3.07 151.45

Leu132, His133, His134, Phe143, His171, Phe199, Pro200, Met23, Asp92, Gly131, 
Gly142, Cys144, Asn196, Phe198, Gln254, Leu265, Gly294, Gly295 10d

Hit 3-C-H…O-Gly131 2.35 91.82

Hit 3-C-H…O-Tyr297 2.21 113.41

Hit 3-O25…Zn2+ 1.86 –

Figure 11.  The 2-D structures of screened hit compounds. The figure is drawn using ChemDraw Ultra v12.0.2.
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involved in hydrogen bonding interactions with His, Lys, Gly, Tyr, Ser, Glu, and Asp residues from the active 
site pocket of HDACs. The TSA, LBH, JNJ-26481585, NVP-LAQ824, and MS-275 were involved in π-stacking 
(Phenylalanine and Histidine) and hydrophobic interactions with catalytic residues of HDACs (Table 7).

On the other hand, the active compounds including TSA, CUDC-907, LBH, JNJ-26481585, NVP-LAQ824, 
and ACY-1215 from the training set were mapped with all chemical features of Hypo 1. The moderately active 
SHH and MS-275 missed one HYP chemical feature whereas, the least active VPA missed one RA and one HYP 
chemical feature when aligned to Hypo 1.

The highly active compounds contained all chemical features while moderately active and least active com-
pounds missed one or more chemical features when aligned to Hypo 1. This inferred that Hypo 1 was able to 
discriminate the active, moderately active, and least active compounds more efficiently. The RA chemical feature 
present in Hypo 1 was governed to π-interactions present in the co-crystallized active (TSA, LBH, JNJ-26481585, 
and NVP-LAQ824) and docked (MS-275) drug molecules with HDACs (Table 7). The HBA chemical feature 
facilitated the coordinated interaction with  Zn2+ and hydrogen bonding interaction of drugs with catalytic resi-
dues of HDACs, except MS-275. Further, the two HYP features of Hypo 1 represented the hydrophobic nature 
of drugs which is evident by the observed hydrophobic interactions between the drugs and active site pocket 
residues of HDACs (Table 7). Interestingly, the analyzed interactions data of training set compounds and its cor-
relation with chemical features present in Hypo 1 suggested that HBA, RA, and HYP are very essential features 
needed to equip molecules as potent inhibitors of HDACs. The hydrophobic interactions are playing a crucial 
role in adopting proper conformation of drugs in the catalytic pocket of HDACs to inhibit its catalytic activity. 
The absence of HYP and RA features leads to reduced activity of drug molecules against HDACs. This analysis 
exclusively evidenced the good quality of Hypo 1 and delves to establish the vital link between the chemical 
features present in approved drugs and their ability to form molecular interactions with HDACs.

Similarly, the analyzed PLIP profiles of simulated structures of hit compounds showed a close resemblance 
in the presence of chemical features and their molecular interactions with HDAC3 (Fig. 7, Table S4). All three 
hits were significantly coordinated with the  Zn2+ and involved in hydrogen bonding interactions with catalytic 
residues of HDAC3 (Table 5). This is justified by the mapped HBA feature by hit compounds when aligned to 
Hypo 1 (Fig. 7). The RA feature is representing the π-type of interactions that were noticed in all simulated com-
plexes of hits and HDAC3. Further, the observed hydrophobic interactions in simulated complexes of hits and 
HDAC3 were supported by the two HYP features mapped with Hypo 1. The PLIP analysis enabled us to establish 
a good correlation between the presence of chemical features in the training set and hit compounds and their 
molecular interactions with HDAC3. Moreover, the performed ligand-based pharmacophore modeling, virtual 
screening, and molecular dynamics simulation studies may pave the way to understand the molecular mechanism 

Table 6.  The binding free energy (kJ/mol) between the simulated complexes of TSA and screened hit 
compounds with HDAC3 was calculated by the MM-PBSA method. ∆Evdw, ∆Eele, ∆Gpolar, ∆Gnon-polar and 
∆Gbinding represented van der Waals energy, electrostatic energy, polar solvation energy, nonpolar solvation 
energy and binding energy, respectively.

Complex ∆Evdw ∆Eelec ∆Gpolar ∆Gnon-polar ∆Gbinding

TSA  − 148.01 ± 10.23  − 24.49 ± 5.22 125.06 ± 39.31  − 13.64 ± 0.43  − 61.08 ± 29.11

Hit 1  − 301.51 ± 22.80 8.41 ± 11.07 257.39 ± 16.95  − 26.68 ± 1.39  − 62.39 ± 27.34

Hit 2  − 257.69 ± 6.5 16.77 ± 10.25 111.72 ± 15.37  − 21.59 ± 1.20  − 150.78 ± 17.81

Hit 3  − 226.86 ± 8.15 27.68 ± 6.01 178.69 ± 71.64  − 18.69 ± 0.82  − 39.17 ± 77.79

Figure 12.  Energetic contribution of individual residues from simulated protein–ligand complexes of Inhibitor 
(TSA, Blue color), Hit 1 (Red color), Hit 2 (Green color) and Hit 3 (Yellow color) with HDAC3. The figure is 
drawn using Microsoft Excel 2013 v15.
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Figure 13.  PCA plot showing most significant principal components of motion of the Cα atoms of HDAC3 in 
complex with (A) Hit 1/TSA, (B) Hit 2/TSA, and (C) Hit 3/TSA. The figure is drawn using Microsoft Excel 2013 
v15.
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of HDAC3 inhibition by screened hit compounds. Therefore, the screened hits may act as potent and selective 
inhibitors against HDAC3 and may be used for the treatment of different types of cancers.

Discussion
The epigenetic modifications are mainly involved in the transcriptional repression of tumor suppressor genes 
and activation of  oncogenes61. HDAC3 is an epigenetic regulator that deacetylates the lysine residues from the 
histone proteins which resulted in chromatin condensation. The elevated expression of HDAC3 has been asso-
ciated with the progression of various cancer subtypes, neurodegenerative disorders, and many other human 
diseases. Therefore, it is considered as a potential therapeutic target for designing new potent inhibitors to treat 
human  diseases5–7,10,26,27,34–37,51. The computationally advanced techniques and comprehensive knowledge of 
pharmacophoric features of HDAC3 inhibitors may help to design more potent and selective  inhibitors51–53. 
Therefore, we performed the ligand-based pharmacophore modeling of HDAC3 inhibitors to predict the salient 
pharmacophore features that estimate the inhibitory activity scale of new lead candidates. Further, the homo-
geneity of the biological assay is one of the important aspects of the 3D-QSAR study, therefore training and test 
dataset compounds were collected from the same biological assay.

The statistical parameters such as cost value, correlation coefficient, fit value, and RMSD were used to generate 
the pharmacophore model. The best pharmacophore hypothesis ’Hypo 1’ contains one HBA, one RA, and two 
HYP chemical features which represented the high correlation coefficient (R2 = 0.994). The correlation coefficient 
values for ten generated models were greater than 0.93 and the highest correlation of Hypo 1 demonstrated the 
strong predictive ability (Table 1). This is evident by the lowest RMSD (0.373) value that indicates the minor dif-
ference between the estimated and experimental activities of HDAC3 inhibitors (Table 2). Further, the first nine 
hypotheses contain similar chemical features that might be the reason for the lower RSMD (< 1.0) value while 
the replacement of HBA by the HBD feature in the last hypothesis resulted in the higher RMSD (1.19) value. In 
addition, the presence of the HBD feature in Hypo 10 was attributed to low-cost difference, small correlation 
coefficient as well as fit value. Total cost values of 10 generated pharmacophore models ranged from 102.51 to 
115.96. Hypo 1 has scored the total cost value close to the fixed cost (98.65) value whereas, the total cost value 
of Hypo 10 was far away from the fixed cost as compared to other generated models. The activity values of 23 
out of 24 training set compounds were estimated within their experimental activity range while one active 
compound 9 was estimated as moderately active (Table 2). The calculated error values for the experimental and 
estimated activities are within one order of magnitude (< 2.4) that justifies the good predictability of Hypo 1. 
The chemical features of Hypo 1 were present in all active compounds of the training set whereas, two or three 

Table 7.  The combined protein–ligand interactions profiles of training set compounds obtained from the PLIP 
server and DS.

PDB ID π-Stacking, van der Walls and Hydrophobic Interactions Metal interactions Hydrogen bond

Trichostatin (TSA)

HDAC6
(5EEF)

π-Stacking_Phe202, His82, Pro83, Ser150, Gly201, Phe202, 
His232, Gu360, Trp261, Gly361, Asp323 and Gly362 TSA, Asp323, Asp230 and His232

TSA-O….His193
TSA-O…Lys330
TSA-O….Gly361
TSA-O….Tyr363

Panobinostat (LBH)

HDAC6
(5EF8)

π-Stacking_Phe583, π-Stacking_Phe643, Asp460, His463, 
His573, His574, Gly582, His614, Asp705, Leu712 and 
Gly743

LBH, Asp612, His614 and Asp705 LBH-O…Tyr745
LBH-O…Ser531

Quisinostat (JNJ-26481585)

HDAC8
(6HSK)

π-Stacking_Phe152, π-Stacking_His180, π-Stacking_
Phe208, Asp101, His142, His143, Gly151, Gly206, Phe207, 
Pro209, Gly210, Leu274 and Gly304

JNJ-26481585, Asp178, His180 and Asp267 JNJ-26481585-O…Tyr306

Dacinostat (NVP-LAQ824)

HDAC1
(Docking)

π-Stacking_His178, π-Stacking_Phe150
π-Stacking_His205, π-Stacking_His28 NVP-LAQ824, His141 and Asp176 LAQ824-N…Glu98, LAQ824-N…Gly149, LAQ824-O…

Asp99

Recolinostat (ACY-1215)

HDAC6
(5WGL)

His462, Pro464, Ser531, Gly582, Phe643, Phe583, His614, 
Asp705, Pro711, Leu712 and Gly743 ACY-1215, Asp612 and His614, Asp705

ACY-1215-O…Tyr745,
ACY-1215-N…His573,
ACY-1215-N…His574

Vorinostat (SAHA)

HDAC-2
(4LXZ)

His33, Pro34, Gly154, Phe155, His145, His183, Phe210, 
Leu276 and Gly306,

SHH, Asp181,
His183 and
Asp269

SHH-N…Asp104
SHH-N…His146
SHH-O…Tyr308

Entinostat (MS-275)

HDAC2
(Docking)

π-Stacking_Pro34, Glu67, Thr70, Lys71, Lys149, Leu166, 
Ala199, Lys284, Asp345, Lys347, His349, Ile351 and Ser351, MS-275…Asn331

Valproic acid (VPA)

HDAC2
(Docking) Met35, Leu144, Phe155, Cys156, Phe210 and Leu276 VPA, Asp181,

His183 and Asp269 VPA-O…Tyr308
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chemical features were present in moderately active and inactive compounds. This anticipated that Hypo 1 can 
discriminate the training set compounds based on their activity scales.

Further, the earlier studies performed using the 3D-QSAR, ligand, and structure-based pharmacophore 
modeling showed similar chemical features, as observed in Hypo 1 (Table 1)45–50. Interestingly, the HBA, RA, and 
2HYP chemical features of Hypo 1 were found similar as described in the earlier ligand-based pharmacophore 
modeling of HDAC1 inhibitors. Pharmacophore modeling of HDAC2 and HDAC6 consisted of HBA, RA, and 
HYP features, in addition to  HBD45,48. The HBD feature observed in our last hypothesis was previously reported 
in structure-based pharmacophore modeling of HDAC6  inhibitors47. The RA feature was absent in pharmaco-
phore models of HDAC8 and HDACs inhibitors whereas, the HYP feature was absent in the 3D-QSAR model 
of  HDAC144,49. The correlation coefficient of the predicted Hypo 1 was higher than the other pharmacophore 
models of HDACs (Table 1-SI). This again inferred that the quality of the Hypo 1 model was good and could 
efficiently estimate the activity of HDAC3 inhibitors.

Furthermore, the randomly generated 19 spreadsheets in the Fischer randomization run did not show bet-
ter statistical parameters over the Hypo 1, this thereby confirmed that Hypo 1 was not generated by chance. In 
addition, the validation of Hypo 1 by the external test set overestimated three compounds while all remaining 57 
compounds were correctly estimated to their respective experimental activity scales (Table 3). A high correlation 
coefficient between the experimental and estimated activities of training and test set compounds indicates the 
good predictive ability of Hypo 1. The screening of ~ 1.2 million compounds followed by subsequent drug-like 
properties filtration resulted in 174 hits. The 22 final hits were retrieved after the docking study which helps to 
narrow down the false-positive rate. Moreover, three-hit compounds that mapped all the chemical features of 
Hypo 1 and resulted as best hits in docking studies were subjected to 50 ns of MD simulations. Simulations have 
helped to assess the binding mode and time-dependent behavior of hits in the active site pocket of HDAC3. The 
TSA and all three hits were bound in the active site pocket of HDAC3 (Fig. 9). The RMSD, RMSF and Rg values 
were below 3 nm which presented the good stability of hits in the catalytic pocket of HDAC3 during simulations. 
All hits were strongly coordinated with  Zn2+ and facilitated the molecular interactions such as hydrogen bonds, 
hydrophobic and π-interactions with active site residues of HDAC3. HDACs are the  Zn2+ dependent enzymes 
therefore, the  Zn2+ coordination by hits may lead to inhibition of HDAC3 activity. This was supported by the 
strong molecular interactions between hits and HDAC3 observed during MD simulations. The estimated total 
binding energy of Hit 1 and Hit 2 were more favorable for complex formation with HDAC3 as compared to 
TSA and Hit 3. Also, the calculated residue-wise decomposition of the binding energy of HDAC3 has supported 
the chemical features present in Hypo 1 and molecular interaction patterns observed in simulation studies. 
Additionally, the PCA analysis was found to be in tune with docking, MD simulations and MM-PBSA results.

Moreover, the analyses of the protein–ligand interactions showed that all co-crystallized and docked drugs 
were coordinated with  Zn2+ and involved in hydrogen bonding, hydrophobic and π-interactions with the active 
site residues of various HDACs isomers (Table 7). Similar interactions were observed in simulated hit compounds 
which are supported by the pharmacophore features present in Hypo 1 (Fig. 2, Table 5). Remarkably, the interac-
tion profiles suggested that HBA, RA, and HYP are very essential chemical features required for hit compounds to 
acts as potent inhibitors against HDAC3 and other isoforms. The PLIP analysis established a significant correla-
tion between the chemical features of Hypo 1 and molecular interactions from the training set and simulated hit 
compounds. The pharmacophore modeling and simulations may pave the way to elucidate the essential chemical 
features needed for the potent activity of HDAC3 inhibitors towards catalytic inhibition of HDAC3. The screened 
hit compounds may act as selective inhibitors of HDAC3 and may be used for the treatment of cancer subtypes.

Conclusion
We have developed a ligand-based pharmacophore model ‘Hypo 1’ which consisted of one HBA, one RA, and 
two HYP salient chemical features with an excellent correlation coefficient value of 0.994. Fischer’s randomi-
zation analysis inferred that Hypo 1 is the statistically best-fit hypothesis, and not generated by chance. The 
validation of Hypo 1 using an external test set yielded a good correlation coefficient between the predicted and 
experimental  IC50 values. This delineated the good predictive ability of Hypo 1. Database screening followed 
by drug-likeness analysis identified hits that can act as potent HDAC3 inhibitors. These hits were further nar-
rowed down to 22 by molecular docking using the Goldscore and Chemscore as a cut-off of reference inhibitor 
(TSA). The three hit compounds and TSA showed comparable results in MD simulations by retaining  Zn2+ 
coordination, π-interactions, hydrogen bonding, and hydrophobic interactions. These results are comparable 
with earlier crystallographic data of FDA approved drugs which co-crystallized with HDACs. Further, the PLIP 
analysis showed a close resemblance in molecular interactions of the training set and hit compounds with the 
presence of chemical features in Hypo 1. Therefore, the screened hit compounds may act as a potent and selective 
inhibitor of HDAC3 and may find applications for the treatment of various cancer subtypes and other human 
disorders regulated by HDAC3.

Methods
Compounds selection and preparation of the dataset. The selection of a training set of compounds 
is a crucial step for the generation of a pharmacophore model which subsequently determines the quality of the 
generated pharmacophores. The dataset of 84 known HDAC3 inhibitors with diverse structural scaffold and 
different inhibitory activities were obtained from earlier literature  reports62–66. The selected compounds were 
divided into the training set and the test set. The training set compounds were used to build the 3D-QSAR 
pharmacophore model and the generated models were validated using the test set compounds. The 24 HDAC3 
inhibitors were used as a training set compounds for the generation of the 3D-QSAR pharmacophore model; 
while the generated pharmacophore models were validated using a test set of 60 compounds (S1 Table). Both 
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dataset compounds possessed chemical as well as structural diversity with a different range of HDAC3 inhibitory 
concentrations  (IC50 values) and spanned over the four orders of magnitude. The  IC50 values of the training set 
compounds ranged from 0.84 nmol/L to 260,000 nmol/L. The training set compounds were categorized as active 
 (IC50 < 100  nmol/L, +++), moderately active (100  nmol/L ≤  IC50 < 10,000  nmol/L, ++) and inactive  (IC50 ≥ 10 
000 nmol/L, +) based on their  IC50 values. Similarly, the test set compounds were classified based on their  IC50 
values. The 2D chemical structures of 84 compounds were drawn using ChemDraw Ultra v12.0.2 software 
(https:// chemi stryd ocs. com/ chemd raw- ultra- 12-0/) and their 3D structures were generated using Discovery 
Studio v3.5 (DS) software (https:// disco ver. 3ds. com).

Pharmacophore model generation. Before generating the pharmacophore model, the Feature Mapping 
Protocol was employed to identify the salient chemical features of the training set compounds that facilitate the 
selective inhibition of HDAC3. The HDAC3 inhibitors possessed hydrogen bond acceptors (HBA), hydrogen 
bond donors (HBD), ring aromatic (RA) and hydrophobic regions (HYP) are the mapped features. The phar-
macophore models were generated using these features from the 3D-QSAR Pharmacophore Generation Protocol 
available in DS by correlating the known experimental activity  (IC50) values of inhibitors with their chemical 
structures. The BEST algorithm was used to generate the low-energy conformations of the compounds. The 
energy threshold value was set to 20 kcal/mol67. The uncertainty value was set to 3 while other parameters were 
kept at their default values. The top ten quantitative hypotheses were generated based on the activity values 
offered by the training dataset compounds by using the Debnath  method68. Debnath method suggests that if 
the model has a high correlation coefficient (R2), the lowest total cost, the lowest root mean square deviation 
(RMSD), maximum fit values, and the total cost close to the fixed cost and far from the null cost, such models 
can be considered as the best quantitative hypothesis. The reliability of the hypothesis depends on the difference 
between the total cost of the generated hypothesis and the null hypothesis.

Pharmacophore model validation. The best pharmacophore model should qualify the desired statistical 
values, predict the accurate activity of the compounds, and should have the ability to retrieve active compounds 
from the chemical databases. The best hypothesis was subjected to validations by Fisher’s randomization and 
the external test set method. The statistical significance of the best-selected model was computed by employ-
ing Fischer’s randomization  method69. This method checks the correlation between the chemical structure and 
the biological activity of a compound. This method also overrules the possibility of chance correlation for the 
pharmacophore model development and ensures that the model was not generated by chance. The 95% of confi-
dence level was set during the 3D-QSAR pharmacophore generation process, which generated nineteen random 
 spreadsheets70. This was done by randomizing the activity of these compounds by using the same features and 
parameters that were used to generate the original pharmacophore hypothesis. During this process, if any of 
the random pharmacophore hypotheses showed better statistical values than the best hypothesis (Hypo 1), then 
it was considered that the Hypo1 was generated by random  correlation71. Further, the external test set of 60 
chemically diverse compounds was used to determine the ability of the Hypo1 that could predict and classify the 
compounds to their correct experimental activity scale other than training set compounds. The predicted and 
experimental activity values were plotted to observe the range of correlation between them. Low energy confor-
mations of test set compounds were generated using the same protocols used for the training set compounds. 
The BEST algorithm with the Flexible fitting option from the Ligand Pharmacophore Mapping module was used 
during the test set validation.

Virtual screening and prediction of drug‑likeness. Virtual screening of chemical databases was con-
ducted to identify novel compounds with new scaffolds that can trigger or inhibit the activity of the HDAC3. 
The pharmacophore-based (or ligand-based) virtual screening of the diverse chemical databases can be used as 
a resource for the identifications of novel and potential candidate leads in the drug discovery process. The best 
pharmacophore model delineates the chemical functionalities responsible for the bioactivities of potential drugs, 
thereby evident its use in performing a database search. The validated best pharmacophore model was selected 
as a 3D query to screen the NCI, Asinex, Chembridge, and Maybridge chemical databases which contain mil-
lions of compounds with diverse structural scaffolds. The Fast and Flexible options from the Ligand Pharmaco-
phore Mapping protocol of DS were used for the database screenings. The compounds from screened databases 
that fit all the features of the best pharmacophore model were retrieved as hit compounds. Further, the drug-like 
physicochemical properties of hit compounds were predicted by using Lipinski’s rule of  five72. Lipinski’s rule 
of five estimates the absorption and intestinal permeability of drugs. According to this rule, the well-absorbed 
drugs should possess less than 10 hydrogen bond acceptor groups, less than 5 hydrogen bond donor groups, a 
molecular weight of less than 500 Da, a Log P value of less than 5, and rotatable bonds less than 10. Furthermore, 
the absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties of each compound were 
calculated using the ADMET Descriptors protocol in DS. This protocol investigated the ability of compounds to 
cross the blood–brain barrier (BBB), optimal solubility, good intestinal absorption, non-inhibition to CYP2D6, 
and non-hepatotoxicity67. The compounds scoring better-estimated activities and fulfilled all drug-likeness 
properties were selected for molecular docking studies.

Molecular docking of hit compounds with HDAC3. The molecular docking of screened hit compounds 
with the target protein has emerged as a very effective tool in the modern drug development  process38,39,50,51. 
Docking can be used to find out the most appropriate conformation and binding modes of hit compounds, 
interactions of small molecules with catalytic site residues of target proteins, and also estimate their binding 
 affinities73–76. The training set compounds and all hit compounds were docked in the binding site of HDAC3. 

https://chemistrydocs.com/chemdraw-ultra-12-0/
https://discover.3ds.com
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The docking studies were performed using the Genetic Optimization for Ligand Docking (GOLD) program 
v5.2.2 (https:// www. ch. cam. ac. uk/ compu ting/ softw are/ gold- suite). 77 The genetic algorithm from GOLD allows 
partial flexibility to protein and full flexibility to ligands during the docking process. The crystal structure of 
HDAC3 (PDB code: 4A69) was downloaded from the protein data bank (PDB, rcsb.org) and used for the mol-
ecule  docking54. As a part of preparing a target protein, the water molecules were removed from the protein and 
hydrogen atoms were added to calculate the bond orders for protein and ligand molecules. The orientations of all 
histidine tautomers from the catalytic pocket of HDAC were transformed into the ND1H protonation states as 
observed in the crystal  structure54. All the atoms within 10 Å of the co-crystallized ligand in the crystal structure 
of HDAC3 were defined as the binding pocket of the protein. The binding affinity of the ligand to the protein 
was predicted using default scoring function such as Goldscore and rescoring was done using Chemscore. The 
100 docking poses were generated for each ligand and the best poses were selected based on high Goldscore and 
low Chemscore. Furthermore, the docked poses were validated by analyzing the molecular interactions such as 
hydrogen bonds, hydrophobic interaction, and metal interactions between the ligand and the active site residues 
from the catalytic pocket of HDAC3. The final docked complexes of hit compounds with HDAC3 were subjected 
to molecular dynamics (MD) simulation studies.

Molecular dynamics (MD) simulation. The MD simulations of 50 ns were performed on stable docked 
complexes of HDAC3 with the top three screened hit compounds and most active compound from the train-
ing set using the GROMACS 2018 package (https:// www. groma cs. org) with a Gromos96 force  field78,79. The 
PRODRG, an online webserver was used to generate the topology files for  ligands80. The system was solvated 
with a TIP3P water model around the HDAC3 with 10 Å from the edged cubic box and neutralized by  Na+ 
counter ions. Initially, the system was energy minimized by 10,000 steps using the steepest descent method to 
remove the possible unfavorable contacts from initial structures until the tolerance of 2000 kJ/mol was achieved. 
The energy minimized system was then subjected to equilibration in three different steps. A constant tempera-
ture controlled by a Nose–Hoover thermostat was applied for 100 ps at 300 k in the first phase of  equilibration81. 
Later, a 100 ps NPT ensemble was applied at 1 bar of pressure followed by 50 ns of the production run under 
the same ensembles. In the simulation, the pressure of the system was maintained using the Parrinello-Rahman 
barostat  method82. The protein backbone of HDAC3 was restrained and solvent molecules with counter ions 
were allowed to move during the equilibration process. All bonds to a hydrogen atom were restrained by apply-
ing the LINCS algorithm using a 2 fs of time  step83. The particle mesh ewald method was employed to calculate 
the long-range electrostatic  interactions84. The Coulombic and van der Waals interactions were calculated by 
employing the cut-off distance of 9 Å and 10 Å, respectively. The MD simulations were performed by releasing 
all constraints along with the periodic boundary conditions to avoid edge  effects85. The 2 fs of time step was 
used throughout the simulation and the coordinate data of trajectories were stored at every picosecond (ps). The 
simulation results were analyzed using GROMACS, VMD (https:// www. ks. uiuc. edu/ vmd/), and DS.

Binding‑free energy calculation by MM‑PBSA. The binding free energy of protein–ligand complexes 
of all three hits and reference TSA with HDAC3 were calculated using the Molecular mechanics Poisson-Boltz-
mann surface area (MM-PBSA)  method86. The average binding energy was calculated by analyzing 20 snapshot 
structures of each simulated complex from the last 20 ns of MD trajectories. The g_mmpbsa tool of GROMACS 
was employed to calculate the contribution of different energetic parameters such as van der Waals (ΔEvdw), 
electrostatic (ΔEelec), non-polar solvation (ΔGnps), and polar solvation (ΔGPs) energy in the total binding energy. 
Also, the residual contribution of key residues in binding free energy was calculated by the MmPbSaDecomp.
py python script.

Binding energy was calculated as,

Principle component analysis (PCA). Principle component analysis is an advanced technique in MD 
simulation to study the conformational dynamics of protein-inhibitor  complexes87,88. PCA was performed on 
the conformational ensembles selected from the MD trajectories of simulated complexes of HDAC3 with TSA 
and screened hit compounds. The PCA was constructed for the displacement of  Cα atoms of HDAC3 to evaluate 
its global motion in complex with TSA and hit compounds. PCA was carried out using standard protocol avail-
able in the GROMACS Software  package78. In the first step, the covariance matrix was constructed by using the 
gmx_covar tool which calculates eigenvectors and their eigenvalues. Further, the projections of the eigenvector 
along with the first two components were analyzed by the gmx anaeig tool. The first two eigenvectors (PC1 and 
PC2) having the highest eigenvalues which represent the large-scale concentrated motions were selected to plot 
the 2D projections of each independent trajectory.

Protein–ligand interactions profile (PLIP) analysis. The protein–ligand interaction profiles of simu-
lated complexes of HDAC3 with screened hit compounds, and co-crystallized FDA approved and investigational 
drugs from the training set were analyzed using PLIP online program (https:// plip- tool. biotec. tu- dresd en. de/ 
plip- web/ plip/ index) and DS  software89. The training set contains 9 FDA approved and investigational drugs 
such as Trichostatin A (TSA), Fimepinostat (CUDC-907), Panobinostat (LBH), Quisinostat (JNJ-26481585), 
Dacinostat (NVP-LAQ824), Recolinostat (ACY-1215), Vorinostat (SHH), Entinostat (MS-275) and Valproic 

�Gbind = �EMM + �GSolv

�EMM = �Evdw + �Eelec

�GSolv = �Gnps + �Gps

https://www.ch.cam.ac.uk/computing/software/gold-suite)
https://www.gromacs.org
https://www.ks.uiuc.edu/vmd/
https://plip-tool.biotec.tu-dresden.de/plip-web/plip/index
https://plip-tool.biotec.tu-dresden.de/plip-web/plip/index
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acid (VPA) which were used for the 3D-QSAR pharmacophore model generation. The intermolecular electro-
static interactions including hydrogen bonds, hydrophobic contacts, and metal interactions were predicted. The 
PLIP profiles of hit compounds were compared with the approved drugs from the training set.

Received: 20 October 2021; Accepted: 3 January 2022

References
 1. Muntean, A. G. & Hess, J. L. Epigenetic dysregulation in cancer. Am J Pathol. 175(4), 1353–1361 (2009).
 2. Moosavi, A. & Motevalizadeh, A. A. Role of epigenetics in biology and human diseases. Iran. Biomed. J. 20(5), 246–258 (2016).
 3. Cheng, Y. et al. Targeting epigenetic regulators for cancer therapy: Mechanisms and advances in clinical trials. Signal Transduct 

Target Ther. 4, 62 (2019).
 4. Ropero, S. & Esteller, M. The role of histone deacetylases (HDACs) in human cancer. Mol. Oncol. 1(1), 19–25 (2007).
 5. Haberland, M., Montgomery, R. L. & Olson, E. N. The many roles of histone deacetylases in development and physiology: Implica-

tions for disease and therapy. Nat. Rev. Genet. 10(1), 32–42 (2009).
 6. Tang, J., Yan, H. & Zhuang, S. Histone. deacetylases as targets for treatment of multiple diseases. Clin. Sci. (Lond.) 124(11), 651–662 

(2013).
 7. Li, Y. & Seto, E. HDACs and HDAC inhibitors in cancer development and therapy. Cold Spring Harb. Perspect. Med. 6(10), a026831 

(2016).
 8. Yang, X. J. & Seto, E. HATs and HDACs: From structure, function and regulation to novel strategies for therapy and prevention. 

Oncogene 26(37), 5310–5318 (2007).
 9. Zhang, L. et al. Therapeutic potential of selective histone deacetylase 3 inhibition. Eur. J. Med. Chem. 162, 534–542 (2019).
 10. Sarkar, R. et al. Histone deacetylase 3 (HDAC3) inhibitors as anticancer agents: A review. Eur. J. Med. Chem. 192, 112171 (2020).
 11. Wilson, A. J. et al. Histone deacetylase 3 (HDAC3) and other class I HDACs regulate colon cell maturation and p21 expression 

and are deregulated in human colon cancer. J. Biol. Chem. 281(19), 13548–13558 (2006).
 12. Zhan, W. et al. USP38 regulates the stemness and chemoresistance of human colorectal cancer via regulation of HDAC3. Onco-

genesis 9(5), 48 (2020).
 13. Chen, D. Q. et al. HDAC3-mediated silencing of miR-451 decreases chemosensitivity of patients with metastatic castration-resistant 

prostate cancer by targeting NEDD9. Ther. Adv. Med. Oncol. 10, 1–5 (2018).
 14. Ma, Y., Duan, J. & Hao, X. Down-regulated HDAC3 elevates microRNA-495-3p to restrain epithelial-mesenchymal transition and 

oncogenicity of melanoma cells via reducing TRAF5. J. Cell Mol. Med. 24(22), 12933–12944 (2020).
 15. Li, J. et al. HDAC3 deteriorates colorectal cancer progression via microRNA-296-3p/TGIF1/TGFβ axis. J. Exp. Clin. Cancer Res. 

39(1), 248 (2020).
 16. Wang, H. et al. Chidamide increases the sensitivity of refractory or relapsed acute myeloid leukemia cells to anthracyclines via 

regulation of the HDAC3 -AKT-P21-CDK2 signalling pathway. J. Exp. Clin. Cancer Res. 39(1), 278 (2020).
 17. Li, Y. et al. Checkpoint regulator B7x is epigenetically regulated by HDAC3 and mediates resistance to HDAC inhibitors by repro-

gramming the tumor immune environment in colorectal cancer. Cell Death Dis. 11(9), 753 (2020).
 18. Lu, T. et al. Betulinic acid restores imatinib sensitivity in BCR-ABL1 kinase-independent, imatinib-resistant chronic myeloid 

leukemia by increasing HDAC3 ubiquitination and degradation. Ann. N Y Acad. Sci. 1467(1), 77–93 (2020).
 19. Wang, Q. et al. A combination of BRD4 and HDAC3 inhibitors synergistically suppresses glioma stem cell growth by blocking 

GLI1/IL6/STAT3 signaling axis. Mol. Cancer Ther. 19(12), 2542–2553 (2020).
 20. Han, T. et al. Coordinated silencing of the Sp1-mediated long noncoding RNA MEG3 by EZH2 and HDAC3 as a prognostic factor 

in pancreatic ductal adenocarcinoma. Cancer Biol. Med. 17(4), 953–969 (2020).
 21. Yang, Z. et al. HDAC3-dependent transcriptional repression of FOXA2 regulates FTO/m6A/MYC signaling to contribute to the 

development of gastric cancer. Cancer Gene Ther. 28(1–2), 141–155 (2021).
 22. Janczura, K. J. et al. Inhibition of HDAC3 reverses Alzheimer’s disease-related pathologies in vitro and in the 3xTg-AD mouse 

model. Proc. Natl. Acad. Sci. USA 115(47), E11148–E11157 (2018).
 23. Schmitt, H. M. et al. Targeting HDAC3 in the DBA/2J spontaneous mouse model of glaucoma. Exp. Eye Res. 200, 108244 (2020).
 24. Williams, G. M. et al. HDAC3 deacetylates the DNA mismatch repair factor MutSβ to stimulate triplet repeat expansions. Proc. 

Natl. Acad. Sci. USA 117(38), 23597–23605 (2020).
 25. Na, J. et al. The crosstalk of HDAC3, microRNA-18a and ADRB3 in the progression of heart failure. Cell Biosci. 11(1), 31 (2021).
 26. Neelarapu, R. et al. Design, synthesis, docking, and biological evaluation of novel diazide-containing isoxazole- and pyrazole-based 

histone deacetylase probes. J. Med. Chem. 54(13), 4350–4364 (2011).
 27. Matheson, R. et al. Neuroprotective effects of selective inhibition of histone deacetylase 3 in experimental stroke. Transl. Stroke 

Res. 11(5), 1052–1063 (2020).
 28. Pulya, S. et al. PT3: A Novel benzamide class histone deacetylase 3 inhibitor improves learning and memory in novel object rec-

ognition mouse model. ACS Chem. Neurosci. 12(5), 883–892 (2021).
 29. Chen, Y. et al. Discovery of N-(2-Amino-4-Fluorophenyl)-4-[bis-(2-Chloroethyl)-Amino]-benzamide as a potent HDAC3 inhibi-

tor. Front. Oncol. 10, 592385 (2020).
 30. Liu, J. et al. Discovery of highly selective and potent HDAC3 inhibitors based on a 2-substituted benzamide zinc binding group. 

ACS Med. Chem. Lett. 11(12), 2476–2483 (2020).
 31. Hsieh, H. Y. et al. Targeting breast cancer stem cells by novel HDAC3-selective inhibitors. Eur. J. Med. Chem. 140, 42–51 (2017).
 32. Fang, R. et al. Inactivation of BRM/SMARCA2 sensitizes clear cell renal cell carcinoma to histone deacetylase complex inhibi-

tors. Pathol. Res. Pract. 216(4), 152867 (2020).
 33. Zhang, M. J. et al. The HDAC3 inhibitor RGFP966 ameliorated ischemic brain damage by downregulating the AIM2 inflamma-

some. FASEB J. 34(1), 648–662 (2020).
 34. Chen, X. et al. Requirement for the histone deacetylase Hdac3 for the inflammatory gene expression program in macrophages. 

Proc. Natl. Acad. Sci. USA 109(42), E2865–E2874 (2012).
 35. Hoeksema, M. A. et al. Targeting macrophage Histone deacetylase 3 stabilizes atherosclerotic lesions. EMBO Mol. Med. 6(9), 

1124–1132 (2014).
 36. Falkenberg, K. J. & Johnstone, R. W. Histone deacetylases and their inhibitors in cancer, neurological diseases and immune dis-

orders. Nat. Rev. Drug Discov. 13(9), 673–691 (2014).
 37. Siebzehnrubl, F. A. et al. Early postnatal behavioral, cellular, and molecular changes in models of Huntington disease are reversible 

by HDAC inhibition. Proc. Natl. Acad. Sci. USA 115(37), E8765–E8774 (2018).
 38. Wang, D. F. et al. Toward selective histone deacetylase inhibitor design: Homology modeling, docking studies, and molecular 

dynamics simulations of human class I histone deacetylases. J. Med. Chem. 48(22), 6936–6947 (2005).



20

Vol:.(1234567890)

Scientific Reports |         (2022) 12:1712  | https://doi.org/10.1038/s41598-022-05698-7

www.nature.com/scientificreports/

 39. Sangeetha, S. S. et al. Breast cancer specific histone deacetylase inhibitors and lead discovery using molecular docking and descrip-
tor study. Trends Bioinform. 6, 25–44 (2013).

 40. Kour, A. et al. In silico pathway analysis based on chromosomal instability in breast cancer patients. BMC Med. Genom. 13(1), 168 
(2020).

 41. Vadivelan, S. et al. Pharmacophore modeling and virtual screening studies to design some potential histone deacetylase inhibitors 
as new leads. J. Mol. Graph Model. 26(6), 935–946 (2008).

 42. Brogi, S. et al. 3D-QSAR using pharmacophore-based alignment and virtual screening for discovery of novel MCF-7 cell line 
inhibitors. Eur. J. Med. Chem. 67, 344–351 (2013).

 43. Shi, J., Zhao, G. & Wei, Y. Computational QSAR model combined molecular descriptors and fingerprints to predict HDAC1 
inhibitors. Med. Sci. (Paris) 34, 52–58 (2018).

 44. Sirous, H. Computer-driven development of an in silico tool for finding selective histone deacetylase 1 inhibitors. Molecules 25(8), 
952 (2020).

 45. Kandakatla, N. Ramakrishnan, G. Ligand based pharmacophore modeling and virtual screening studies to design novel HDAC2 
inhibitors. Adv. Bioinform. 812148 (2014).

 46. Hsu, K. C. et al. Novel class IIa-selective histone deacetylase inhibitors discovered using an in silico virtual screening approach. 
Sci. Rep. 7(1), 3228 (2017).

 47. Zeb, A. et al. Investigation of non-hydroxamate scaffolds against HDAC6 inhibition: A pharmacophore modeling, molecular 
docking, and molecular dynamics simulation approach. J. Bioinform. Comput. Biol. 16(3), 1840015 (2018).

 48. Wang, Y. et al. Hierarchical virtual screening of the dual MMP-2/HDAC-6 inhibitors from natural products based on pharmaco-
phore models and molecular docking. J. Biomol. Struct. Dyn. 37(3), 649–670 (2019).

 49. Thangapandian, S. et al. Docking-enabled pharmacophore model for histone deacetylase 8 inhibitors and its application in anti-
cancer drug discovery. J. Mol. Graph Model. 29(6), 894 (2011).

 50. Halder, A. K. et al. Design of dual MMP-2/HDAC-8 inhibitors by pharmacophore mapping, molecular docking, synthesis and 
biological activity. RSC Adv. 5(88), 72373–72386 (2015).

 51. Amin, S. A. et al. Histone deacetylase 3 inhibitors in learning and memory processes with special emphasis on benzamides. Eur. 
J. Med. Chem. 166, 369–380 (2019).

 52. Li, S. et al. HDAC3i-finder: A machine learning-based computational tool to screen for HDAC3 inhibitors. Mol. Inform. 40(3), 
e2000105 (2021).

 53. Xia, J. et al. The discovery of novel HDAC3 inhibitors via virtual screening and in vitro bioassay. J. Enzyme Inhib. Med. Chem. 
33(1), 525–535 (2018).

 54. Watson, P. J. et al. Structure of HDAC3 bound to co-repressor and inositol tetraphosphate. Nature 481(7381), 335–340 (2012).
 55. Somoza, J. R. et al. Structural snapshots of human HDAC8 provide insights into the class I histone deacetylases. Structure 12(7), 

1325–1334 (2004).
 56. Dowling, D. P. et al. Structural studies of human histone deacetylase 8 and its site-specific variants complexed with substrate and 

inhibitors. Biochemistry 47(51), 13554–13563 (2008).
 57. Itoh, Y. et al.  N+-C-H···O Hydrogen bonds in protein-ligand complexes. Sci. Rep. 9(1), 767 (2019).
 58. Ganai, S. A. et al. Combinatorial in silico strategy towards identifying potential hotspots during inhibition of structurally identical 

HDAC1 and HDAC2 enzymes for effective chemotherapy against neurological disorders. Front. Mol. Neurosci. 10, 357 (2017).
 59. Mohseni, J. et al. Transcript, methylation and molecular docking analyses of the effects of HDAC inhibitors, SAHA and Dacinostat, 

on SMN2 expression in fibroblasts of SMA patients. J. Hum. Genet. 61(9), 823–830 (2016).
 60. Mourad, A. A. E. et al. Novel HDAC/tubulin dual inhibitor: Design, synthesis and docking studies of α-phthalimido-chalcone 

hybrids as potential anticancer agents with apoptosis-inducing activity. Drug Des. Dev. Ther. 14, 3111–3130 (2020).
 61. Turnbull, C., Sud, A. & Houlston, R. S. Cancer genetics, precision prevention and a call to action. Nat Genet. 50(9), 1212–1218 

(2018).
 62. Wang, C. et al. Thailandepsins: bacterial products with potent histone deacetylase inhibitory activities and broad-spectrum anti-

proliferative activities. J. Nat. Prod. 74(10), 2031–2038 (2011).
 63. Marson, C. M. et al. Potent and selective inhibitors of histone deacetylase-3 containing chiral oxazoline capping groups and a 

N-(2-Aminophenyl)-benzamide binding unit. J. Med. Chem. 58(17), 6803–6818 (2015).
 64. Chen, Y. et al. Development of purine-based hydroxamic acid derivatives: potent histone deacetylase inhibitors with marked 

in vitro and in vivo antitumor activities. J. Med. Chem. 59(11), 5488–5504 (2016).
 65. Gong, C. J. et al. Design, synthesis and biological evaluation of bisthiazole-based trifluoromethyl ketone derivatives as potent 

HDAC inhibitors with improved cellular efficacy. Eur. J. Med. Chem. 112, 81–90 (2016).
 66. Gilson, M. K. et al. BindingDB in 2015: A public database for medicinal chemistry, computational chemistry and systems phar-

macology. Nucl. Acids Res. 44(D1), D1045–D1053 (2016).
 67. Sakkiah, S. et al. 3D QSAR pharmacophore based virtual screening and molecular docking for identification of potential HSP90 

inhibitors. Eur. J. Med. Chem. 45(6), 2132–2140 (2010).
 68. Debnath, A. K. Pharmacophore mapping of a series of 2,4-diamino-5-deazapteridine inhibitors of Mycobacterium avium complex 

dihydrofolate reductase. J. Med. Chem. 45(1), 41–53 (2002).
 69. Fischer, R. The principle of experimentation illustrated by a psycho-physical experiment, Chapter II, 8th ed. New York, USA. 

(Hafner Publishing, 1966).
 70. John, S. et al. Development, evaluation and application of 3D QSAR Pharmacophore model in the discovery of potential human 

renin inhibitors. BMC Bioinformatics 12, 14:S4 (2011a).
 71. John, S. et al. Potent BACE-1 inhibitor design using pharmacophore modeling, in silico screening and molecular docking stud-

ies. BMC Bioinform. 12, 1:S28 (2011b).
 72. Lipinski, C. A. et al. Experimental and computational approaches to estimate solubility and permeability in drug discovery and 

development settings. Adv. Drug Deliv. Rev. 46(1–3), 3–26 (2001).
 73. Kumar, R. et al. Novel chemical scaffolds of the tumor marker AKR1B10 inhibitors discovered by 3D QSAR pharmacophore 

modeling. Acta Pharmacol. Sin. 36(8), 998–1012 (2015).
 74. Sakkiah, S. & Lee, K. W. Pharmacophore-based virtual screening and density functional theory approach to identifying novel 

butyrylcholinesterase inhibitors. Acta Pharmacol. Sin. 33(7), 964–978 (2012).
 75. Bavi, R. et al. Exploration of novel inhibitors for bruton’s tyrosine kinase by 3D QSAR modeling and molecular dynamics simula-

tion. PLoS ONE 11(1), e0147190 (2016).
 76. Barale, S. S. et al. Molecular insights into destabilization of alzheimer’s Aβ protofibril by arginine containing short peptides: A 

molecular modeling approach. ACS Omega 4, 892–903 (2019).
 77. Verdonk, M. L. et al. Improved protein-ligand docking using GOLD. Proteins 52(4), 609–623 (2003).
 78. Van Der Spoel, D. et al. GROMACS: Fast, flexible, and free. J. Comput. Chem. 26(16), 1701–1718 (2005).
 79. Oostenbrink, C. et al. A biomolecular force field based on the free enthalpy of hydration and solvation: The gromos force-field 

parameter sets 53A5 and 53A6. J. Comput. Chem. 25, 1656–1676 (2004).
 80. Schuettelkopf, A. W. & van Aalten, D. M. F. PRODRG—A tool for high-throughput crystallography of protein-ligand complexes. 

Acta Crystallogr. A D60, 1355–1363 (2004).
 81. Hoover, W. G. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A 31, 1695–1697 (1985).



21

Vol.:(0123456789)

Scientific Reports |         (2022) 12:1712  | https://doi.org/10.1038/s41598-022-05698-7

www.nature.com/scientificreports/

 82. Parrinello, M. Rahman, A. Polymorphic transitions in single crystals. A new molecular dynamics method. J. Appl. Phys. 52, 7182 
(1981).

 83. Hess, B. et al. LINCS: A linear constraint solver for molecular simulations. J. Comput. Chem. 18, 1463–1472 (1997).
 84. Darden, T., York, D. & Pedersen, L. Particle mesh Ewald: An N-log(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 

10089–10092 (1993).
 85. Son, M. et al. Exploration of virtual candidates for human HMG-CoA reductase inhibitors using pharmacophore modeling and 

molecular dynamics simulations. PLoS ONE 8(12), e83496 (2013).
 86. Kumari, R., Kumar, R. & Lynn, A. G-Mmpbsa—A GROMACS tool for high-throughput MM-PBSA calculations. J. Chem. Inf. 

Model. 54, 1951–1962 (2014).
 87. Amadei, A., Linssen, A. B. & Berendsen, H. J. Essential dynamics of proteins. Proteins 17, 412–425 (1993).
 88. Parulekar, R. S. & Sonawane, K. D. Insights into the antibiotic resistance and inhibition mechanism of aminoglycoside phospho-

transferase from Bacillus cereus: In silico and in vitro perspective. J. Cell Biochem. 119, 9444–9461 (2018).
 89. Salentin, S. et al. PLIP: Fully automated protein-ligand interaction profiler. Nucl. Acids Res. 43(W1), W443–W447 (2015).

Acknowledgements
NK is sincerely acknowledged to Savitribai Phule Pune University (SPPU) (Formerly Pune University), Pune 
for providing SPPU postdoctoral fellowship (ST/BL/2018-2018/0203). Ms. SN is thankful to SERB-DST, New 
Delhi, India for providing JRF. Prof. R. N. Gacche gratefully acknowledge the financial support by SERB-DST, 
New Delhi, India (File No.: EEQ/2019/000027) for providing a research grant.

Author contributions
R.N.G. and N.K. designed the study, N.K. and S.N. performed the study and wrote the manuscript. S.B. and S.K. 
performed MD simulations. R.B. helped in the analysis of data. K.S. check and improve the manuscript. R.N.G. 
drafted the manuscript. All authors read and approved the final manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 022- 05698-7.

Correspondence and requests for materials should be addressed to R.G.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2022

https://doi.org/10.1038/s41598-022-05698-7
https://doi.org/10.1038/s41598-022-05698-7
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Identification of novel leads as potent inhibitors of HDAC3 using ligand-based pharmacophore modeling and MD simulation
	Results
	Pharmacophore model generation. 
	Hypothesis validation. 
	Fischer randomization. 
	Test set validation. 

	Virtual screening and drug-likeness filtration. 
	Molecular docking of hit compounds with HDAC3. 
	Molecular dynamics simulation study of hit compounds with HDAC3. 
	Binding free energy calculation by using the MM-PBSA method. 
	Principle component analysis (PCA). 
	Protein–ligand interaction profile (PLIP) analysis of training set (FDA approved drugs) and final simulated hit compounds. 

	Discussion
	Conclusion
	Methods
	Compounds selection and preparation of the dataset. 
	Pharmacophore model generation. 
	Pharmacophore model validation. 
	Virtual screening and prediction of drug-likeness. 
	Molecular docking of hit compounds with HDAC3. 
	Molecular dynamics (MD) simulation. 
	Binding-free energy calculation by MM-PBSA. 
	Principle component analysis (PCA). 
	Protein–ligand interactions profile (PLIP) analysis. 

	References
	Acknowledgements


