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Automated procedure to assess 
pup retrieval in laboratory mice
Carmen Winters1,2*, Wim Gorssen3, Victoria A. Ossorio‑Salazar1, Simon Nilsson4, 
Sam Golden 4 & Rudi D’Hooge1*

All mammalian mothers form some sort of caring bond with their infants that is crucial to the 
development of their offspring. The Pup Retrieval Test (PRT) is the leading procedure to assess pup‑
directed maternal care in laboratory rodents, used in a wide range of basic and preclinical research 
applications. Most PRT protocols require manual scoring, which is prone to bias and spatial and 
temporal inaccuracies. This study proposes a novel procedure using machine learning algorithms 
to enable reliable assessment of PRT performance. Automated tracking of a dam and one pup was 
established in DeepLabCut and was combined with automated behavioral classification of “maternal 
approach”, “carrying” and “digging” in Simple Behavioral Analysis (SimBA). Our automated procedure 
estimated retrieval success with an accuracy of 86.7%, whereas accuracies of “approach”, “carry” and 
“digging” were estimated at respectively 99.3%, 98.6% and 85.0%. We provide an open‑source, step‑
by‑step protocol for automated PRT assessment, which aims to increase reproducibility and reliability, 
and can be easily shared and distributed.

Maternal care determines an infant’s physical and functional  development1–4. Discriminative maternal care dur-
ing the postpartum period is ensured by the formation of some sort of mother-infant  bond4,5. Human studies 
that investigate maternal care and its many effects on infant development are complicated by a variety of practical 
and ethical factors, lack of control over environmental and genetic background, inaccessibility of brain  samples6. 
Animal models, particularly rodents, provide a valid research tools as many neural and hormonal mechanisms 
of care and bonding are homologous between mammalian  species6,7.

The Pup Retrieval Test (PRT) is the most widely used assay to assess maternal care in fundamental and pre-
clinical rodent  research8. In its most basic design, it quantifies the mother’s retrieval response to the removal of 
a pup from the nest, a sequence of pup-directed sensorimotor responses elicited by (multi)modal stimuli from 
the infant, and processes by the  mother4,9–13. The test has been used to study the impact of pharmacological and 
environmental interventions on maternal  care14–18. Finally, it has been used in research on disorders that affect 
mother-infant interaction, such as autism, fetal alcohol syndrome, chronic prenatal stress, postpartum depres-
sion,  schizophrenia19–24.

It was established that differences in methodology, environment and experimenter intervention influence 
behavior and its  assessment25. Typical PRT protocols rely on manual scoring, which provides only basic informa-
tion and is prone to spatial and temporal inaccuracies as well as  bias26. Some authors resorted to limited end-point 
registration to simplify manual PRT  scoring27,28. Components such as “maternal latency to start retrieving the 
pup”, “time necessary to complete retrieval”, and “efficacy of the retrieval” have been scored during real-time 
observation or from video recordings, but pup retrieval is a dynamic, interactive behavior that contains more 
information than these  variables28. Also, scoring these and other components from videos, or with video tracking 
software, requires laborious indexing of the behavioral components on a frame-by-frame  basis29,30. Scoring pro-
grams may not allow such frame-based analyses, and scoring tends to be a slow and laborious process. Further-
more, manual analyses require well-defined rules to define start, duration and end of behavioral  components31. 
These rules are researcher and context specific, which affects transferability between  laboratories29,30,32,33. Further, 
temporal accuracy is especially relevant for PRT behaviors that are triggered by pup ultrasonic vocalizations and 
have a millisecond  profile9.

Precise and standardized recording of the maternal response would be most reliably achieved by automated 
 procedures34. Manual PRT scoring is often inaccurate, involving subjective judgement of the completion of a 
retrieval event, imprecise definition of nest borders, etc. We therefore present a novel procedure using machine 
learning algorithms and open-source software to enable reliable, automated PRT registration. Recent advances 
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in motion capture and deep-learning allow extraction of behavioral variables from recorded videos without 
elaborate recording  hardware35. Tracking and behavioral analysis tools reach at least human-like accuracy, and 
even outperform manual scoring with unprecedented  rapidity27,36. We established automated tracking of a dam 
and one pup using DeepLabCut software, and classified variables such as “maternal approach”, “carrying” and 
“digging” using Simple Behavioral Analysis (SimBA). Specifically, this paper aims to (1) introduce a dataset for a 
dam-pup PRT tracking network, including operational definitions and underlying rationale; (2) establish SimBA 
classification of ethologically relevant PRT behaviors; (3) show that an automated procedure is able to quantify 
PRT accurately; (4) create a SimBA add-on to evaluate PRT results using an easy-to-use graphical user interface; 
(5) provide a user-friendly, step-by-step protocol to replicate or expand the present study. All annotated images 
and videos, tracking models and behavioral classifiers are available at https:// doi. org/ 10. 17605/ OSF. IO/ RWHTD.

Results
Video pre‑processing. C57BL6J mice were subjected to the PRT on postnatal day 5 (P5). Videos were 
recorded in the home cage using a Foscam C2 IP-camera (EUport, Wageningen) from an overhead camera 
perspective (top-down). Per dam, one video file was obtained containing six single pup retrieval trails. This one 
overall video was splint into six single pup trial videos. To decrease file size and increase efficient neural network 
training, videos were cropped around the top edges of the home cage and grey-scaled.

Tracking dataset and training. DeepLabCut 2.1.10.4  (DLC35) was used to create a dam-pup tracking 
algorithm in the pup retrieval protocol. 592 Frames were randomly extracted from 38 single trial videos, using 
the k-means algorithm in DLC. Next, 14 body parts were manually annotated with high stringency, with seven 
body parts on the dam and seven on the isolated pup (see Fig. 1a). Occluded body parts in the established train-
ing dataset were simulated by using the body part configuration from a similar frame in which the occluded 
animal was visible as a template. The operational definitions of these body parts are shown in Supplementary 
File 1 Table S1.

The dam-pup network was trained in Google Colaboratory (https:// colab. resea rch. google. com/) using the 
ResNet-50 architecture in DeepLabCut with a batch size of 4 images. A 95:5 train/test ratio was used, meaning 
that 95% of the 592 annotated frames was used to train the neural network and 5% is used to evaluate network 
performance. Training of neural networks means that parameters of a mathematical model is iteratively opti-
mized to increase prediction accuracy on the training dataset. As the aim of the dam-pup model is to general-
ize well in the future, the model should not be overfitted. Overfitted models will only “memorize” initial data 
meaning they will perform poorly on unseen videos recorded with slightly different animals, lighting or camera 
 distance37. Therefore, training was stopped after 70,000 iterations as optimization minimized and model param-
eters of every 1000th iteration were stored.

Performance evaluation of the trained network. Network performance was evaluated by the com-
putation of a train and test error as measured by the average Euclidian difference between the pixel coordinates 
from manual annotations and DLC estimations. Prior to selection, four criteria were defined to evaluate the best 
performing model. First, the model should not be overfitted and thus the best performing model with the lowest 
number of iterations should be chosen. Second, mean test and train error over all body parts should be as low 
as possible. Third, especially maternal nose and ears should have a low mean error as these will be important for 
the behaviors in the PRT. Fourth, the nest can occlude body parts and consequently impact tracking accuracy. 
Thus, mean Euclidian errors should decrease after increasing the likelihood threshold and thus calculating mean 
test or train errors for DLC estimations above a defined probability. The best performing dam-pup model was 
created after 50,000 iterations. The estimated error averaged over all 14 body parts was 2.3 pixels (px) for the 
training dataset and 10.44 px for the test dataset (Fig. 1b). The mean Euclidian errors per body part and using 
different likelihood thresholds are shown in Supplementary File 2 Table S2.

Distance standardization and definition of Regions of Interest. Euclidean pixel distances were 
standardized to millimeter distances using Simple Behavioral Analysis  (SimBA31). Here, the length between the 
top lids of the home cage (Fig. 1c) is used to define a standardized distance of 265 mm. The mean errors per body 
part were standardized to a metric scale and ranged between 2.2 and 4.5 mm as shown in Fig. 1b. Hereafter, per 
video two regions of interest were defined in SimBA: the nest and the core nest. The nest is defined as a polygonal 
that encloses the entire nesting site (Fig. 1d, red), whereas the core nest is defined as a circle that encloses only 
the site of the nest in which the pups are (Fig. 1d, pink).

Quality control of DeepLabCut tracking output. Data are tracked from DLC in SimBA to train 
behavioral classifiers. Since tracking inaccuracies (such as impossible locations or movements) can complicate 
classifier training, they should be corrected. Outliers were defined by using the median distance between nose 
and spine1: median distance multiplied by 2.5 was the criterion to define movement outliers; median distance 
multiplied by 4 defined location outliers.

Random forest classifiers. SimBA was used to develop three random forest models to predict maternal 
approach, maternal carrying and maternal digging. In total, 27,683 frames of seventeen videos were manually 
annotated using the SimBA event logger for the absence (‘0’) or presence (‘1’) of each of the three behaviors. 
A subset of nine videos was used to train the approach and carry models, while the digging model was built 
using ten videos, yielding respectively 10,157 and 18,207 frames (Table 1). All three random forest models were 
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Figure 1.  Pose estimation and region of interest (ROI) definition. (a) Schematic representation of the 14-body 
part pose configuration used for the PRT protocol in DeepLabCut (image was created with BioRender.com). (b) 
Mean millimeter error per body part and subject for the DeepLabCut PRT pose estimation model. Means were 
calculated without the use of an estimation p-cutoff. In Supplementary File 2 Table S2, the mean mm errors are 
shown with different p-cutoff values. (c) Illustration of distance on a Type-II mouse cage. We used the length 
between opposite cage tag hinges as standard length. The pink line indicates a distance of 267 mm. (d) Example 
of region of interest (ROI) definition in SimBA. The yellow area indicates the nest site and the pink circular area 
the core nest. The red markers do not display any ROI, but indicate that the top corners of the home cage need 
to be visible in the cropped video.
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trained by creating 2000 decision trees from the training data. Frames containing the behaviors of interest were 
imbalanced compared to frames absent of these behaviors. Therefore, the majority class (i.e. absent behavior) 
was randomly under-sampled at ratios shown in Table 1. Based on precision-recall curves, an optimal classifier 
performance was chosen on the basis of f1. To balance the number of false-positive and false-negative clas-
sifications, we chose the discrimination threshold at the highest f1 value. These discrimination thresholds and 
minimum bout lengths can be found in Table 1.

Performance of random forest classifiers. After training, an estimation was made for the model which 
estimates the difference between the original input and the predicted output. This, however, does not give an 
indication of the translatability of the model to an independent dataset. Here, seventeen videos were manually 
annotated frame-by-frame and were joined into an independent dataset. Using the Caret package in  R38, the 
performance of the three classifiers was evaluated.

The independent dataset for carry and approach consisted of 17,526 frames (approach present = 13.9%, carry 
present = 8.7%; Table 1). Confusion matrices for carry, approach and digging behavior are shown in Table 2. 
The approach and carry classification accuracy was respectively 98.6% (95% CI 98.5, 98.7) and 99.3% (95% CI 
99.2, 99.4). The true negative rate or specificity was 91.8% for approach and 91.7% for carry. The true positive 
rate or sensitivity was 99.4% for approach and 99.7% for carry. For the evaluation of the digging classifier, the 
independent dataset contained the frames of seven annotated videos with in total 9476 frames (digging pre-
sent = 44.1%; Table 2). The digging classifier accuracy was 85.0% (95% CI 84.6, 85.5), with a sensitivity of 81.8% 
and a specificity of 90.8%.

Besides the frame-by-frame validation of these behaviors, the total count and duration of each behavior per 
video were validated using Pearson correlations. Table 3 shows the correlation matrices of maternal approach, 
carry and digging behaviors scored with three different methods: manual with no defined ROI, manual with 
defined ROI and our proposed automated scoring with ROI. Correlations were moderate to high (r = 0.51–0.90) 
between all scoring methods. Moreover, scoring with defined ROI showed high internal correlations for approach, 
carry and dig respectively (r = 0.62;0.77;0.90). These results suggest that defining an ROI has substantial impact on 
the PRT output. Predefined ROI are currently not used in PRT analysis, leading to a possible bias. Furthermore, 
the high correlations between both manual and automated scorings with ROI indicate that our automated model 
is appropriate for the estimation of the included maternal behaviors.

Manual pup retrieval estimations. Raw retrieval videos were observed and categorized manually into 
“pup retrieved” or “pup not retrieved” classes. A pup trial was classified as retrieved as the mother carried it back 
to the  nest38. In these videos the nest ROI was not visible. Successful retrieval trials were labeled ‘1’ and unsuc-
cessful retrieval trials were labeled ‘0’. Additionally, the time was manually estimated for when the pup was car-
ried back into the nest. Unsuccessful retrieval trials are assigned the maximum trial time (here: 90 s).

Table 1.  Summary statistics on data used for behavioral classification.

Classifier # Annotated frames Behavior present [%]
Random under-
sample ratio

Test set: frames 
present

Test set: frames 
absent

Discrimination 
threshold

Minimum bout 
length (ms)

Approach 10,157 8.7 8.5 604 5302 0.47 500

Carry 10,157 13.9 16 828 4443 0.47 200

Digging 18,207 32.3 2 930 1802 0.24 1000

Table 2.  Confusion matrices of manual and automated classification of retrieval status and maternal approach, 
carry and digging behaviors.

Manual behavior absent (0) Manual behavior present (1)

Approach

Automated behavior absent (0) 24,676 233

Automated behavior present (1) 157 2618

Carry

Automated behavior absent (0) 26,155 120

Automated behavior present (1) 76 1333

Dig

Automated behavior absent (0) 14,412 925

Automated behavior present (1) 3218 9129

Retrieval status Manual not retrieved (0) Manual retrieved (1)

Automated not retrieved (0) 16 2

Automated retrieved (1) 6 36
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Automated pup retrieval estimations. In SimBA, an add-on was created to evaluate results of the auto-
mated pup retrieval test, taking into account eventual tracking inaccuracies (Fig. 2). Here, retrieval is labeled as 
successful if at least one body part of a pup is present in the nest ROI and carry behavior was observed in the 
three seconds before entering. Similar as in the manual estimations, successful or unsuccessful retrieval events 
are scored respectively ‘1’ and ‘0’. Moreover, the output gives the estimated time of retrieval as well as the latency, 
total duration and counts for each behavior (carry, approach and dig).

Performance evaluation of automated retrieval estimations. The prediction results created with 
SimBA were compared to the manually scored videos. Using the Caret package in  R38, confusion matrices were 
obtained and analyses (Table 2). The accuracy of the retrieval success was estimated at 86.7% (95% CI 75.4, 
94.1). The sensitivity and specificity of the predictions were respectively 72.7% and 94.7%. Next, manual time 
estimations and the predicted time estimations were correlated with r = 0.72. The prediction errors were exam-
ined in detail and could be classified into two types: (1) “boundary errors”, when the automated prediction was 
generally good, but the discrepancy with the manual estimation was related to ROI definition; (2) “Nest shift”, 
when the pup was predicted to be retrieved due to a moved nest but was without any doubt not retrieved in the 
nest in reality. Of the eight videos with a prediction error, two errors were explained by a shifted nest and six by 
boundary errors.

PRT protocol, tracking models and behavioral classifiers. Our standardized PRT protocol can be 
found in Supplementary File 5, whereas our annotated images and videos, tracking models and behavioral classifi-
ers are available on: https:// doi. org/ 10. 17605/ OSF. IO/ RWHTD. This protocol and these models are made available 
to the scientific community to ensure a more standardized analysis and more translatable results across research-
ers. Although our models and behavioral classifiers were constructed for specific settings (e.g. C57BL6J mice, 
home cage), they can be enlarged with their own data to obtain working models for different settings, as explained 
in our protocol (Supplementary File 5).

Discussion
Pup retrieval is an essential feature of maternal care in mice, and PRT performance has consequently been used 
to study parental behavior in various research applications. The present paper proposes a novel, automated 
machine learning-based procedure to assess PRT performance, and identify performance variables in recorded 
PRT video files. Although our procedure uses machine learning, only basic equipment is required in combination 
with easy-to-use, open-access software. We used DLC to construct an accurate model for tracking a dam and one 
isolated pup synchronously. The model was able to track both the mother and the pup with high accuracy (mean 
body part tracking error between 2.2 and 4.5 mm). DLC has been used by others to track user-defined features 
on interacting animals, precisely and simultaneously, in simple and complex  setups37,39. However, to date, most 
available software cannot be used to track a dam and her pup simultaneously, and track multiple body parts on 
each animal. The lack of such a tool has hindered the analysis of dyadic dam-pup interactions and manual scoring 
has remained the only possibility to quantify  behaviors28. Manually annotating every frame in a one-hour video 
has been shown to require 22 working  hours37. Additionally, manual scoring has been confounded by observer 
bias and observational drift, and had low reproducibility.

Manually scoring of successful pup retrieval is complicated by imprecise operationalization of retrieval suc-
cess. We defined “successful retrieval” as “the experimental female […] retrieves the displaced pup back to the 
nest”, based on Marlin and  colleagues12. However, the nest is not a predefined area, and it therefore depends 
on opinion whether “maternal transport to the periphery of the nest” is enough to label the trial successful. As 
mentioned, this ambiguity of underlying rules increases the chance of observer bias and complicate reproduc-
ibility and  reliability29,30,32,33. The use of pre-defined ROIs during manual scoring already increased confidence 
in retrieval estimations, and we showed that our automated procedure yielded comparable results to manual 

Table 3.  Correlational matrices of maternal approach, carry and digging behaviors scored with three different 
methods: manual with no defined ROI, manual with defined ROI and automated scoring with ROI.

Manual_noROI Manual_ROI Automated_ROI

Approach

Manual_noROI 1.00 0.88 0.85

Manual_ROI 0.88 1.00 0.90

Automated_ROI 0.85 0.90 1.00

Carry

Manual_noROI 1.00 0.64 0.51

Manual_ROI 0.64 1.00 0.62

Automated_ROI 0.51 0.62 1.00

Dig

Manual_noROI 1.00 0.55 0.62

Manual_ROI 0.55 1.00 0.77

Automated_ROI 0.62 0.77 1.00

https://doi.org/10.17605/OSF.IO/RWHTD
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scoring. Retrieval success was estimated with an accuracy of 87% (Table 2). One limitation, however, is that the 
nesting site is predefined and therefore fixed, but a mother may actually move the nesting site during the trial, 
and thus inflate retrieval scores. It might therefore be interesting to automate ROI definition in the future also.

Using automated behavioral classification, we were able to predict “maternal approach”, “carry” and “digging” 
with accuracies of 98.6%, 99.3% and 85.0%, respectively. These results are in line with studies using similar 
 tools31,40. Further, the time estimated by our three classifiers for every behavior over the trials was highly cor-
related between automated and manual scoring for “approach” (r = 0.85–0.88), “carry” (r = 0.51–0.64) and “dig” 
(r = 0.55–0.77). These results indicate automated scoring yields comparable results to the golden standard of 
manual scoring. Important characteristics for transferability of behavioral classifiers are whether the features 
are position or rotation  dependent37. SHAP-analysis (data not shown) showed that our “carry” and “approach” 
classifiers are grossly explained by a combination of dam-pup proximity and simultaneous movement, making 
them more likely to be transferable. However, “digging” was mostly explained by maternal position relative to 
the nest and core nest, indicating that “digging” might be less transferable. Unfortunately, we cannot assess how 
well these classifiers would perform in a different data space. Transferability of a constructed model to a new 
data space that looks different from previously encountered data has been a serious obstacle in deep learning 
 approaches41. Here, we maximized transferability of the dam-pup model by avoiding to over-fit the network, or 

Figure 2.  Pup retrieval analysis add-on in SimBA. A new module was built into SimBA for the automated 
analysis of the pup retrieval test, while performing a post-analysis quality control. Here, some thresholds are 
specified to resolve potential problems in tracking accuracies affecting the PRT outcome. The output provides 
the estimated retrieval success (retrieved vs not retrieved), time of retrieval and latency, total duration and 
counts for each behavior (carry, approach dig).
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over-standardize cage environment (e.g., nest composition or camera  position42). However, only recordings of 
black C57BL6J dams retrieving their pups on P5 in the home cage were used in the present study, but researchers 
often use different subjects (e.g., white CD-1 mice), different developmental  ages43 or different test environments 
(e.g., T-shaped extension to the home  cage8,44). A step-by-step protocol is provided in Supplementary File 5 for 
transparency and reproducibility, explaining how to expand the basic neural networks. Operational definitions 
of behavioral classifications are provided in Supplementary File 4, Table S4. By sharing all established datasets 
and models on OSF (https:// doi. org/ 10. 17605/ OSF. IO/ RWHTD), the scientific community can achieve more 
generic models.

Typically, PRT read-outs have been limited to parameters such as “retrieval success” and “time to retrieve”. 
Sequential underlying behavioral components may be ignored by approaching maternal retrieval as a single 
behavior. However, retrieval comprises “maternal perception of pup distress”, “search” as well as “approach” 
components, and transporting the pup back to the  nest28. By taking separate behaviors into account, retrieval vs 
non-retrieval can be more accurately analyzed (for example, by an inability to locate the pup). While the num-
ber of animals and workload of sampling stays equal, researchers can answer a much wider range of questions 
by taking these behaviors into account. In its current form, our automated PRT procedure included only on 
maternal “approach”, “carry” and “digging”, but other behaviors such as “nursing”, “pup licking”, “self-grooming”, 
and “disruptive digging on the pup” might ethologically relevant as  well45. The flexibility of the used software 
allows to include other behavioral parameters, and the advantage of working with open-access software is that 
new features can be readily  implemented46. As a final note, the use of unsupervised neural networks might be 
an interesting future direction. In contrast to supervised ones, unsupervised neural networks are not trained 
on data annotated by human researchers, which could even further avoid human bias, and identify behavioral 
components that relate to specific brain  activity37.

Material and methods
Animals and ethics statement. Breeding pairs of primiparous C57BL/6JRj mice (8–10 weeks old) were 
purchased from Janvier Labs (Le Genest-Saint-Isle, France). Adult mice were group-housed and maintained 
for time-controlled breeding in standard type II cages. Males were only present in the home cage the night of 
mating and females were housed individually from gestation through weaning (P28). Mice were kept at 12/12 h 
light–dark cycle (lights on at 7 A.M.), water and food ad libitum, conditioned rooms (22 °C, humidity 30%). 
On day of birth (P0), pups were sexed and nests were reduced to 6 pups with a balanced male:female ratio. All 
animal procedures were approved the Animal Ethics Committee of KU Leuven (P028/2018), in accordance with 
European Community Council Directive 86/609/EEC, the ARRIVE guidelines and the ILAR Guide to the Care 
and Use of Experimental Animals.

Pup retrieval test setup and protocol. Dams were tested on P5 and were transported to the test room 
at 8 A.M. PRT trials were performed between 9 and 10 A.M. A detailed step-by-step protocol can be found in 
Supplementary File 5. The PRT test was performed in the home cage inside a Styrofoam box to create a visually 
isolated environment. A Foscam C2 IP-camera (EUport, Wageningen) was connected to a laptop (Windows 10 
as operating system) using an online interface and set at a height of 50 cm above the setup to record from an 
overhead camera perspective. Recording settings were as follows: a resolution of 1280 × 720 pixel; 10–30 frames 
per second (fps) and room lighting. Pups were placed in a clean glass cup, which was preheated to 35 °C using 
a heat pad. Every dam performed six semi-randomized retrieval trials (i.e. 3 male and 3 female trials) with a 
maximum time of 90 s per trial. A trial started as the mother was in the nest and a pup was placed in the most 
distant corner relative to the nest. If the pup is not retrieved within 90 s, the pup was placed back into the core 
of the nest.

Image pre‑processing. Video recordings were pre-processed using SimBA. First, spatial dimensions were 
cropped to fit the upper corners of the home cage (Fig. 1d). Second, videos were shortened to create separate trial 
videos (e.g. Mother-ID_Trial1). The start of the video was the first frame after placing the pup in the corner and 
where the researcher’s hand is not visible anymore. The end of the video was determined as 90 s after the first 
frame. Third, greyscale was applied to the videos. Finally, videos were formatted to .mp4 video format.

Automated body part tracking using DeepLabCut. Pose-estimation (tracking) data, which is neces-
sary to create features in SimBA, forms the basis of the accurate classification of behavioral patterns in video 
 recordings31. We defined a minimalist 14-body part pose configuration for the mother and pup together, neces-
sary to classify different maternal behaviors. DeepLabCut 2.1.10.435 was used to develop a PRT mother–pup 
tracking framework. From 38 single trial video recordings, frames were extracted for labeling using k-means 
clustering. In total 592 frames were labeled as in Fig. 1a and Supplementary File 1 Table S1. Of these labeled 
frames, 95 percent were used for model training, whereas the remaining 5 percent was used to evaluate network 
performance. The mother–pup network was trained using ResNet-50 with a batch size of 4 images via Google 
Colaboratory (https:// colab. resea rch. google. com/).

Automated behavioral classification in SimBA. For maternal approaching, carrying and digging, ran-
dom forest classifiers were constructed in SimBA. In total, 27,683 frames of seventeen video recordings of PRT 
behavior were extracted and manually annotated for each of the three behaviors. To classify carry and approach, 
a subset of 10,157 frames from ten videos were used to construct classifiers. The digging classifier was con-
structed using 18,207 frames from ten different videos. Operational definitions can be found in Supplementary 
File 2 Table S4. All models were built with the following settings: n_estimators = 2000, RF_criterion = entropy, 

https://doi.org/10.17605/OSF.IO/RWHTD
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RF_max_features = sqrt, RF_min_sample leaf = 1, and random undersampling (approach = 8.5, carry = 16, dig-
ging = 2). A 75:25 ratio was used to split the annotated frames into a train:test dataset. Discrimination thresholds 
and minimum durations can be found in Table 1.

Manual PRT scoring and behavior detection. Raw retrieval videos were classified ‘1’ if retrieval was 
successful and ‘0’ if retrieval was unsuccessful. A pup trial was classified as retrieved as the mother carried it back 
to the nest. In these raw videos the nest ROI was not visible. Next, the latency to being retrieved was manually 
estimated per video and unsuccessful retrieval trials are assigned the maximum trial time (here: 90 s).

Automated pup retrieval estimations. In SimBA, an add-on was constructed to assess pup retrieval 
test performance. Here, retrieval is scored as successful if at least one body part of a pup is present in the nest 
ROI and carry behavior was observed in the three seconds before entering. Similar as in the manual estimations, 
successful or unsuccessful retrieval events are scored ‘1’ and ‘0’ respectively. Moreover, the output gives the 
estimated time of retrieval as well as the latency, total duration and counts for each behavior (carry, approach 
and dig).

Computer software and hardware. A laptop equipped with an Intel Core i5-8350U CPU and 8 GM 
RAM was used for image annotations in DeepLabCut (http:// www. macke nziem athis lab. org/ deepl abcut), behav-
ioral classification in SimBA (https:// github. com/ sgold enlab/ simba) and data processing in R and Python. The 
mother–pup network was trained using Google Colaboratory (https:// colab. resea rch. google. com/).

 Data availability
All our annotated images and videos, tracking models and behavioral classifiers are available on: https:// doi. org/ 
10. 17605/ OSF. IO/ RWHTD. For further inquiries, please contact the corresponding author.
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