
1

Vol.:(0123456789)

Scientific Reports |         (2022) 12:1640  | https://doi.org/10.1038/s41598-022-05599-9

www.nature.com/scientificreports

Construction and validation 
of a pyroptosis‑related 
gene signature associated 
with the tumor microenvironment 
in uveal melanoma
Feng Zhang1,4, Yan Deng2,4, Dong Wang3 & Shuai Wang2*

The present study aimed to construct a pyroptosis‑related gene signature in uveal melanoma (UM) 
patients. Patients from The Cancer Genome Atlas (TCGA) served as the training cohort, whereas 
patients (GSE22138) from Gene Expression Omnibus (GEO) served as the validation cohort. Using the 
Kaplan–Meier (KM) method, univariate analysis, and least absolute shrinkage and selection operator 
(LASSO) Cox regression, A five pyroptosis‑related gene signature was constructed in the training 
cohort. Patients were divided into high‑ and low‑risk groups. Survival analysis showed that patients 
in the high‑risk group had a shorter survival time. Risk and survival analysis, time‑independent 
receiver operating characteristic (ROC) curve analysis and principal component analysis (PCA) 
validated that the prognostic signature had greater predictive value in both cohorts. Multivariate 
analysis proved that the risk score was an independent prognostic factor. Functional analysis 
showed that the expressed genes in the high‑risk group were most abundant in immunological 
repose‑related and tumor‑related signaling pathways. Single‑sample gene‑set enrichment analysis 
(ssGSEA) revealed that the different risk groups were associated with the tumor microenvironment. 
Moreover, the predictive signature could help patients be better matched to immunotherapy and 
targeted treatments. In conclusion, the pyroptosis‑related gene signature associated with the tumor 
microenvironment maybe a reliable tool for predicting the prognosis of UM patients.
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UM  Uveal melanoma
TCGA   The cancer genome atlas
GEO  Gene expression omnibus
KM  Kaplan–Meier
LASSO  Least absolute shrinkage and selection operator
ROC  Receiver operating characteristic
PCA  Principal component analysis
ssGSEA  Single-sample gene-set enrichment analysis
AUC   Area under the ROC curve
TMB  Tumor mutational burden
FC  Fold change
PDCD1  Programmed cell death 1
VEGFR1  Vascular endothelial growth factor receptor
FLT3  Fms-like tyrosine kinase 3
VEGFR3  Vascular endothelial growth factor receptor 3
PDGFRA  Platelet-derived growth factor receptor alpha
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PDGFRB  Platelet-derived growth factor receptor beta
KIT  KIT proto oncogene
RET  Ret proto oncogene
mTOR  Mammalian target of rapamycin

Uveal melanoma (UM) is the second most frequent melanoma subtype, representing 5% of all melanomas, 
and the most prevalent primary intracellular cancer, accounting for 85–95% of all ocular melanoma  cases1–3. 
Although early treatment approaches such as radical surgery and radiotherapy have produced great local tumor 
control, up to 50% of patients would eventually die of the disease resulting from the high liver metastasis  rate4,5. 
Despite substantial improvements in early diagnosis and multimodal therapies such as adoptive T cell therapy 
and immune checkpoint inhibitors, the survival benefit remains  limited6–8. Furthermore, a growing number 
of studies have gradually revealed the prognostic relevance of genes and pathways for UM, but the prognosis 
remains poor mainly due to the high  heterogeneity9,10. As a result, credible predictive and prognostic biomarkers 
must be discovered to improve risk prediction and guide tailored therapy.

Pyroptosis is a unique inflammatory form of programmed cell death characterized by cellular swelling and 
many bubble-like protrusions produced by caspase-1/4/5/11 activation by certain  inflammasomes11. Pyroptosis 
causes cell swelling, plasma membrane lysis, chromatin fragmentation, and the release of intracellular pro-
inflammatory components such as inflammatory vesicles, gasdermin proteins, and pro-inflammatory cytokines 
under adverse  circumstance12. Pyroptosis was initially discovered to be an effective infection-fighting mechanism. 
However, the relevance of pyroptosis in tumor development is unclear. On the one hand, as a sort of programmed 
cell death, pyroptosis has been shown to reduce the onset and progression of  tumor13. On the other hand, pro-
inflammatory contents produced by pyroptosis progressions, such as inflammatory vesicles, gasdermin proteins, 
and pro-inflammatory cytokines, may accelerate the transformation of normal cells into tumor  cells14. Moreover, 
a growing number of studies demonstrated that pyroptosis-related various signaling pathways and inflammatory 
components were significantly associated with cancer progression and  prognosis15,16. Novel potential targets and 
chemotherapeutic therapies involving pyroptosis-related genes have also been studied by increasing  research17,18. 
As research has progressed, the role of pyroptosis in malignancies has grown more  prominent19. Investigating 
the role of pyroptosis in cancer could hold much promise.

Pyroptosis has a dual role in tumor formation and antitumor action. However, its specific functions in UM 
have been less uncovered. Using a comprehensive analysis of microarray data from The Cancer Genome Atlas 
(TCGA) and Gene Expression Omnibus (GEO) databases, the current study aimed to investigate the detailed 
prognostic value of pyroptosis-related genes, establish a prognostic pyroptosis-related gene signature, and study 
the correlation of pyroptosis with the tumor immune microenvironment as well as the treatment effectiveness 
of immunotherapy and targeted therapy.

Results
Construction of a pyroptosis‑related gene prognostic signature in the TCGA cohort. Accord-
ing to Kaplan–Meier survival analysis and univariate Cox proportional hazards model, eleven pyroptosis-
related genes may have prognostic significance (Fig.  S1 and Table  S1). Following that, LASSO regression 
analysis further identified five appropriate candidates from above eleven prognosis-related genes (Fig.  1). 
According to the expression level and risk coefficient of these five pyroptosis-related genes, a prognostic sig-
nature was constructed as follows: Risk Score = (1.730 × expression level of GSDMC) + (0.318 × expression level 
of GSDMD) + (1.735 × expression level of IL6) + (2.540 × expression level of NLRP6) + (0.186 × expression level 
of PLCG1). The five pyroptosis-related genes listed above were risk genes. Each UM patient was assigned a risk 
score based on the prognostic signature.

Internal validation of the prognostic signature in the TCGA cohort. Based on the median value of 
the risk score, all patients in the TCGA cohort were divided into high- or low-risk groups. According to survival 
analysis, patients in the low-risk category had a greater survival rate than those in the high-risk group (Fig. 2A). 
The heat map showed the expression levels of each prognostic pyroptosis-related gene between the high- and 
low-risk groups. In UM, IL6, GSDMC, and NLRP6 expression levels were relatively low, whereas GSDMD and 
PLCG1 expression levels were relatively high. Patients with low-risk scores had lower amounts of risk variables, 
as illustrated in Fig. 2B. Time-dependent ROC curve analysis curve demonstrated that the pyroptosis risk score 
had better predictive accuracy than TMB (Fig. 2C). Furthermore, PCA revealed that patients in different risk 
categories were separated into two groups (Fig.  2D). The scatter dot plot of patients’ risk scores in different 
groups revealed that the high-risk zone had many deaths and that patients in the low-risk zone had a longer 
overall survival time than those in the high-risk zone (Fig. 2E,F).

External validation of the prognostic signature in the GEO cohort. The prognostic signature’s 
prediction potential for metastasis-free survival was next tested in the GEO database’s independent validation 
cohort (GSE22138). The median value of the risk score was used to divide patients into low- or high-risk groups. 
KM survival curve showed that the low-risk group had less metastasis than the high-risk group, and patients’ 
metastasis-free survival time in the low-risk group was likewise longer (Fig. 3A). The expression levels of each 
gene were comparable to those in the TCGA cohort (Fig. 3B). Time-dependent ROC curve analysis validated 
that the pyroptosis risk score and monosomy 3 had the same predictive accuracy. (Fig. 3C). PCA revealed a good 
distinction between the high- and low-risk groups, as shown in Fig. 3D. In Fig. 3E, the distribution of patients’ 
risk ratings in different categories was ranked. The scatter dot plot further reveals that patients are more likely 
to develop metastases as the score increases (Fig. 3F). The distribution of risk scores and the scatter dot plot 
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revealed patients in the low-risk group had fewer deaths and a longer metastasis-free survival time than those 
in the high-risk group.

Analysis of the prognostic signature’s correlations with clinicopathological characteristics in 
the TCGA cohort. Correlations between the prognostic signature and clinicopathological features were 
explored in the TCGA cohort. Figure 4 demonstrated that the risk score raised as the T stage progressed, imply-

Figure 1.  Construction of the risk signature in UM patients in the training cohort. Parameters were going to 
zero with the penalty (lambda) increasing in the objective function of the LASSO (A). 1, AIM2; 2, CASP1; 3, 
CASP5; 4, CASP8; 5, GSDMC; 6, GSDMD; 7, IL18; 8, IL6; 9, NLRP6; 10, NOD2; 11, PLCG1. Selection of the 
optimal variables (lambda) in the LASSO model (B). The figure was performed using R software (version 3.3.1, 
Vienna, Austria, https:// www.r- proje ct. org/).

Figure 2.  Validation of the prognostic signature in the training group. Kaplan–Meier (KM) curve compares the 
overall survival between low- and high-risk groups (A). Heatmap of differentially expressed pyroptosis-related 
genes (B). Time-dependent ROC curves of the risk score and TMB (C). PCA plot based on the risk score; The 
red dots represent high-risk patients, whereas the blue dots represent low-risk patients (D). Distribution of risk 
scores between low- and high-risk groups; The red dots represent high-risk patients, whereas the green dots 
represent low-risk patients (E). Survival status of UM patients in the low- and high-risk groups; The red dots 
represent deaths, whereas the green dots represent survivals (F). The figure was performed using R software 
(version 3.3.1, Vienna, Austria, https:// www.r- proje ct. org/).

https://www.r-project.org/
https://www.r-project.org/
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ing that the prognostic signature might be linked to tumor growth. However, the risk score was statistically 
similar in different subgroups stratified by other clinicopathological factors.

The pyroptosis‑related gene prognostic signature independent of clinicopathological param‑
eters in both cohorts. We used univariate and multivariate Cox proportional hazards regression analysis 
in both TCGA and GEO cohorts to see if the prognostic signature’s predictive efficacy was independent of 
clinicopathological characteristics. Univariate analysis revealed the risk score was a prognostic factor [HR 3.749; 
95% CI 2.225–6.315; and HR 1.970; 95% CI 1.005–3.862, Fig. 5A,C]. Multivariate analysis further revealed that 
the risk score was an independent predictor for UM patients in both cohorts after controlling for other con-
founding factors [HR 3.958; 95% CI 2.013–7.782; and HR 5.689; 95% CI 1.256–25.777, Fig. 5B,D].

Functional analysis. Differentially expressed genes between the high- and low-risk groups were selected in 
the TCGA cohort. The volcano plot depicted differentially expressed genes (shown in Fig. 6A). GO and KEGG 
pathway studies were done. The findings showed those differentially expressed genes were mainly involved in the 
immunological response, inflammatory cell chemotaxis, chemokines, channel activity, and cytokine activity, as 
well as passive transmembrane transporter activity (Fig. 6B,C).

Subsequently, GSEA analysis demonstrated that those differentially expressed genes between the were pre-
dominantly enriched in immune response-related, chemokine-mediated, and tumor-related signaling pathways. 
Furthermore, the high-risk group’s changed gene sets were directly linked to malignant tumors (Fig. 6D).

Comparison of the immune activity and tumor microenvironment between the low‑ and 
high‑risk subgroups in the TCGA cohort. Subsequently, the immune activity and tumor microenviron-
ment were compared between the low- and high-risk groups in the TCGA cohort. Figure 7 showed that patients 
in the high-risk group generally had a higher infiltration of immune cells than those in the low-risk group. 
Moreover, 13 immune pathways showed lower activity in the low-risk group than in the high-risk group. When 
comparing the tumor purity, immune scores, and stromal scores between the two risk subgroups, we found the 
immune scores and stromal score were significantly lower in the low-risk group, while the tumor purity obtained 
opposite trend, with tumor purity decreasing from the low-risk subgroup to the high-risk subgroup (Kruskal–
Wallis test, P < 0.001).

Effectiveness prediction of immunotherapy and targeted therapy with the prognostic sig‑
nature. The immunotherapy and targeted therapy mRNA expression levels were compared between the 
high- and low-risk groups in Fig. 8. According to the findings, VEGFR3, PDGFRB, PD-1, MET, KIT, and FTLT3 
mRNA expression levels were considerably more significant in the high-risk group than in the low-risk group. 

Figure 3.  External validation of the risk signature in the validation cohort. KM curve for comparison of 
metastasis-free survival between low- and high-risk groups (A). Heatmap of differentially expressed pyroptosis-
related genes (B). Time-dependent ROC curves of the risk score and monosomy 3 (C). PCA plot based on 
the risk score; The red dots represent high-risk patients, whereas the blue dots represent low-risk patients 
(D). Distribution of risk scores between low- and high-risk groups; The red dots represent high-risk patients, 
whereas the green dots represent low-risk patients (E). Survival status of UM patients in the low- and high-risk 
groups; The red dots represent deaths, whereas the green dots represent survivals (F). The figure was performed 
using R software (version 3.3.1, Vienna, Austria, https:// www.r- proje ct. org/).

https://www.r-project.org/
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Figure 4.  Correlation analysis of the risk score with clinicopathological features. Boxplots of different groups 
stratified by age (A), gender (B), basal tumor diameter (C), tumor thickness (D), tumor T stage (E), and 
pathologic stage (F). Heatmap for the connections between clinicopathologic features and the risk groups (G). 
The figure was performed using R software (version 3.3.1, Vienna, Austria, https:// www.r- proje ct. org/).

Figure 5.  Univariate and multivariate Cox regression analyses for the risk score combined with the clinical 
characteristics. Univariate analysis for the training cohort (A). Multivariate analysis for the training cohort (B). 
Univariate analysis for the validation cohort (C). Multivariate analysis for the validation cohort (D). The figure 
was performed using R software (version 3.3.1, Vienna, Austria, https:// www.r- proje ct. org/).

https://www.r-project.org/
https://www.r-project.org/
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Therefore, immunotherapy and targeted therapy medicines targeting VEGFR3, PDGFRB, PD-1, MET, KIT, and 
FTLT3 may be more effective in UM patients with higher risk scores.

Discussion
UM is one of the most prevalent primary intracellular malignant tumors in adults, and it is primarily derived 
from melanocytes in the uveal  tract20. Undoubtedly, surgical excision of the tumor and surrounding tissue is 
the primary  treatment21. In clinical practice, conservative postoperative treatments such as radiation and multi-
modal therapies are commonly  used22–24. Despite significant improvements in multimodal therapy, the survival 
benefit remains  limited25. Several prognostic variables, such as histological grade, tumor stage, and abnormal 
genes expression, were well established, the survival advantages were significantly different even among UM 
patients receiving the same treatment in the same  settings26,27. Therefore, screening high-risk patients to receive 
adequate treatment is particularly significant, whereas low-risk patients could receive appropriate treatment to 
avoid long-term toxicity and morbidity. It is particularly important to construct a prognostic signature based 
on abnormal gene expression to stratify UM patients at risk to further assist doctors in therapy optimization 
and clinical decision-making.

Pyroptosis, also known as cellular inflammatory necrosis, is a novel form of programmed cell death. 
Pyroptosis shares several properties with apoptosis, such as nuclear condensation, DNA damage, and caspase 
 independence28. However, pyroptosis has particular morphological features distinguished from other pro-
grammed cell deaths. Similar to necrosis, the formation of pores disrupts the balance of ion gradients on both 
sides of the cell membrane, resulting in water inflow, cell swelling, cell membrane rupture, and the release of pro-
inflammatory mediators during  pyroptosis29,30. Hence, pyroptosis is also referred to as inflammatory “necrosis”31. 
The close relationships between pyroptosis and human diseases, including malignant tumors, have been gradu-
ally studied. Tumorigenesis is related to various factors, including the activity of proto- and antioncogenes, the 
immune microenvironment, oxidative stress, and chronic inflammation. Long-term exposure to tissues and/or 
cells in the inflammatory environment increases the risk of cancer. Pyroptosis activation causes the release of the 
inflammatory mediators IL-1 and IL-18, which promote cancer progression in various  ways32. Hence, pyroptosis 
might have a dual role in tumor cell growth inhibition or promotion. Researchers have attempted to integrate 
pyroptosis with various tumor treatments to cure malignancies by regulating pyroptosis and decreasing tumor 
cell proliferation, migration, and  invasion33. Exploring the involvement of pyroptosis in the tumor could thus 
provide a fresh viewpoint on cancer treatment. However, it is unknown if pyroptosis-related genes are associated 
with prognosis or whether they may be used to assess the success of targeted therapy and immunotherapy in UM.

Figure 6.  Function analysis. Volcano plot showing the differentially expressed genes between the low- and 
high-risk groups (A). Bubble graph for Gene Ontology (GO) enrichment (B). Bubble graph for Kyoto 
Encyclopedia of Genes and Genomes (KEGG) enrichment (C). Gene set enrichment analysis (GSEA) of the 
differentially expressed genes between high- and low-risk groups; The lower section represents that the further 
to the left the patient’s risk score increases, and the further to the right the patient’s risk score decreases (D). The 
figure was performed using R software (version 3.3.1, Vienna, Austria, https:// www.r- proje ct. org/).

https://www.r-project.org/
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In the study, we used the expression profile of UM patients’ tumor tissue from the TCGA and GEO databases 
to investigate the prognostic usefulness of pyroptosis-related genes and develop a prognostic signature. We firstly 
obtained the expressions of 33 pyroptosis-related genes by analyzing high-throughput RNA transcriptome data. 
Subsequently, we gradually constructed a five-gene risk signature using the KM method, univariate Cox regres-
sion, and LASSO Cox regression in the TCGA cohort. Internal validation confirmed the prognostic signature’s 
robust predictive potential and perfect accuracy. Furthermore, the predictive potential of the prognostic signature 
was further tested in an independent cohort from the GEO dataset, confirming the substantial predictive power 
of the UM prognosis that our signature possessed. When comparing the predictive ability of the risk score with 
current genetic prognostication methods, we found our risk score had better predictive accuracy (Table S3). 
Subsequently, we discovered that the risk score could be linked to tumor progression. The explanation supported 
the findings that improper pyroptosis contributed to a poor tumor microenvironment, allowing the malignant 
cell to proliferate, invade, and migrate quickly as the tumor advanced. The prognostic signature was proven to be 
a prognostic factor independent of all clinicopathological parameters in subsequent univariate and multivariate 
Cox regression analyses. The findings revealed that the prognostic pyroptosis-related gene signature has signifi-
cant therapeutic potential. Pyroptosis in UM might be a potential area of further investigation.

Functional analyses revealed that differentially expressed genes in the high-risk group were mostly involved 
in immune response, inflammatory cell chemotaxis, chemokines, channel and cytokine activity, and passive 
transmembrane transporter activity. GSEA analysis showed that the differentially expressed genes between the 
high- and low-risk groups were mainly enriched in immune response-related, chemokine-mediated, and tumor-
related signaling pathways. Moreover, the high-risk group’s changed gene sets were directly linked to malignant 
tumors. These findings concluded that pyroptosis might influence carcinogenesis, development, and metastasis by 
changing the composition of the tumor microenvironment. Subsequently, we compared immune cell infiltration 
and antitumor immune activities between the high- and low-risk subgroups. The results showed that patients 
in the low-risk group had less robust immune cell infiltration and antitumor immune activities than those in 

Figure 7.  Evaluation of immune cell infiltration level, tumor purity, and stromal content. Hierarchical 
clustering between high- and low-risk groups (A). Comparison of tumor purity between the high- and low-risk 
groups (B). Comparison of the immune cell infiltration scores between the high- and low-risk groups (C). 
Comparison of stromal scores between the high- and low-risk groups (D). The figure was performed using R 
software (version 3.3.1, Vienna, Austria, https:// www.r- proje ct. org/).

https://www.r-project.org/
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the high-risk group, indicating that the high-risk group’s immune functions were impaired overall. Low-risk 
patients had better clinical results than high-risk patients, which could be explained by strong antitumor immune 
activation. An increasing number of studies confirmed that the density of tumor-infiltrating lymphocytes is 
positively associated with survival prognosis in various types of malignancies. The current study discovered that 
the immune and stromal scores were significantly lower in the low-risk group, whereas tumor purity had the 
opposite pattern. The findings also suggested that an unfavorable tumor microenvironment could be blamed for 
high-risk UMs’ poor prognosis and low levels of antitumor immunity.

Immunotherapy and targeted therapy are currently under investigated. Recent studies have attempted to 
integrate pyroptosis with other tumor treatments, such as immunotherapy and targeted therapy, as well as to 
cure tumor by regulating pyroptosis. As a result, the pyroptosis-related signature classification may aid in the 
stratification of UM patients in order to identify those who respond to immunotherapy and targeted therapy. Our 
finding found that VEGFR3, PDGFRB, PD-1, MET, KIT, and FTLT3 mRNA expression levels were considerably 
greater in the high-risk group than in the low-risk group. As a result, the findings suggested that UM patients 
with higher risk scores may respond better to immunotherapy and targeted therapy medicines targeting VEGFR3, 
PDGFRB, PD-1, MET, KIT, and FTLT3. Hence, exploring the effect of pyroptosis on UM might provide a new 
theoretical basis for the further treatment of UM.

Five pyroptosis-related genes were included in the prognostic signature: GSDMD, GSDMC, IL6, NLRP6, and 
PLCG1. To our knowledge, this was the first comprehensive discovery of pyroptosis-related genes to develop 
a prognostic signature to predict clinical outcomes in UM patients. The activities of these genes in some types 
of malignancies, including UM, have been investigated in detail. GSDMD, a central member of the gasdermin 
family, is generally in a state of autoinhibition. GSDMD releases the N-terminal fragment (GSDMD-cNT) after 
caspase cleavage, causing the cells to expand until they rupture, showing that GSDMD is the pyroptosis  executor34. 
Increasing studies suggested that elevated GSDMD expression was important for cancer invasion, metastasis, 
and  prognosis17,35. Our study verified that UM patients with high GSDMD expression had poor overall survival 
time. GSDMC, another member of the gasdermin family, is mapped at 8q24.1-8q24.2 and was initially detected at 
both differentiating and differentiated epithelium cells in the upper gastrointestinal  tract31. Miguchi et al.36 dem-
onstrated that GSDMC was upregulated in colorectal cancer, and its overexpression enhanced cell proliferation 
and xenograft tumor growth. IL6, a main inflammatory cytokine, participates in the poor tumor microenviron-
ment, promoting tumorigenesis and cancer development. Similar to previous studies, high expression of IL-6 
was significantly associated with poor survival outcomes in  UM37. Nod-like receptor pyrin domain-containing 
protein 6 (NLRP6), belonging to the nod-like receptor (NLR) family of pattern recognition receptors, consists 
of an N-terminal pyrin domain (PYD), a central NOD domain, and C-terminal leucine-rich repeats (LRRs)38. 
NLRP6 is known as a component of the inflammasome and participates in inflammasome  signaling39. Downregu-
lated NLRP6 expression in gastric cancer was significantly associated with overall  survival40. NLRP6 appeared to 

Figure 8.  Comparison of the expression levels of immunotherapy and targeted treatment targets between high- 
and low-risk groups. The figure was performed using R software (version 3.3.1, Vienna, Austria, https:// www.r- 
proje ct. org/).

https://www.r-project.org/
https://www.r-project.org/
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be a cancer-promoting gene in our investigation, as it contributed to shorter patient survival. Given the limited 
data from UM and the often-conflicting results in different tumors, our results regarding NLRP6 provided some 
insights for further studies, especially in UM. Phospholipase C gamma 1 (PLCG1) affects cell growth, differentia-
tion, and apoptosis by mediating the receptor tyrosine kinase (RTK)-mediated signal transduction pathway. A 
prior study showed that PLCG1 activation was an essential requirement for the continued growth of small cell 
lung  cancer41. We found that high PLCG1 expression was significantly related to poor survival outcomes among 
UM patients. However, the roles of these genes, except IL-6, have rarely been investigated in UM. Understand-
ing pyroptosis and related genes’ function in carcinogenesis and tumor progression might be a potential area 
of further investigation.

We looked at the predictive value of pyroptosis-related genes as a preliminary study, which could provide a 
theoretical foundation for further research. However, our study has several flaws. First, our risk signature was 
only pyroptosis-related genes and did not represent other potential gene transcription expression profiles cor-
related to OS in UM. In addition, we were unable to explore the exact mechanism of pyroptosis-related genes. 
The limitation deserves further in-depth studies.

Conclusion
In conclusion, the pyroptosis-related gene prognostic signature developed was a reliable tool for predicting the 
prognosis of UM patients. The prognostic characteristic could aid our understanding of pyroptosis’ function in 
carcinogenesis and tumor progression. The prognostic signature could be used to stratify patients at risk based on 
their prognosis, assisting doctors in therapy optimization and clinical decision-making. Furthermore, exploring 
the effect of pyroptosis on UM might be a potential area of further investigation.

Materials and methods
Datasets. Microarray datasets, including the raw RNA-sequencing and related clinical data information 
including age, gender, basal tumor diameter, tumor thickness, T stage, pathologic stage, survival status, and 
survival time of UM patients, were freely downloaded from The Cancer Genome Atlas (TCGA) Database 
(https:// portal. gdc. cancer. gov/) on March 31, 2021. The cohort included 414 cancer tissue samples. GSE22138, 
an independent cohort of UM patients, was chosen for external validation from the Gene Expression Omnibus 
(GEO) (https:// www. ncbi. nlm. nih. gov/ geo/). The cohort included 63 cancer tissue samples. All methods were 
performed in accordance with the relevant guidelines and regulations.

Tumor mutational burden (TMB), the mutation density of tumor genes, is the number of mutations per 
million bases in tumor tissue, including base substitutions, gene insertion, and gene coding and deletion errors. 
It is also defined as the average number of mutations in the tumor genome. Mutation frequency for each tissue 
could be calculated using the Masked Somatic Mutation data (Varscan. Somatic. Maf) from the TCGA database. 
The 38 Mb is routinely taken based on the length of the human exon, so TMB is equal to the total mutation 
frequency/38. Hence, TMB was calculated by dividing the total number of mutations by the size of the coding 
region of the target. TMB evaluation was conducted by the ‘mafools’ R package.

Because all of the data were obtained directly from the public source, no protocol from the ethics committee 
was required.

Pyroptosis‑related genes collection. Thirty-three pyroptosis-related genes were extracted from prior 
studies in Table S219–23. The expression levels of 33 pyroptosis-related genes were retrieved from the TCGA and 
GEO datasets. The procedure was performed by the Perl programming language (Version 5.30.2, http:// www. 
perl. org).

Construction of the pyroptosis‑related gene prognostic signature. First, the Kaplan–Meier (KM) 
method and univariate Cox regression analysis were performed by the “survival” R package to identify prog-
nosis-related and pyroptosis-related genes with both significant P values less than 0.050 in the TCGA cohort. 
Second, to avoid overfitting, LASSO regression analysis was performed by the “glmnet” R package to identify 
appropriate candidates from prognosis-related genes. Subsequently, appropriate candidate genes and their coef-
ficients were retained based on the ideal penalty parameter (λ) value. Finally, a prognostic pyroptosis-related 
gene signature was constructed by the sum of the value of coefficients multiplied by the genes’ expression.

Validation of the prognostic pyroptosis‑related gene signature. According to the prognostic sig-
nature, each UM patient in the TCGA and GEO groups received a risk score. Based on the median value of the 
risk score, UM patients were divided into high- or low-risk groups. A lower risk score denoted a low-risk situa-
tion, whereas a larger risk score denoted a high-risk situation. The prognostic signature’s prediction efficacy was 
then tested in both cohorts.

K-M curve was drawn using the “survival” R package to compare the survival difference of the high- and 
low-risk groups, and a two-sided log-rank test assessed the difference between the two groups. The "pheatmap" 
R package drew heat map to show the different expression levels of prognostic pyroptosis-related genes in high- 
and low-risk groups. The specificity and sensitivity of the prognostic signature were assessed using a 3-year 
time-dependent receiver operating characteristic (ROC) curve analysis using the “survival”, “survminer”, and 
“timeROC” R packages, and the area under the ROC curve (AUC) was used to evaluate the signature’s prognos-
tic accuracy. The AUC ranges from 0.5 (no predictive power) to 1 (perfect prediction). The unique ability was 
investigated using principal component analysis (PCA) based on the five pyroptosis-related gene signatures. The 
“ggplot2” R packages were employed to perform the PCA analysis. Finally, the detailed correlations of death states 
with risk scores were visualized using the distribution of patients’ risk scores and scatter dot plots.

https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
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Independent prognostic analysis of the risk score. We merged the clinicopathological information 
with the patients’ risk scores. Correlations of the risk score with clinicopathological characteristics were further 
investigated. Univariate and multivariate Cox proportional hazards regression analyses were performed by the 
“survival” R package to see if the prognostic signature’s predictive efficacy was independent of clinicopathologi-
cal characteristics.

Functional analysis. The “limma” R package was used to identify differentially expressed genes between 
the high- and low-risk groups based on the following criteria: |logFC| > 1 and an adjusted P-value < 0.050. Based 
on these differentially expressed genes, Gene Ontology (GO), and Kyoto Gene and Genomic Encyclopedia 
(KEGG) analyses were conducted by applying the "org.Hs.eg.db", "colorspace", "stringi", "ggplot2", "dose", "clus-
terProfiler", and "enrichplot" R packages. Subsequently, underlying mechanisms were investigated within the 
“Molecular Signatures Database” of c2.cp.kegg. v6.2. Symbols through gene set enrichment analysis (GSEA) 
(software 4.1) with a Java program. The random sample permutation number was set as 1,000, and the signifi-
cance threshold was P-value < 0.050.

Evaluation of immune cell infiltration level, tumor purity, and stromal content. We analyzed 
29 immune-associated gene sets representing diverse immune cell types, functions, and pathways in the TCGA 
cohort. The immune cell infiltration level (immune score), tumor purity (tumor score), and stromal content 
(stromal score) for each UM sample were investigated using  ESTIMATE42. The single-sample gene-set enrich-
ment analysis (ssGSEA) score was used to quantify the activity and enrichment level of immune cell types, 
functions, and pathways applying the "limma", "GSVA", and "GSEABase" R packages in all samples. Heatmap 
result was exhibited by the "pheatmap" R package. The Spearman correlation of the risk score with the immune 
score, tumor purity, and stromal score was used to evaluate the correlation of pathway activities with immune 
cell infiltration levels in UM. Wilcoxon rank-sum test was performed to assess the difference between high- and 
low-risk groups, and the result was exhibited by the "ggpubr" R package.

Exploration of the associations of the risk score with targets of targeted therapy and immu‑
notherapy. Targeted therapy and immunotherapy have become practical approaches for the treatment of 
malignant tumors. Pearson’s correlation analysis was used to evaluate the associations of the risk score with 
therapy-related goals. We sought to predict treatment success using our risk score. The therapy targets are listed 
as follows: programmed cell death 1 (PD-1, also known as PDCD1), vascular endothelial growth factor receptor 
(VEGFR1, also known as FLT1), Fms-like tyrosine kinase 3 (FLT3), vascular endothelial growth factor receptor 
3 (VEGFR3, also known as FLT4), platelet-derived growth factor receptor alpha (PDGFRA), platelet-derived 
growth factor receptor beta (PDGFRB), KIT proto-oncogene (KIT), ret proto-oncogene (RET), MET proto-
oncogene (MET), programmed cell death ligand 1 (PD-L1, also known as CD274), and mammalian target of 
rapamycin (mTOR). Those associations were drawn by the "ggpubr" R package, and the difference was evaluated 
by Wilcoxon rank-sum test.

Statistical analysis. All statistical analyses and generation of figures were performed by the Perl program-
ming language (Version 5.30.2, http:// www. perl. org) or R software 4.0.2 (R Foundation for Statistical Comput-
ing, version 4.0.2, Vienna, Austria, http:// www.r- proje ct. org/). A two-sided P-value < 0.050 was considered to be 
statistically significant.

Data availability
Publicly available datasets from the Cancer Genome Atlas (https:// portal. gdc. cancer. Gov/) and International 
Cancer Genome Consortium (https:// icgc. org/) were analyzed in this study. All data supporting the findings of 
the study are available from the corresponding author on reasonable request. All data in our study are available 
upon request.
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