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Raster plots machine learning 
to predict the seizure liability 
of drugs and to identify drugs
N. Matsuda1, A. Odawara1, K. Kinoshita2, A. Okamura2, T. Shirakawa2 & I. Suzuki1*

In vitro microelectrode array (MEA) assessment using human induced pluripotent stem cell (iPSC)-
derived neurons holds promise as a method of seizure and toxicity evaluation. However, there are still 
issues surrounding the analysis methods used to predict seizure and toxicity liability as well as drug 
mechanisms of action. In the present study, we developed an artificial intelligence (AI) capable of 
predicting the seizure liability of drugs and identifying drugs using deep learning based on raster plots 
of neural network activity. The seizure liability prediction AI had a prediction accuracy of 98.4% for the 
drugs used to train it, classifying them correctly based on their responses as either seizure-causing 
compounds or seizure-free compounds. The AI also made concentration-dependent judgments of the 
seizure liability of drugs that it was not trained on. In addition, the drug identification AI implemented 
using the leave-one-sample-out scheme could distinguish among 13 seizure-causing compounds as 
well as seizure-free compound responses, with a mean accuracy of 99.9 ± 0.1% for all drugs. These AI 
prediction models are able to identify seizure liability concentration-dependence, rank the level of 
seizure liability based on the seizure liability probability, and identify the mechanism of the action of 
compounds. This holds promise for the future of in vitro MEA assessment as a powerful, high-accuracy 
new seizure liability prediction method.

In the field of drug discovery and development, one major factor leading to delays and failures in the develop-
ment of new drugs is the cancellation of development because of side effects discovered in nonclinical studies and 
clinical  trials1. Compounds that display central nervous system (CNS) toxicity constitute 34% of all candidate 
compounds that are removed from candidacy in the clinical  stage2. Detection of CNS toxicity in preclinical tri-
als is an important topic of study in modern drug  development3. Drug-induced seizures have a severe CNS side 
effect; the most common method of in vitro evaluation of seizures is a rat hippocampal brain slice  assay4. Brain 
slice assays use tissue from the brain of an animal, meaning that the slice has a functional network of neurons, 
making it the in vitro gold  standard5. However, the slices deteriorate quickly after they are harvested; hence, in 
general, a brain slice assay requires sample preparation and experiments to be conducted on the same day; one 
issue with this is that the throughput thus yielded is low.

One high-throughput in vitro functional evaluation method that uses cultured neurons involves performing 
measurements with a planar microelectrode array (MEA). Use of an MEA is a noninvasive method of measuring 
neural network activity at multiple points  simultaneously6–13. With modern advancements in multiwell testing, 
the effects that compounds have on nerve function can be measured in a high-throughput  fashion14,15. This 
holds promise as an in vitro seizure toxicity evaluation  method16,17. Previous studies have used rodent neurons 
to detect seizure-causing compound  response18–20.

Because conventional brain slice assays and MEA assays use rodent cells, they lack human receptors and other 
potential drug targets, creating issues with interspecies extrapolation. The use of human induced pluripotent 
stem cell (iPSC)-derived  neurons21,22 holds promise as a method that can guarantee the ability to extrapolate 
data to humans. In recent years, many researchers, including our research group, have published research on 
neurotoxicity screening via MEA using human iPS  cells13,15,23–31.

However, the analytic methods and analytic parameters for the detection of seizure toxicity in in vitro MEA 
assay are not well  established16,17. Seizure-causing compounds with different mechanisms have different end 
point  changes18,20,23. In other words, using only simple end points for general seizure-like events (SLEs) such as 
the number of network bursts and firing activity is insufficient; there is a need to develop multiple end points 
and new analytic parameters.
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Multiple end points obtained from MEA data are generally calculated by plotting the neural network activ-
ity time-series data as a raster  plot14,18,19,23,27,28,31,32. Many parameters are related to network  bursts11,18,20,23,26,28,31, 
but the methods for detecting network bursts differ between  facilities11,18,33, and there is a problem that the 
differences in the methods for detecting network bursts affect the  results33. Raster plots contain the all spike 
information of a neural network activity, but sufficient information on the neural network activity inherent in 
the spike column cannot be extracted from the conventional analysis parameters. Therefore, herein, we propose 
an analysis method that uses deep learning to extract 4096-dimensional features from raster plot images and 
machine-learn the features. This is because detecting network bursts is not necessary, and there is a possibility 
of capturing changes in neural network activity from the information of all spike sequences.

Thus, machine learning using raster plots is considered an effective method of toxicity screening. Previously 
published research on seizure detection via machine learning includes methods of SLEs identification using 
detection in electrocorticograms after  seizures34, rat acute slice local field potential signals, and image recogni-
tion  technology35; however, there are no previous publications on the use of raster plots for machine learning.

In the present study, we obtained MEA data from 13 seizure-causing compounds and two seizure-free com-
pounds using human iPSC-derived cortical neurons and developed a method for distinguishing between seizure-
causing compounds and seizure-free compounds as well as identifying drugs using machine learning trained 
on raster plots.

Results
Human iPSC-derived neural network drug response. Culturing of a human iPSC-derived neural 
network seeded on an MEA was possible without cell aggregation even on the 12th week of culturing. Network 
burst firing was observed from the 6th week of culture onward. Figure 1A (a) shows a cultured 81 days in vitro 
(DIV) phase contrast image, and Fig. 1A (b) shows a typical network burst signal. Concentration-dependent 
data were obtained for 13 seizure-causing compounds and two seizure-free compounds after the 14th week of 
culturing, when the neural networks were considered  mature28. Whenever the signal that was obtained passed a 
threshold, the spikes detected were used to create a raster plot. Figure 1A (c) shows the threshold used to detect 
spikes in the single electrode signal (top portion) and a raster plot of the detected spikes (bottom portion). 
Figure 1B shows raster plots of compounds with different mechanisms of action: (a) 4-aminopyridine (4-AP), 
(b) pentylenetetrazol (PTZ), (c) carbamazepine, (d) N-methyl-D-aspartic acid (NMDA), (e) acetaminophen, 
and (f) dimethyl sulfoxide (DMSO). Seizure-causing compounds caused different changes depending on their 
mechanism of action (Fig. 1B). Figure 1C shows a schematic of five analytic parameters calculated from raster 
plots (total spikes (TS), number of network bursts (NoB), inter network burst interval (IBI), duration of a net-
work burst (DoB), and spikes in a network burst (SiB)). Figure 2 shows the drug response of each parameter 
when the vehicle response is set to 100%. The numerical data are listed in supplementary Tables S1–S5. The 
maximum increases in the NoB of 4-AP and PTZ were 321.0% ± 15.4% (30 µM) and 147.3% ± 2.7% (10 µM), 
respectively. The IBI, DoB, and SiB decreased starting at a concentration of 1 µM for 4-AP and PTZ (Fig. 2a,b). 
The DoB decreased starting at 0.3 µM of picrotoxin (Fig. 2c). For carbamazepine, the TS and NoB decreased 
at 30 µM, and the DoB decreased and the IBI increased at 100 µM (Fig. 2d). For pilocarpine, the IBI increased 
starting at 10 µM, the DoB decreased starting at 30 µM, and the TS decreased at 100 µM (Fig. 2e). For kainic 
acid, the TS decreased at 0.3 µM and the NoB went to 0 starting at 1 µM (Fig. 2f). For NMDA, the TS increased 
at 1 µM whereas the TS, DoB, and SiB decreased and the NoB increased at 10 µM (Fig. 2g). For tramadol, the 
NoB decreased and the SiB increased starting at 3 µM, the TS, DoB, and SiB decreased at 30 µM, and the IBI 
increased at 100  µM (Fig.  2h). For theophylline, the IBI increased starting at 10  µM, and the SiB increased 
whereas the NoB decreased starting at 30 µM (Fig. 2i). For paroxetine, the DoB decreased starting at 0.3 µM, and 
the TS decreased starting at 1 µM (Fig. 2j). For varenicline, the IBI increased and the DoB decreased at 30 µM 
(Fig. 2k). For venlafaxine, the DoB decreased at 10 µM, and the TS and SiB decreased at 30 µM (Fig. 2l). For 
acetaminophen, the DoB decreased starting at 3 µM (Fig. 2m). For DMSO and amoxapine, no changes in any 
parameters were observed (Fig. 2n,o).

Based on the preceding results, we found that the changes in the parameters studied were not similar among 
all seizure-causing compounds; changes differed based on the mechanism of action of the drug. At the same time, 
a significant difference in the DoB was detected for acetaminophen, which is a seizure-free compound. Changes 
in DoB may be observed for certain seizure-free compounds. Consequently, we found that there are difficulties 
in using a single parameter to distinguish between seizure-causing compounds with different mechanisms of 
action and seizure-free compounds.

Creating an artificial intelligence using raster plots and evaluating drugs as either seizure-caus-
ing or seizure-free. We created an artificial intelligence (AI) that was trained on raster plots so that it could 
classify the responses of seizure-causing compounds with different mechanisms of action as well as the responses 
of seizure-free compounds. Raster plots were created from the time-series data of the detected spikes, and then 
images were created by segmenting the data into time windows four times that of the inter-maximum frequency 
of a network burst interval (IMFI) in the pre-drug administration. The network burst frequency differed depend-
ing on the well, so the number of segmented raster plot images also differed depending on the well. The reason 
for choosing four times the IMFI is that it is suitable for capturing both the regularity of network burst activity 
and fine firing patterns, and reduces variability between wells. Next, the segmented raster plot images were input 
into  AlexNet36, an object recognition model, and the 4096-dimensional parameters which were output from the 
fully connected layer (the 21st layer) were extracted as image feature quantities. Lastly, we corrected for differ-
ences between the wells due to differing initial states by normalizing the feature quantities of each drug around 
the mean value of the feature quantities when the vehicle was administered to each well. The 13 seizure-causing 
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Figure 1.  MEA data from a cultured human iPSC-derived neural network. (A) (a) Phase-contrast image of 
neurons on an MEA chip at 81 days in vitro (DIV). (b) Typical action potential waveform in a spontaneous 
recording. (c) Upper graph shows the action potential waveform acquired with a single electrode and the voltage 
threshold for spike detection (red line). Raster plots of detected spikes (black circles) are shown under the graph. 
(B) Concentration-dependent Raster plot images of typical mechanisms of action (a) 4-AP, (b) carbamazepine, 
(c) NMDA, (d) PTZ, (e) acetaminophen, (f) DMSO. (C) Schematic diagram of analysis parameters.
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compound and two seizure-free compound datasets, which is the number of split raster plots per concentra-
tion, were created as shown in Table 1. We used a pattern recognition neural network composed of 4096 neuron 
input layers, nine sigmoid neuron hidden layers, and an output layer with two classes, which made up a toxicity 
prediction model to predict whether a compound was a seizure-causing compound or a seizure-free compound 
(Fig. 3A). We used four seizure-causing compounds with different mechanisms and burst frequency responses 
(4-AP [30 and 60 µM, n = 3 wells, respectively], carbamazepine [100 µM, n = 3 wells], NMDA [3 and 10 µM, n = 3 
wells], and PTZ [1000 µM, n = 3 wells]) and two seizure-free compounds (all concentrations of acetaminophen 
[n = 3 wells] and all concentrations of DMSO [n = 3 wells]) to train and validate the effectiveness of this model; 
75% of the dataset was used for training, and the remaining 25% was used for validation after training (Table 1). 
The reason for selecting the four seizure-causing compounds is that, in order to cover the firing pattern of the 
seizure-causing compound, compounds having different mechanisms of action were selected as training data, 
one in which the firings increased and the other in which the firings decreased. The accuracy was evaluated 
using the raster plots of unlearned wells after training, i.e., using the holdout scheme. The training data used 
contained 330 4-AP plots, 822 carbamazepine plots, 1323 NMDA plots, 198 PTZ plots, and 3546 acetaminophen 
plots and DMSO 2286 plots. The test data used contained 111 4-AP plots, 294 carbamazepine plots, 441 NMDA 
plots, 54 PTZ plots, and 1182 acetaminophen plots and 702 DMSO plots. We created a confusion matrix of 

Figure 2.  Concentration-dependent changes of 15 compounds in five parameters: TS (pink), NoB (black), IBI 
(green), DoB (blue), SiB (cyan). Parameters were depicted as the average % change of control (vehicle control set 
to 100%) ± SEM from n = 3–4 wells. Data were analyzed using one-way ANOVA followed by post hoc Dunnett’s 
test (*p < 0.05, **p < 0.01 vs. vehicle).
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the seizure-causing and seizure-free classification results from the training data and test data (Fig. 3B). Next, a 
receiver operating characteristic curve and the area under the curve (AUC) were calculated for all training data 
and all test data, and the optimal operating point was determined (Fig. 3C(a)). The accuracy, positive predictive 
value, sensitivity, specificity, and F-measure of the prediction results of the model at the optimal operating point 
were calculated (Table 2). The model trained on raster plot feature quantities had an AUC in the training data 
of 0.9998 and an AUC in the unlearned data of 0.9967; the optimal operating point was 0.158. The classification 
precision in the training data for each drug at the optimal operating point was as follows: 100% for 4-AP, 97.8% 
for carbamazepine, 99.6% for NMDA, and 96.0% for PTZ. The classification precision in the unlearned data was 
100% for 4-AP, 91.5% for carbamazepine, 100% for NMDA, and 94.4% for PTZ. The prediction accuracy for all 
compounds was 98.4%.

Figure 3C(b) shows the ROC curve using a support vector machine (SVM) model trained with the same 
4096-dimensional feature dataset as the neural network (NN) model. Comparing the AUC in the test data of 
SVM and NN revealed that the NN model had an AUC of 0.9967 and the SVM model had an AUC of 0.9841; 
thus, the NN model was superior to the SVM model [Fig. 3C(b)]. Therefore, in this study, we used the NN model.

The seizure-causing/seizure-free classification AI trained on the raster plots that we created accurately clas-
sified the responses of seizure-causing compounds with differing mechanisms and seizure-free compounds.

Determining concentration-dependent seizure toxicity using the AI. If we are able to establish a 
ranked development priority for compounds based on their seizure liability, it will lead to more efficient drug 
discovery and development. Determining the concentration dependence is necessary in order to assign prior-
ity to drugs. Thus, using the AI we created, we investigated the concentration dependence of seizure-causing/
seizure-free judgments. The concentration data toxicity probabilities predicted by the AI are shown in Fig. 4. 
The proportions of the images classified as seizure-causing and as seizure-free used the time-series data from 
each well, and then the mean probability for each well was calculated and used to represent the toxicity risk 
at each concentration. For unlearned sample, which includes data of the wells that were not used for training 
dataset, the following concentrations were determined to have a seizure liability probability of 50% or higher—
4-AP: 1 µM (62.2%), 10 µM (94.6%), 30 µM (100%), and 60 µM (100%); carbamazepine: 30 µM (76.9%) and 
100 µM (85.0%); NMDA: 1 µM (63.3%), 3 µM (100%), and 10 µM (100%); and PTZ: 1 µM (51.9%), 10 µM 
(81.5%), 100 µM (88.9%), and 1000 µM (88.9%) (Fig. 4 (a), (b), (d), (e)). The seizure liability at concentrations 
lower than the concentrations the AI was trained on was shown, and then the concentration dependence was 
calculated. Acetaminophen, which is a seizure-free compound, was determined to be seizure-free with a prob-
ability of 97.9% or higher, regardless of the concentration. DMSO was also determined to be seizure-free with 
a probability of 99.1% or higher, regardless of the concentration (Fig. 4c,f). The seizure liability prediction AI 
we created determined the concentration dependence of seizure-causing compounds and identified seizure-free 
compounds as seizure-free regardless of the concentration.

Determining the seizure toxicity of unlearned drugs using the AI. It is important for the AI that 
we created to detect the toxicity of drugs that it has not been trained on. Thus, we used the AI we created to 
determine the toxicity of nine unlearned seizure-causing compounds based on data collected on them. In order 
to verify AI, nine unlearned seizure-causing compounds were regarded as unknown compounds and were not 
trained. Figure 5 shows the seizure toxicity determination results for each concentration of the unlearned drugs. 
The concentrations that showed a 50% or higher probability of seizure liability were as follows—kainic acid: 

Table 1.  Dataset information using creation of seizure risk prediction AI. The concentration in red letters 
indicates the concentration learned as seizure-causing, and blue letters indicate the concentration learned as 
seizure-free.
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1 µM (81.8%), 3 µM (100%), and 10 µM (100%); paroxetine: 3 µM (73.7%), 10 µM (100%), and 30 µM (100%); 
picrotoxin: 0.1 µM (91.4%), 0.3 µM (93.7%), 1 µM (91.8%), 3 µM (97.8%), and 10 µM (91.5%); varenicline: 
10 µM (52.6%) and 30 µM (77.1%); pilocarpine: 1 µM (62.3%), 3 µM (75.8%), 10 µM (86.8%), 30 µM (89.4%), 

Figure 3.  Creation of seizure risk prediction AI using raster plot images and evaluation of the prediction 
model. (A) Data flow and architecture of seizure risk prediction model. w1 is the weight between the input 
layer and the hidden layer, w2 is the weight between the hidden layer and the output layer. (B) (a) Confusion 
matrix for each compound used for training, (b) confusion matrix for the entire training dataset, (c) confusion 
matrix for each compound used for the test, (d) confusion matrix for the entire test dataset. The test dataset 
used the data of the wells not used for training dataset. Vehicle in the confusion matrix indicates vehicle data 
in four seizure-causing compounds. (C) (a) Receiver operating characteristic (ROC) curve after classification 
of training and testing data in a neural network model (black line: training data; red line: testing data; red dot: 
optimum operating point). (b) Comparison of ROC curves after classification of the same testing data in NN 
and SVM models (black line: SVM model; red line: NN model).
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and 100 µM (97.0%); tramadol: 3 µM (61.9%), 10 µM (88.6%), 30 µM (98.9%), and 100 µM (100%); and venla-
faxine: 10 µM (90.5%), 30 µM (100%), and 100 µM (100%). Seven of the unlearned drugs were determined to 
have concentration-dependent seizure liability (Fig. 5a–d, f–h). On the other hand, amoxapine and theophylline 
were determined to be seizure-free at all concentrations (Fig. 5e,i). This showed that the AI was able to detect 
seizure toxicity in a concentration-dependent manner, even for unlearned drugs.

In order to verify whether AI can determine the safety of unlearned negative compounds, the negative 
compounds Aspirin (1, 3, 10, 30, 100 µM) and Amoxicillin (1, 3, 10, 30, 100) µM) and Felbinac (1, 3, 10, 30, 
100 µM) data were judged (Fig. 6). The negative probabilities of Aspirin were 76.3% (1 µM), 82.0% (3 µM), 79.0% 

Table 2.  Predictive model performance evaluation using the optimum operating point. Acc accuracy, 
PPV positive predictive value, Sen  sensitivity, Spec specificity.

Original/predict

Training Training

Acc PPV Sen Spec F-measure Acc PPV Sen Spec F-measure

All compounds 0.997 0.997 0.985 0.999 0.991 0.984 0.965 0.954 0.992 0.959

4-AP 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Carbamazepine 0.978 1.000 0.964 1.000 0.981 0.915 0.977 0.850 0.980 0.909

NMDA 0.996 0.997 0.998 0.993 0.997 1.000 1.000 1.000 1.000 1.000

PTZ 0.960 0.989 0.929 0.990 0.958 0.944 1.000 0.889 1.000 0.941

Figure 4.  Concentration-dependent prediction of seizure risk in learning drugs by AI. AI predicted the 
negative probabilities (blue bar) and seizure risk (red bar) at each concentration of training data (left) and test 
data (right). (a) 4-AP, (b) NMDA, (c) acetaminophen, (d) carbamazepine, (e) PTZ, (f) DMSO.

Figure 5.  Concentration-dependent prediction of seizure risk in non-training drugs by AI. AI predicted the 
negative probabilities (blue bar) and seizure risk (red bar) at each concentration. (a) Kainic acid, (b) paroxetine, 
(c) picrotoxin, (d) varenicline, (e) amoxapine, (f) pilocarpine, (g) tramadol, (h) venlafaxine, (i) theophylline.
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(10 µM), 80.8% (30 µM), and 81.7% (100 µM). Amoxicillin were 91.3% (1 µM), 86.3% (3 µM), 86.4% (10 µM), 
81.1% (30 µM), and 77.6% (100 µM). Felbinac were 83.8% (1 µM), 80.9% (3 µM), 76.1% (10 µM), 71.8% (30 µM), 
and 77.7% (100 µM) (Fig. 6b). Although there were some significant differences in the conventional analysis 
parameters (Fig. 6a), AI judged negative at all three concentrations. From these results, it was confirmed that AI 
can be judged to be negative even for negative compounds that are unlearned drugs.

Drug identification using the AI. Because seizure-causing compounds with differing mechanisms elicit 
different responses, if the AI is able to classify the compounds despite this, it can also predict the mechanism of 
seizure liability of unlearned drugs. Thus, we trained the AI on drug names and raster plots in order to classify 
compounds as seizure-causing compounds with differing mechanisms or seizure-free compounds.

We used a pattern recognition neural network composed of 4096 neuron input layers, 120 hidden layers 
containing sigmoid neurons, and an output layer with 14 classes (Fig. 7), which made up a drug identification 
model to predict the name of seizure-causing compounds and seizure-free compounds. The model was trained 
on a dataset composed of 4-AP (30 and 60 µM), amoxapine (100 µM), carbamazepine (30 and 100 µM), kainic 
acid (1, 3, and 10 µM), NMDA (3 and 10 µM), PTZ (1000 µM), paroxetine (3, 10, and 30 µM), picrotoxin (1, 3, 
and 10 µM), pilocarpine (10, 30, and 100 µM), theophylline (100 µM), tramadol (30 and 100 µM), varenicline 

Figure 6.  Prediction of seizure risk in non-training negative compounds by AI. (A) Concentration-dependent 
changes of 3 negative compounds in five parameters: TS (pink), NoB (black), IBI (green), DoB (blue), SiB 
(cyan). (a) Aspirin, (b) amoxicillin, (c) felbinac, (B) AI predicted the negative probabilities (blue bar) and 
seizure risk (red bar) at each concentration.

Figure 7.  Creation of drug name prediction AI using raster plot images. Data flow and architecture of drug 
name prediction model. w1 is the weight between the input layer and the hidden layer; w2 is the weight between 
the hidden layer and the output layer.
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(30 µM), and venlafaxine (10, 30, and 100 µM) as well as all concentrations of acetaminophen as well as all con-
centrations of DMSO as seizure-free compounds (Table 3). The all compounds dataset that was used was made 
up of 56 wells. Training was conducted by excluding one of the 56 wells and training the AI on the names of the 
drugs in the other 55 wells; 75% of the 55 well datasets were used for training, and 25% were used for validation 
after training. The excluded well was used for obtaining test data. The prediction accuracy was calculated using 
the leave-one-sample (well)-out scheme. We created five AIs for each excluded well. In other words, we created 
56 × 5 = 280 AIs. For the data from the single well (the data from the single well that was not used to train the 
AI), the name of the drug was identified based on the five models we created, and the mean value was calculated. 
The deviation of the five models prediction accuracy was 0.11% at the trained concentrations of all drugs. The 
deviation of the prediction accuracy at all concentrations of all drugs was 1.6%. The predictive probabilities at 
different drug concentrations are shown in Table 4. DMSO and acetaminophen, which are seizure-free com-
pounds, were judged to be seizure-free at all concentrations for every drug vehicle, with a mean probability of 
99.9% ± 0.3%. 4-AP (1 µM), amoxapine (3 µM), NMDA (1 µM), picrotoxin (0.1 µM), pilocarpine (1 µM), PTZ 
(10 µM), theophylline (3 µM), varenicline (10 µM), venlafaxine (3 µM), and tramadol (10 µM) were correctly 
identified at concentrations lower than those in the training data. Carbamazepine (30 µM), kainic acid (1 µM), 
and paroxetine (3 µM) were correctly identified at the concentrations used to train the AI. The drugs that could 
not be identified at certain concentrations were all seizure-free compounds, and no drugs were misidentified 
as different drugs. The mean predictive accuracy for all drugs at the concentrations used to train the AI was 
99.9% ± 0.1%. The drug identification AI we created correctly identified the responses of 13 seizure-causing 
compounds and two seizure-free compounds.

Discussion
There are multiple studies that reported on the evaluation of seizure-causing compounds via MEA measurement 
using rodent  neurons18,23,35. However, in recent years, there have also been reports on evaluating seizure-causing 
compounds using iPS  neurons23. The results of previous research on in vitro  assays18,23,35,37–42, the concentrations 
in the present study at which significant differences were observed using conventional burst analysis, the con-
centrations at which the AI identified seizure liability, and the concentrations at which the AI identified drugs 
are all summarized in Table 5. Table 5 shows the concentrations and analysis parameters that were significantly 
different from those of the vehicle studied in a previous  research18,23,35,37–42 and the present study using the con-
ventional analysis method. It can be seen that the parameters at which significant differences are detected differ 
depending on the type of drug, the type of neurons, and the facilities.

A comparison of the results in which compounds were judged to have seizure liability via conventional param-
eter analysis and predicted to exhibit seizure liability by the AI using the MEA data obtained in the present study 
showed that aside from theophylline and amoxapine, seizure liability was determined at virtually all concentra-
tions. This result indicated that the AI developed in the present study using raster plots is able at the very least 
to grasp the characteristics of the parameters obtained from burst analysis. In conventional parameter analysis, 
the parameters that change differ depending on the drug (Table 5), so it is unclear which parameter should be 

Table 3.  Dataset information used for the creation of drug name prediction AI. The concentrations in red 
letters indicate the concentrations used for learning the drug name, and blue letters indicate the concentration 
learned as negative control.
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focused on to best detect toxicity. If a compound is determined to exhibit toxicity when there is a change in just a 
single parameter, as was the case for acetaminophen, a seizure-free compound may be determined to have seizure 
liability (a false positive). Even in previous studies, acetaminophen is considered a non-neurotoxic (negative 
controls) compound, which produced only sporadic changes in the measured  parameters43. However, the AI 
developed in the present study judged the seizure liability of acetaminophen, Aspirin, amoxicillin, and felbinac 
(seizure-free compounds) at all concentrations. This AI prediction method is able to grasp the characteristics 
of seizure liability, which means that it does not produce false positives. Theophylline has been reported to have 
seizure liability only at a high concentration (300 µM) based on brain slice  responses35, so the seizure liability 
result produced by the AI is valid. In our in vivo rat study, the cerebrospinal fluid (CSF) drug concentration 
immediately after theophylline administration had seizures was 1570 µM. The CFS concentration was 605 µM 

Table 4.  Probability of drug name in each concentration data predicted by AI. The underlining shows the 
concentration data used for learning the drug name (red), and the negative control (blue).
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when only prodromal symptoms did not cause seizures (data not shown). From these facts, it can be inferred that 
seizures occur at a higher concentration than the concentration used in this in vitro MEA study. The conventional 
MEA analysis results judge concentrations of 3 µM to have seizure liability (Fig. 2i), indicating a high probability 
of false positives. The results of the present study indicate that the seizure liability prediction AI is a method that 
can reduce the number of false positives compared to that of conventional MEA analysis. Amoxapine was not 
determined to be at seizure risk. The analysis parameters in Fig. 2 also showed no significant changes, suggesting 
that the AI determination is valid and is characteristic of the cell model used. Selection of human iPS cell-derived 
neurons that are reactive to all positive compounds will also be important for improving prediction accuracy.

Additionally, the AI calculates the probability of toxicity risk, which means that it is able to perform concen-
tration-dependent judgments and rank compounds in the order of their seizure liability. Venlafaxine, tramadol, 
and paroxetine are serotonin reuptake inhibitors that are also seizure-causing compounds; at a concentration of 
3 µM, the AI is able to rank them in order of toxicity risk as follows: paroxetine (73.7%), followed by tramadol 
(61.9%), and venlafaxine (43.3%). For tramadol, there are reports of seizures at 300 mg  administration44, and 
at 200 mg administration, the blood concentration is 0.6 µg /  mL45, and there is a report that there is a linear 
system in concentration and blood  concentration46. Therefore, the blood concentration at 300 mg is calculated to 
be about 3 µM. The toxicity risk of AI at 3 µM was 61.9%. Although it is the blood concentration, the judgment 
result of tramadol by AI is considered to indicate the possibility of in vitro to in vivo extrapolation (IVIVE).

The concentrations at which the drug identification AI was able to identify drugs were virtually the same as 
the concentrations at which it was able to identify toxicity risk. This indicates a marked appearance of responses 
unique to drugs with different mechanisms at concentrations of seizure-causing compounds that result in sei-
zure liability. Additionally, the AI successfully identified amoxapine and theophylline, the two drugs that were 
judged not to exhibit toxicity. This indicates that even if there was no toxicity risk, the AI was still able to detect 

Table 5.  Comparison with pre-clinical seizure assay benchmark using 15 compounds. NEBP no. of elecs. 
participating in burst, PIS percent isolated spikes, ISI inter spike intervals, ISI CV coefficient of variation of 
the ISIs, DIQR interquatrile range of burst duration of burst duration, MBSN normalized MAD burst spike 
number, ISId ISI distance, – , no report; N/A no risk. a Riskjudge.

Compound Concentration range tested

Rodent iPS iPS (this work) iPS (this work) iPS (this work)
aConventional burst 
analysis

aConventional burst 
analysis

aConventional burst 
analysis aAI Drug name AI

4-Aminopyridine 1–60 µM 3 µM23

(NBP, DIQR)
1 µM23

(CV of IBI)
 < 1 µM
(NoB, IBI, DoB, SiB)  < 1 µM  < 1 µM

Amoxapine 1–100 µM 0.03 µM23

(DoB)
0.03 µM23

(NEBP) N/A N/A 3 µM

Carbamazepine 1–100 µM 0.75 µg/0.2 µL40

(in vivo) – 30 µM
(TS, NoB) 30 µM 30 µM

Kainic acid 0.3–10 µM 0.4 µg/0.2 µL37

(in vivo) – 0.3 µM
(TS) 1 µM 1 µM

NMDA 0.1–10 µM
5 µM18

(TS, NoB, SiB, PIS, ISICV, 
DoB, IQRBD, IBI, ISId, 
MBSN, ISI )

– 0.3 µM
(TS) 1 µM 1 µM

Paroxetine 0.3–30 µM 5 mg/kg41

(in vivo) –  < 0.3 µM
(DoB) 3 µM 3 µM

Picrotoxin 0.1–10 µM 0.3 µM23

(ISI)
0.1 µM23

(CV of IBI)
0.3 µM
(DoB)  < 0.1 µM  < 0.1 µM

Pilocarpine 0.3–100 µM 0.3 µM23

(IBI, DoB, SiB)
0.3 µM23

(ISI)
10 µM
(IBI) 1 µM 1 µM

PTZ 1–1000 µM 100 µM23

(TS, NoB)
 < 30 µM23

(IBI)
 < 1 µM
(NoB, IBI, SiB)  < 1 µM 10 µM

Theophylline 1–100 µM 300 µM35

(in slice) – 3 µM
(IBI) N/A 3 µM

Tramadol 0.3–100 µM 80.8 mg/kg39

(in vivo) – 3 µM
(NoB, SiB) 3 µM 10 µM

Varenicline 0.3–30 µM 0.25 mg/kg38

(in vivo) – 30 µM
(IBI, DoB) 10 µM 10 µM

Venalfaxine 0.3–30 µM 25 mg/kg42

(in vivo) – 10 µM
(DoB) 3 µM 3 µM

DMSO 0.1–0.6% N/A23 N/A23 N/A N/A N/A

Acetaminophen 1–100 µM N/A23 N/A23 3 µM
(DoB) N/A N/A

Aspirin 1–100 µM – – 3 µM
(TS, IBI) N/A –

Amoxicilline 1–100 µM N/A23 1 µM23

(IBI)
 < 1 µM
(NoB) N/A –

Ferbinac 1–100 µM – – 10 µM
(SiB) N/A –
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the characteristics of the drugs, and it was not necessarily basing its judgments on toxic concentrations or the 
mechanism of action. These results show that the AI is able to identify the characteristics of each drugs, which 
in turn means each mechanism of action, even for the same seizure-causing compound. The drug identification 
AI is able to predict what known compound an unknown compound resembles, and what the mechanism of 
action is, which holds promise in the field of drug discovery.

One characteristic of the AI that we developed is that it was created using raster plots. There are two benefits 
to using images that were segmented into windows of time four times the IMFI. The first is that the AI is able 
to grasp the time-series characteristics outside of simply the mean value of the burst firing or the whole meas-
urement time. The AI determined that pilocarpine was toxic at concentrations lower than the analysis param-
eters. Looking at the raster plots, the burst cycle of pilocarpine tends to be bunched together. The AI is able to 
interpret the regularity of the network burst firing and so can determine the toxicity risk at low concentrations 
more effectively than conventional analysis methods. The second benefit is that there is no difference between 
the burst firing frequency between samples. As Fig. 1B shows, even in cases in which the firing frequency at the 
initial state (vehicle) differ depending on the sample, the AI successfully predicted the toxicity and mechanism 
of the compound. In other words, the difference between samples can be processed by normalizing with the 
4096-dimensional features of the vehicle. The method in which the plots are created using the IMFI is considered 
to be a robust method that can handle inter-well and inter-lot differences. This is also a merit when training the 
AI on additional drug data.

In this research, we developed AI using features derived from raster plots, but there were problems that 
involved complicated feature engineering such as standardization of features and that it was difficult to interpret 
the insights of the judged results. Machine learning methods using simpler spike time series information and 
burst-related parameters are considered to be effective methods that can solve these problems. We predicted 
seizure risk using the one class SVM method with spike time series information and the one class SVM method 
with burst related parameters, respectively (Figure S1 and Figure S2). Then, we verified the difference with raster 
plot AI. For the spike time series information, a total of 34 parameters were used, in which the average firing 
frequency and average inter spike interval (ISI) for 600 s were calculated for the entire well and for each of the 16 
electrodes. The following five parameters were used for the burst-related parameters: total spikes (TS), number 
of network bursts (NoB), inter network burst interval (IBI), duration of a network burst (DoB), and spikes in a 
network burst (SiB). The dataset used for training and testing was the same as the dataset used to create the raster 
plot AI (Supplementary information). In one class SVM using the spike time series information and burst-related 
parameters, the risk assessment of the positive and negative compounds of the trained data was achieved, but 
the untrained data of acetaminophen was judged to be positive. In addition, the concentration-dependence of 
seizure risk of NMDA, PTZ, and carbamazepine could not be detected (Figs. S1 and S2). Since the SVM that 
learned the spike time series information and burst-related parameters was able to detect the seizure risk of 14 
positive compounds (Figs. S1 and S2), it was considered to have a potential of a seizure risk prediction method. 
However, since unlearned negative compounds were judged to be positive, it will be necessary to consider the 
risk of false positives. In addition, since some compounds did not detect concentration dependence, we consid-
ered that the toxicity information was insufficient since only the spike time series information and burst-related 
parameters was used in this verification. Next, a Multi class SVM using time series information and burst-related 
parameters was created using the leave-one-well-out scheme in the same way as the raster plot AI was created 
(Supplementary information), and drug name prediction was performed (Tables S6 and S7).

However, of the 14 positive compounds, the time-series information model was able to predict the drug 
names of only two compounds, and the model that learned the burst-related parameters was able to predict the 
drug names of only six compounds. Since low-concentration data of positive compounds are judged to be other 
positive compounds rather than negative compounds (Tables S6 and S7), it is considered that simple time series 
information and burst-related parameters do not capture the characteristics of each compound. In particular, 
it is probably difficult to predict compounds with similar parameter changes. Raster plot AI using 4096-dimen-
sional features is considered to have sufficient information to detect compound differences, and compound 
classification is an advantage of raster plot AI. The AUC results for SVM and NN shown in Fig. 3C were 0.9967 
and 0.9841, and the high values were shown even if the models were different, suggesting that it is effective to 
use the features of the raster plot.

As a future issue, we need to test whether this AI can predict safe neuroactive compounds as negative. In 
addition, the current limitation of this AI model has been described below. The developed AI does not show 
high prediction accuracy for various human iPSC sources or rodent neurons with different firing patterns. It 
is necessary to create a new AI for each human iPSC sources or rodent neurons. Supplementary Fig. S4 shows 
the results of predicting rodent neuron data using AI prepared from the hiPSC-derived neurons data shown in 
this study. The toxicity of seizure-causing compounds has not been clearly determined. However, when AI was 
generated using Rodent neuron data, the four trained seizure-causing compounds (4-AP, PTZ, tramadol, and 
carbamazepine) and seizure-free compounds (acetaminophen and DMSO) were successfully separated (sup-
plementary Fig. S3). In addition, untrained seizure-causing compounds (picrotoxin, paroxetine, and pilocarpine) 
were judged to be toxic in a concentration-dependent manner, and unlearned seizure-free appliecompounds 
(Aspirin and amoxicillin) were judged to be negative in all concentrations. Furthermore, theophylline was judged 
to be negative, similar to hiPSC-derived neurons. The developed AI is considered to be an effective method for 
predicting the seizure risk using specific iPSC-derived neurons or rodent neurons in house. In the future, it is 
necessary to create common AI with high prediction accuracy for various hiPSC sources or rodent neurons.

This study was conducted via cumulative administration. One-well-one-dose studies may be desirable for 
drugs of concern for desensitization. The raster plot machine learning method can be applied to not only cumu-
lative administration tests but also to one-well-one-dose tests. To improve the accuracy of toxicity detection, 
selecting the administration test method in consideration of the test compound is important.
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An important issue facing in vitro toxicity screening systems is in vitro to in vivo extrapolation (IVIVE). In 
in vitro MEA measurements, the criteria for determining toxicity have not been clarified even in the conventional 
analysis method. To determine whether or not the in vivo results are consistent with the findings of the present 
study, future in vivo studies of the drugs at the concentrations that are known to exhibit toxicity are warranted. 
Comparing the CSF concentrations of compounds during seizures in animal experiments is considered an 
effective method of approaching IVIVE. In other words, the CSF concentration during a seizure can be used as 
teaching data to indicate that a particular compound in the in vitro data represents a seizure-causing compound. 
This can help create a seizure liability AI that uses CSF concentration during a seizure as a reference. Also, the 
threshold for judging a compound to be toxic (the threshold of the probability to determine toxicity risk by the 
AI in one plot) used in the present study was 50% or higher. However, changing the threshold settings for AI 
toxicity determination may lead to results that are in line with in vivo data. In any case, there is a need to obtain 
data from animal experiments. However, the current in vitro model can determine whether a compound is a 
seizure-causing or seizure-free compound and can detect concentration dependence. It is also able to rank com-
pounds in order of their seizure liability. Selecting lead compounds based on seizure liability holds promise in the 
practical application of this model, as it is considered useful to prioritize the development of new compounds.

The AI for this study was constructed using a CNN model. In general, recurrent neural networks (RNNs) 
are often used for deep learning of the concept of time. However, in in vitro MEA data, the temporal change of 
the firing pattern within a certain concentration is not observed so much, and the concentration dependence 
is more remarkable. In addition, the frequency of synchronized burst firing before drug administration differs 
in vitro, and we divide the raster plot image by the number of network bursts to accommodate the time-scale 
differences in neural activity between samples. In summary, optimized raster plot images were created to extract 
the characteristics of dose-dependent neural activity independent of sample differences. A CNN model was 
adopted to extract the features of neural activity from a single raster plot image.

The developed AI also used AlexNet, which is not specialized for learned tasks and can be applied to a wide 
range of tasks. After extracting the 4096-dimensional features, seizure-risk was determined using a neural net-
work, which is machine learning. Models are being developed daily; hence, finding a more optimal model should 
be considered as the next issue.

Predicting seizure liability using AI holds promise as a method of toxicity screening that is able to use stand-
ardized indicators, which would improve upon the current toxicity screening methods that use different stand-
ards (parameters) depending on the institution conducting the research. It requires further study, but because 
the method described in the present study uses the IMFI and is not influenced by the initial state of the sample, 
this model may be able to make predictions at different institutions using cells from different vendors. It is also 
possible that if the AI is able to identify the basis for discerning between compounds using AI, this model may 
hold promise in the dissemination of neurological knowledge and the discovery of more detailed mechanisms 
of actions of compounds, as the drug identification AI is able to distinguish even between seizure-causing com-
pounds with the same mechanism.

The present study showed that analysis by the AI we developed using raster plots is effective as a means of 
predicting seizure liability and the mechanism of action of compounds. This suggests that this model is able 
to detect concentration dependence in seizure liability that cannot be detected using single parameter analysis 
and also to distinguish detailed differences between compounds even when their main effects are the same. This 
model has a high precision in predicting the seizure liability and mechanism of unknown compounds based on 
in vitro MEA data and may become a new analysis method that can be used uniformly across all institutions.

Materials and methods
Culture of human iPSC-derived cortical neurons. Human iPSC-derived cortical neurons (XCL-
1,XCell Science Inc., USA) were cultured at a concentration of 3.0 ×  105 cells/cm2 (16 channels per well) across 
24-well MEA plates (Comfort; Alpha Med Scientific) coated with polyethyleneimine (Sigma) and laminin-511 
(Nippi). For culture on MEA, a ϕ3.4-mm glass ring was placed in the middle of the MEA probe at the location of 
the electrode array, and cell suspensions were seeded inside the ring. After 1 h, neural maturation basal medium 
(NM-001-BM100, XCell Science Inc., USA) supplemented with neuron maturation supplement A (NM-
001-SA100, XCell Science Inc., USA) and 100 U/mL penicillin/streptomycin (168-23191, Wako) was applied 
around the ring, and the ring was carefully removed. After 8 days of culture, the medium was replaced with 
BrainPhys neuronal medium with SM 1 neuronal supplement (STEMCELL technologies, USA). After medium 
exchange on 8 days of culture, human iPSC-derived mature astrocytes (XCL-1 mature astrocytes, AR-001-1V, 
XCell Science) were seeded at 3.0 ×  104 cells per well where human iPSC-derived neurons were already cultured. 
Half the media was exchanged every 4 days.

Rat primary cortical neurons culture. The animal experiments were performed with the approval of 
the Animal Experiment Ethics Committee at the Tohoku Institute of Technology (approval number: 589) and 
according to the Tohoku Institute of Technology guidelines for the Care and Use of Laboratory Animals and the 
ARRIVE guidelines. Rats were housed under standard laboratory conditions (12-h light/12-h dark cycle, free 
access to food and water). These experimental protocols were conducted in accordance with the Fundamental 
Guidelines for Proper Conduct of Animal Experiment and Related Activities in Academic Research Institutions 
(Ministry of Education, Culture, Sports, Science and Technology, Notice No. 71 of 2006), the Standards for 
Breeding and Housing of and Pain Alleviation for Experimental Animals (Ministry of the Environment, Notice 
No. 88 of 2006), and the Guidelines on the Method of Animal Disposal (Prime Minister’s Office, Notice No. 40 
of 1995). MED Multi-well probe (MED-R5NF30; Alpha MED Scientific Inc, Osaka, Japan) with 16 electrodes in 
each well were used for this experiment. One day before seeding, MEA probes were coated with 0.1% polyethyl-
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eneimine dissolved in a borate buffer at 37 °C, 5%CO2 for 1 h. After 4 times washing, the probes were allowed to 
air dry overnight in a safety cabinet. About 2 h before seeding, the electrodes in a probe were covered with 5µL of 
20 µg/mL i-Matrix (Nippi, Tokyo, Japan) solution and incubated in 37 °C, 5%  CO2 condition. Cortical neurons 
gathered from brains of rat fetus (Charles River, Yokohama, Japan) at GD17-18 were prepared through 0.25% 
trypsin (ThermoFisher, MA, USA) and DNase (Roche Diagnostics K.K., Tokyo, Japan) treatments. After remov-
ing i-Matrix solution, cell suspension (5.0 ×  104 cells/5 µL) was immediately dropped in the electrode area in the 
probes, and the probes were incubated at 37 °C and 5%  CO2 for 1 h before adding 1 mL medium per well. The 
day after seeding the cortical neuron, all medium was replaced freshly. Neurobasal medium (ThermoFisher, MA, 
USA) with 1.8% B-27 supplement (ThermoFisher, MA, USA), 0.9% Glutamax (ThermoFisher, MA, USA), 0.9% 
penicillin/streptomycin (ThermoFisher, MA, USA), and 10% neuron culture medium (FUJIFILM Wako Pure 
Chemical Corporation, Osaka, Japan) was chosen as culture medium in this study. The probes were cultured in 
the incubator at 37 °C and 5%  CO2 and half volume (500 µL) of culture medium in each well were exchanged 
twice a week. One day before the MEA recording, all culture medium was changed for measurement.

Extracellular recording. Spontaneous extracellular field potentials were acquired at 37 °C under a 5%  CO2 
atmosphere using a 24-well MEA system (Presto; Alpha Med Scientific) at a sampling rate of 20 kHz/channel. 
The spikes in the acquired data were detected using a 100-Hz high-pass filter. The measurement time was con-
trolled by Presto software (Alpha Med Scientific), and all the raw data was saved on the PC.

Pharmacological tests. After 14th weeks of culture, 13 convulsant compounds and 2 negative compounds 
were cumulatively administered to induce seizure-like events in human iPSC-derived cortical neurons. The 
following compounds were used as convulsants: the potassium channel blocker, 4-aminopyridine (4-AP; 1, 
10, 30, 60 µM: 275875-1G, Sigma-Aldrich), the GABAA receptor antagonist, picrotoxin (0.1, 0.3, 1, 3, 10 µM: 
P1675-1G, Sigma–Aldrich), 1,5-pentamethylene-tetrazole (PTZ; 1, 10, 100, 1000 µM: P0046, Tokyo Chemical 
Industry Co.), the sodium channel blocker, carbamazepine (1, 3, 10, 30, 100 µM: C4024-1G, Sigma-Aldrich), 
the muscarinic ACh receptor agonist, pilocarpine (0.3, 1, 3, 10, 30, 100 µM: P6503-5G, Sigma-Aldrich), the 
centrally acting synthetic opioid analgesic and norepinephrine and serotonin reuptake inhibitor, tramadol 
(0.3, 1, 3, 10, 30, 100 µM: 42965-1G, Sigma-Aldrich), the serotonin uptake inhibitor, paroxetine (0.3, 1, 3, 10, 
30 µM: PHR1804, Sigma-Aldrich), the norepinephrine and serotonin reuptake blocker, venlafaxine (0.3, 1, 3, 10, 
30 µM: PHR1736-1G), the norepinephrine and serotonin reuptake and dopamine receptor blocker, amoxapine 
(1, 3, 10, 30, 100  µM: A129-100MG, Sigma-Aldrich), the adenosine receptor antagonist, theophylline (1, 3, 
10, 30, 100 µM: T1633-50G, Sigma–Aldrich), kainic acid (0.1, 0.3, 1, 3, 10 µM: K0250-10MG, Sigma-Aldrich), 
N-methyl-D-aspartic acid (NMDA; 0.1, 0.3, 1, 3, 10 µM; M3262-25MG、Sigma–Aldrich), and the α4β2 nico-
tinic acetylcholine receptor agonist, varenicline (0.3, 1, 3, 10, 30 µM: PZ0004-5MG, Sigma-Aldrich). COX-2 
inhibitor was used to treat pain and fever. Acetaminophen (1, 3, 10, 30, 100 µM: A7085-100G, Sigma-Aldrich) 
, Aspirin (1, 3, 10, 30, 100 µM: A2093-100G, Sigma-Aldrich), Amoxicillin (1, 3, 10, 30, 100 µM: A2099, Tokyo 
Chemical Industry), 4-Biphenylacetic Acid (Felbinac; 1, 3, 10, 30, 100 µM: B1278, Tokyo Chemical Industry) 
and the organosulfur solvent, DMSO (0.1%, 0.2%, 0.3%, 0.4%, 0.5%, 0.6%: D2650-5X10ML, Sigma–Aldrich) 
were used as negative control compounds. The final concentrations of these drugs were adjusted to contain 0.1% 
DMSO. DMSO (0.1%) was administered in all wells as a vehicle control prior to cumulative administration of 
the compound. Spontaneous firing was recorded for 10 min at each concentration (n ≥ 3).

Burst analysis. Electrophysiological activity was first analyzed using Presto and Mobius software (Alpha 
Med Scientific) and MATLAB. A spike was counted when the extracellularly recorded signal exceeded a thresh-
old of ± 5.3 σ, where σ is the standard deviation of the baseline noise during quiescent periods. Network bursts 
were detected using the four-step  method33.

Statistical analysis. To determine the seizure liability, one-way ANOVA followed by Dunnett’s test were 
used to calculate the significant difference between each concentration and the vehicle. The concentration show-
ing a significant difference in the parameters calculated by the burst analysis was determined as the risk con-
centration.

Predictive model performance evaluation. To validate the performance of the models, we plotted the 
receiver operating characteristic (ROC) curve and then calculated the area under the ROC curve (AUC). The 
ROC curve provides a means of comparison between classification models. Additionally, the ROC curve shows 
the false positive rate on the X-axis against the true positive rate on the Y-axis. The ROC curve is a plot of false-
positive and true-positive probabilities for all datasets when the threshold is varied from 0 to 1 for the positive 
probabilities calculated for a single image. Ideally, the curve will climb steeply toward the top-left, meaning that 
the model gives correct predictions. The AUC is a measure of the quality of the classification models. A random 
classifier has an AUC of 0.5, while a perfect classifier has an AUC equal to 1.

Next, to obtain the optimal operating point for the ROC curve, we determined the slope (S) using the fol-
lowing calculation:

where Cost(N|P) is the cost of misclassifying a positive class as a negative class. Cost(P|N) is the cost of misclas-
sifying a negative class as a positive class. P and N are the total instance counts in the positive and negative classes, 

S =
Cost(P|N)− Cost(N |N)

Cost(N |P)− Cost(P|P)
∗
N

P
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respectively. Next, we determined the optimal operating point by moving the straight line with slope S from the 
upper left corner of the ROC plot (FPR = 0, TPR = 1) down and to the right, until it intersected the ROC curve.

The statistical tests used to validate the performance of the models using the optimum operating point were 
accuracy, positive predictive value (PPV), sensitivity, specificity, and the F-measure. These metrics are prevalent 
in the machine learning community for classification tasks. Accuracy is a measure of the number of the sum of 
true positives and true negatives divided by the total number of datasets. PPV is a measure of the number of true 
positives divided by the sum of the true positives and the false positives. Sensitivity is a measure of the number 
of true positives divided by the sum of the true positives and the false negatives. Specificity is a measure of the 
number of true negatives divided by the sum of true negatives and false positives. The F-measure represents the 
balance that exists between the precision and recall scores. The F-measure is defined as the product of precision 
and recall divided by the sum of precision and recall.

Support vector machine (SVM) model. The raster plot images were converted to feature vectors using 
the Alexnet model. The 21st layer of Alexnet, called fc7, wherein each image was represented in a 4096-dimen-
sional vector, was used for input features in SVM. The feature datasets were separated using linear SVM. Hold 
out validation was used to verify the data separation, and the AUC of the ROC curve was calculated to evaluate 
the accuracy of the prediction. Our algorithms were developed using MATLAB’s Statistics and Machine Learn-
ing Toolbox. For machine learning-based classification, SVM-based supervised learning was performed using 
the “fitcsvm” and “predict” functions from MATLAB’s Statistics and Machine Learning Toolbox.
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