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Uncovering structural diversity 
in commuting networks: global 
and local entropy
Valentina Marin*, Carlos Molinero & Elsa Arcaute

In this paper we revisit the concept of mobility entropy. Over time, the structure of spatial interactions 
among urban centres tends to become more complex and evolves from centralised models to more 
scattered origin and destination patterns. Entropy measures can be used to explore this complexity, 
and to quantify the degree of structural diversity of in- and out-flows at different scales and across 
the system. We use toy models of commuting networks to examine global and local measures, 
allowing the comparison to occur between different parts of the system. We show that entropy at 
the link and node level give different insights on the characteristics of the systems, enabling us to 
identify employment hubs and interdependencies between and within different parts of the system. 
We compute the measures in the commuting networks of the Northern Powerhouse and Greater 
South East regions in the UK to examine their relevance when studying real systems of cities. 
Finally we discuss how these can be used to inform planning and policy decisions oriented towards 
decentralisation and resilience.

Cities are essentially relational, they are defined by the nature of interactions that holds them together. In the same 
way, they could also be defined by how they are connected to other cities within a system of intricate relation-
ships. Different types of interactions lead to relationships of dominance, dependency or cooperation between 
cities, and in doing so, they characterise the functioning and dynamics of the whole system. Systems of cities are 
interdependent, a significant change in one of its components could impact or disrupt the functioning of other 
urban entities within the system, or even the structure of the system as a whole.

In this context, systems of cities can be modelled as networks, where different types of links represent dif-
ferent interdependencies, giving rise to different structures1–3. Within a myriad of relationships that link urban 
systems, the connection between workplaces and home has been a central part of studies for understanding the 
dynamics occurring within systems of cities. Mobility patterns have been widely studied to examine the struc-
ture of mobility and its relation with socio-demographic variables4,5, to define categories of cities according to 
their commuting structure6, to investigate the evolution of mobility patterns over time7,8, to define boundaries 
of functional areas9, and to study the spread of infectious diseases10, to name a few.

When commuting is seen as a network, cities are represented as nodes, and the flows of commuters constitute 
the links. The structure and characteristics of such a network can give us insights into the different roles that 
cities play within the system. In particular, diversity and dispersion of flows across the system can inform about 
the cohesiveness and balance of the relative importance of urban centres. On the other hand, the over concen-
tration of flows can reveal subordination and high dependence of the system in few specific centres, exhibiting 
the potential susceptibility of the system as a whole. For example, the extent to which in-commuting is concen-
trated seems crucial to understand potential labour market centralisation and disparities in the distribution of 
job opportunities.

Diversity of patterns of labour supply and demand across the territory, is a critical attribute for the resil-
ience of the commuting network. Diverse mobility patterns contribute to the re-organisational capacity of the 
system11. A diverse system has multiple responses and alternatives of meeting a given need, making space for 
adaptation and innovation to maintain the functioning of the system across different conditions and change12–16. 
In this context, the relationship between diversity and complexity has gained great attention, particularly from 
resilience theory17, being a central matter in many fields of science. However widely used, and despite the noted 
relevance of diversity as a crucial characteristic of urban systems14,18–20, it remains a difficult concept to define 
and measure. The difficulty lies in the many different methodological approaches to measure it across disciplines, 
encountering great semantic variation21,22.
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Entropy is one of the most common ways of quantifying diversity23. The concept of entropy was first coined in 
thermodynamics, and then widely used in other fields such as physics, statistics, information theory and ecology. 
Depending on the research context, entropy is generally addressed as a measure of disorder in a system, or as the 
level of uncertainty and information24. The latter was introduced by Shannon (1948) in the context of information 
theory, referring to the amount of information within probability distributions25. Shannon’s entropy measures 
the degree of uncertainty in predicting the types of elements randomly chosen from a sample. It depends on 
both, the number of types and the relative abundance of them, also known in the field of ecology as richness 
and evenness respectively. The greater the amount of types (richness) and the more equally abundant they are 
(evenness), the more difficult it is to predict21,26. In such a way, when applied as a diversity measure, one can say 
that the more uncertainty, the greater the diversity.

The entropy of network-based systems refers to the heterogeneity in the arrangement of its components. 
Entropy measures on graphs were first used by Rashevsky (1955) and Mowshowitz (1968) as a measure of rela-
tive complexity. First approaches studied the topological information content in unweighted and undirected 
graphs27,28. A common way to measure entropy in graphs is based on the degree distribution P(deg), measur-
ing the probability of having a node with a certain number of links. It is a local measure with a focus on node’s 
connectivity which ignores to some degree the weight of the different links. Although it is a useful measure to 
characterise important aspects of the network, on its own it is unable to describe the complexity of the network 
structure, from both local and global perspectives. More recent studies have deepened the understanding of 
entropy in weighted and directed graphs by extending information theory concepts to networks29,30. This is crucial 
for studying diversity of commuting networks, which are described by in-commuting and out-commuting flows.

In commuting networks, entropy is commonly used as a relative measure of the distribution of commut-
ers amongst employment locations. This is achieved by looking at the relative abundance and volume of flows 
embodied in the weights of the links. Although the study of flows by means of entropy has not been widely 
adopted, certain studies have validated its use for addressing key urban matters such as the analysis of patterns of 
spatial dispersion to inform choice models for urban transportation31; the use of in- and out-commuting entropy 
on different cities to explain variations in economic growth32; the use of entropy of individual users trajectories 
to study the correspondence of mobility diversity to social behaviour and socio-economic indicators33,34, as a 
measure of spatial inequality and attractiveness35, or the use of entropy of individual vehicular mobility to char-
acterise spatio-temporal patterns of activities along the day36.

Typically, to the best of our knowledge, measures are carried out at a local level, that is, entropy is calculated 
for individual trajectories or specific nodes within the network. Cities or administrative areas are the local units 
of analysis, and there is no wider consideration of the global structure/context to understand their role within 
the overall regional or national system. On this basis, we think that certain properties of the global network in 
terms of its structural diversity may have been left unexplored by focusing on the performance of local elements.

In this paper we test different measures of entropy on commuting networks at global and local scales. We aim 
to explore if the results offered by the different measures are complementary and relevant for the study of the 
structural diversity of spatial interactions. First we use toy models of networks with different patterns to examine 
the different measures and compare the outcomes across systems and their constituent parts. We examine the 
diversity of the global commuting structure by applying a set of measures to both the group of all nodes and 
the ensemble of links, considering node strength f(s) and link weight distribution f(w) respectively. We look at 
nodes based on the workforce patterns of in- and out-commuting flows in all urban units as a result of the spatial 
distribution of labour supply and demand. The measure depicts patterns of centralisation and dispersion in the 
urban spatial structure. When studying the network from the perspective of its links, we focus on the diversity 
of distribution of origin-destination pairs, considering intensity and density of flows. Normalisation of the 
measure is achieved by comparing the entropy of the sampled links with the maximum possible links of a fully 
connected network. This measure describes the level of dispersion of commuter trips in the territory, outlining 
potential functional dependencies when many trips take place in few dominant Origin-Destination (OD) pairs. 
In a following section we address local entropy at nodes individually. We look at the structural diversity of the 
sub-graph made up of the subset of interactions that a given urban unit establishes directly with its neighbours. 
Then we compare the results from the general equation of nodal entropy with a normalised measure that consid-
ers its maximum potential if connected to all other nodes in the network. Finally, we comment on the outputs 
obtained by measuring real networks and discuss the relevance of the twofold analysis of the system comparing 
global and local approaches, guided by the following questions: Is it the same to be a non-diverse unit within a 
structural dispersed system, than being a non-diverse unit within a structural concentrated one? To what extend 
the diversity of the individual elements could describe the diversity of the overall system? What can we learn 
about the system by comparing the outcomes of local and global scales?

Methods
The entropy measures presented in this paper are based on the information-theoretic approach to networks29,30. 
This approach considers entropy as a measure of uncertainty related to the information content transmitted 
from sender to receiver. When applied to networks, an analogy is made so effluxes of nodes correspond to the 
sender and influxes of nodes to the receiver30. Then, the uncertainty of the transmission of a certain flux in the 
network depends on the probability of its occurrence between sender and receiver. In our case study, commut-
ing networks are constituted by origin and destination nodes representing urban units with in- and out-flows. 
Measures of uncertainty in Information Theory derive from the Shannon Entropy H formula25, (also known as 
Shannon’s diversity index in ecology) which is defined as:
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where pi is the probability of occurrence of the ith type within the total sample.
We use different toy models of commuting networks to compare different measures on both local and global 

scales applied to the links and nodes of the network. Different forms of normalisation are presented in each case. 
The following measures consider the commuting flows as directed and weighted graphs (G) represented by a set 
of n nodes V(G) and m links E(G), each representing a tuple of nodes. Each node attracts in-commuting flows, 
and releases out-commuting flows in different proportions depending on its role within the system. For every 
link, a weight wij is assigned, representing the total flow from origin i to destination j.

Results
Global diversity.  Global measures quantifying diversity as a function of the overall structure of the com-
muting network are computed across the whole graph. To measure entropy globally, we look at how flows are 
distributed either on nodes or on links, considering every component of the network. Given that all elements 
are interdependent in the overall structure, any local change in the commuting network will modify the global 
entropy.

Spatial distribution of labour supply and demand.  Labour supply and demand are not evenly distributed in the 
geographic space, giving rise to complex patterns of spatial interactions which are reflected in the structure of 
the commuting network.

Urban units have different functional roles within the system. Some cities for example function as employment 
hubs, attracting large numbers of workers, other cities mostly supply workers to other areas, while some others 
are able to find a balance between labour supply and demand. Entropy measures enable us to explore whether 
the flows in a system tend to be concentrated in dominant areas, or evenly dispersed from many origins to many 
destinations. The former is characterised by a monocentric pattern where the flows come from many origins 
to very few destinations, and the latter is characterised by a more polycentric pattern, which indicates a greater 
balance in the importance of urban units.

Identifying monocentricity or polycentricity through commuting patterns can provide an initial insight into 
diagnosing possible functional dependencies due to disproportionate concentrations in some central cities. These 
can serve to inform planning to overcome spatial disparities, with interventions related to labour decentralisa-
tion and transport infrastructure aiming at encouraging growth of subordinate areas and more balanced and 
diverse spatial interaction patterns.

Let us start by characterising origins and destinations through the diversity of locations from/to which work-
ers go/arrive to work. This can be captured through the following global entropy measures:

•	 Global out-flow entropy at node level: 

 where 
∑

j pij is the probability of out-flow from node vi , considering the sum of all flows departing from vi 
to every possible node vj within the total commuting in the system.

•	 Global in-flow entropy at node level: 

 where 
∑

i pij is the probability of in-flow to node vj , considering the sum of all flows arriving to vj from every 
possible node vi within the total commuting in the system.

Both measures, reveal structural patterns of the network according to commuting origin or destination, provid-
ing information about the concentration of flows. These measures examine the distribution of node strength in 
the network, which accounts for the total in- or out-trips in every node. In the case when one node concentrates 
most of the flows, the system will exhibit a skewed probability distribution, indicating that if a location for labour 
supply or demand is taken at random, it will most likely correspond to that node. This reduced uncertainty of 
knowing where an individual randomly selected might go to work (or come from), is represented through a lower 
entropy. If on the other hand, there is a similar probability distribution of flows across nodes, such that the system 
has no node dominating over others, the uncertainty of ascertain the work or home location of an individual will 
be higher and hence the entropy will also be higher. The latter is maximal when there is equiprobability across 
space. Figure 1 exemplifies the centralisation of system b with respect to in-commuters, concentrating most of 
the flows in v5 , while for the same configuration and different directions, system a does not concentrates job, 
attaining hence a higher in-flow entropy than b. The inverse occurs for the out-flows.

In general, commuting destinations tend to be more highly concentrated than the commuting origins. This is 
because employment opportunities tend to cluster in few locations. In those cases the out-entropy will be higher 
than the in-entropy. However, this is not always the case, and exploring whether the origins or destinations of 
the commuter flows are more or less diverse, by looking at whether Hout

GN > Hin
GN or Hin

GN > Hout
GN , can give a bet-

ter understanding of the urban system. Figure 1 presents a strong case of monocentricity with respect to jobs in 
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system b, where Hout
GN > Hin

GN , and the odd case from which a single location provides most workers for several 
different locations in system a, with Hin

GN > Hout
GN.

To normalise the results and make them comparable between systems of different sizes (different number of 
nodes), we look for the total n value for each system, then HTn = log(n) , where n is the total number of nodes in 
the system. The normalised entropies can be written as: Hout

GN/HTn and Hin
GN/HTn.

Commuter trips distribution.  In the previous section we characterised the origins and destinations of commut-
ing flows according to their diversity, and considered how such an approach can give insights into the polycen-
tricity of cities. Let us now look at the trips that are being generated, and measure the diversity of the flows along 
the links of the commuting network.

The concept of diversity is associated in this case with the dispersion of commuter trips in the territory tak-
ing into account the distribution of flow intensity f(w) and network density. Therefore, the measure considers 
the equivalence between the flow capacity of their interactions, as well as the variety of areas that are connected 
to each other. A system will be more diverse if there are many combinations of origin-destination pairs (higher 
link density), and if the amount of flows between these pairs is evenly distributed (more uniform link weight 
distribution).

The framework presented here is relevant to inform infrastructure planning, given that the provision of trans-
port infrastructure is intertwined with the spatial distribution of flows. The more disperse the pattern of origins 
and destinations in the territory are, the more challenging is the planning of the physical transport structure that 
allows these trips to occur more efficiently31. In addition, such a framework also allows us to identify functional 
dependencies between urban units within the system. If the relationships are scattered it means that the opera-
tion of the system relies on various labour and economic relationships between its different components. The 
opposite occurs with the existence of dominant flows where most of the trips occur between few pairs of urban 
areas, and the overall system is constrained to these specific relationships.

Let us introduce global entropy at link level, as a measure of flow diversity, considering every OD pair in the 
system. We normalise the measure with respect to its maximum, so that comparisons with other systems can 
be made. In this case, we need a joint entropy encompassing the uncertainty associated with both origin and 
destination, through the link probability. Such a measure can be interpreted as an average diversity of the system 
as a whole29. The entropy of trips can be defined as:

•	 Global entropy at link level: 

(4)HGL = −
∑

∀i

∑

∀j

pij log pij

Figure 1.   Global nodal entropy. Example of two different commuting networks. The node strength (s) measures 
the strength of nodes by means of the total weight of their connections, which in this case corresponds to the 
total amount of in- or out- flow at every node. The distribution f(s) for in-commuting is in red and for out-
commuting is in blue. In the example above, when flows are more uniformly distributed in nodes, the HGN is 
higher, and when there are fewer nodes concentrating the flows, the HGN is lower.
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 where pij is the probability that a commuting flow from vi to vj occurs in the system, hence pij =
wij

∑

i

∑

j wij
 , 

where wij is the number of trips from vi to vj.
HGL takes higher values when flow weights are evenly distributed, so every commuting flow is equally relevant 
in the commuting network. Conversely, if only few OD links contain the large majority of commuting flows, the 
diversity of the system is low. Then, the dominance of some flows in the network reduces the entropy HGL . This 
is clear when looking at networks b and c in Fig. 2. With the same total flow count and the same amount of links, 
but with a different distribution of flows among them, the global entropy at link level is higher in b than in c. In 
b flows are evenly distributed, while in c certain links have a much higher density than in the rest of the system.

In general, entropy values tend to be higher when the number of elements in the system increases, so the more 
the links m or nodes n in the network, the higher the entropy values. In Fig. 2, we can confirm this by looking 
at networks a and d. In both systems flows are evenly distributed across links, however entropy (*) is higher in a 
than d because ma > md . This means that the comparison of different systems is not a straightforward task. To 
address this issue we need to normalise our measures of entropy. A common way of addressing normalisation 
when studying entropy is by looking at its maximum value, which occurs when all elements are equally abundant. 
Then, normalisation is done by dividing the entropy value by the entropy of the total number of elements present 
in the system. Accordingly, diversity of link weights in a network with a total of m links would be normalised by 
HTm = log(m) , leading to H∗∗ = HGL/HTm

37.
A more suitable normalisation when comparing diversity of commuting flows between system of cities should 

consider a notion of density. Network density in this context, is understood as the ratio of the total number of 
links in the network to the number of links in its theoretical fully connected network38. The maximum possible 
number of links (Mpm) in a graph is given by n(n− 1) , n being the number of nodes in the graph. The proposed 

Figure 2.   Global links entropy. Example of commuting networks with the distribution of link weights f(w), the 
link density D = m/n(n− 1) and the corresponding general entropy with normalised values: (*) = HGL , (**) 
= HGL/HTm , and (***) = HGL/HMpm . A uniform distribution of weights and high density results in a high HGL 
diversity (systems a and d), while when few links concentrate many flows, and the density is low, the system will 
exhibit a low HGL diversity (system c). Only the normalisation (***) is able to differentiate between systems b) 
and e), and c) and f), where higher link density results in higher entropy values. 
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normalisation in this work is then by HMpm = log(n(n− 1)) , leading to H∗∗∗ = HGL/HMpm . This process takes 
into account the diversity of flows in a existing level of interaction in a system, in comparison to its own maxi-
mum potential of connectivity. The latter, allows a meaningful comparison of flow diversity between systems of 
different sizes (different number of commuting OD pairs or different number of cities).

A comparison between both forms of normalisation could be easily done by looking at examples b and e in 
Fig. 2. Taking the common form of normalisation: H∗∗(b) = H∗∗(e) = 1 , giving the maximum value to both 
systems which have the same amount of existing links ( m = 10 ) and even distribution of weights. By this, we 
could conclude that both systems are equally diverse. However, when taking the proposed normalisation (***) 
the results for each systems are 1 > H∗∗∗(e) > H∗∗∗(b) . As this measure considers density, in this case none of 
the systems meet the maximum entropy value of 1, because they do not present the maximum possible number 
of OD pairs according to their own potential, as in the cases of a and d. We observe that the density of links in e 
is closer to its maximum potential, in comparison to b.

Local diversity.  In addition to identifying general characteristics of the network, we are also interested in 
understanding the role of individual locations. Local measures serve this purpose, and local diversity can be 
thought of as a sub-graph entropy of the node in question, where every in or out link directly connected to it is 
taken into account. This measure considers the intensity and density of the trips that are released (outflow) or 
attracted (inflow) by each unit (node). The distribution of flow intensity informs whether the relationships are 
organised in a scattered or polarised manner. Density, on the other hand, looks at the variety of urban areas with 
which the unit in question interacts.

Identifying important actors in the distribution of flows is important to be able to construct decentralised 
solutions. These are favoured to increase the resilience of the network. Decentralisation can be achieved by 
diversifying the dependence between nodes. Looking at the specific case of commuting networks, the distribu-
tion of inflows is determined by the areas of provision of labour for the internal employment market. On the 
other hand, the distribution of workforce outflows accounts for dependencies between residents in a certain 
area, and the provision of jobs in other locations. Within this proposed framework, areas of similar interaction 
and dependency patterns can be identified, from which a categorisation of cities can be constructed to inform 
planning decisions. For in- and out-commuting scenarios, local entropy is defined as:

•	 Local in-flow entropy: 

•	 Local out-flow entropy: 

 where pj =
∑

i wij
∑

i

∑

j wij
 represents the sum of every flow arriving at vj divided by the total flow of the system, 

and pi =
∑

j wij
∑

i

∑

j wij
 refers to the sum of every flow leaving vi divided by the total flow of the system. p(i|j) and 

p(j|i) represent the probability that a flow within the system is received or sent by a specific node 
respectively.

These measures give information about the node diversity in terms of the flows that are sent or received by 
its direct neighbours (one-hop neighbours of the target node). In this case, entropy functions are applied to the 
distribution of flow weights to or from a given node. Thus, the dominance of an origin-destination pair at a given 
node reduces the entropy, while an equal distribution of flows results in higher values of entropy. Figure 3 shows 
the example of a node v1 whose in-links have equal weights, while the out-links are dominated by flows com-
muting to v5 , leading to Hin

L > Hout
L  . An entropy equal to zero occurs when there is no link arriving or departing 

from a node (e.g. out-commuting from v5 in Figure 3). But, this will also be the case when there is only one link 
connected to the node, since there will be no uncertainty (e.g. in-commuting from v2 or v4 in Fig. 3).

Normalisation can be achieved by dividing by the maximum value of entropy given the in or out degree 
of the node: Hin

deg = log(degin(vj)) and Hout
deg = log(degout(vi)) . Another approach for normalising local nodal 

entropy could be done by looking at its maximum possible degree value, which in this case would be given by 
HMpd = log(n− 1) . As explained previously for Eq. (4), the proposed framework takes into consideration the 
network density and the maximum potential of connectivity of nodes in a network. The normalised diversity 
measures are: Hin

L /HMpd and Hout
L /HMpd . The relevance of the normalisation is illustrated in Fig. 3. With the first 

normalisation (**), looking at the in-flows, both nodes v5 and v1 present the highest value, since flows are equally 
distributed among the existing links. In the second normalisation (***), node v5 has a higher value since it receives 
flows from every possible node in the network, while v1 only receives flows from half of the potential origins.

If we want to describe the system based on its local relationships, we can compute the average among every 
local entropy. The following equations measure the weighted mean where every local measure in the system is 
considered based on its different probability of occurrence. In Information Theory this measure is known as 
conditional entropy, and it quantifies the uncertainty about a variable when another variable is known30. The 

(5)Hin
L = −

∑

∀i

p(i|j) log pi|j = −
∑
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pij

pj
log

pij

pj

(6)Hout
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first measure corresponds to the uncertainty of in-commuting when destination is known, the second one cor-
responds to the uncertainty of out-commuting when origin is known:

•	 Average local in-flow entropy: 

•	 Average local out-flow entropy: 

Note that the average is obtained by considering all possible values of i or j given by each probability of occur-
rence pi or pj . Normalisation of these measures could be done by dividing the results by log(n− 1) , in the same 
way as for Eqs. (5) and (6), allowing us to compare diversity in different systems at local scales in terms of their 
own maximum potential of connectivity.

Multiple measures analysis.  In this paper we have explored some entropy functions at the global and 
local level for directed networks, aiming at capturing different relationships between system components. When 
looking at Fig. 4, where all revised measures are computed across 10 toy models with different flow distributions 

(7)Hin
Lµ =

∑

∀j

pj(H
in
L )j = −

∑

∀i

∑

∀j

pij log p(i|j) = −
∑

∀i

∑
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pij log
pij

pj

(8)Hout
Lµ =

∑

∀i

pi(H
out
L )i = −

∑

∀i

∑

∀j

pij log p(j|i) = −
∑

∀i

∑

∀j

pij log
pij
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Figure 3.   Local node entropy. A commuting network where the sub-graph at node v1 is highlighted with 
in-flows in red, and out-flows in blue.The network consists of nodes with different degree and link weight 
distributions to explore the different results and normalisation approaches. Diagrams for in-flows frequency 
distribution f(w) at every node are in red, and out-commuting f(w) are in blue. Entropy and normalised values 
corresponds to: (*) = Hin

L  , (**) = Hin
L /Hin

deg or Hout
L /Hout

deg , and (***) = Hin
L /HMpd or Hout

L /HMpd . As an example, 
a uniform distribution of in-flows and a degin = 2 on v1 results in a maximum 1 for (**) and 0.5 for (***), whereas 
a uniform weight distribution and a maximum possible degin = 4 of node v5 results in a maximum 1 for (**) and 
(***).
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but same topology, we can observe the high variability of outputs. This tells us how important it is to choose 
the proper measure to describe the pattern of interest. A single measure will not be able to capture the complex 
structure of flow diversity in the system. This is clearly shown in system S7 in Fig. 4, where values of entropy vary 
between 0.27, the minimum value in the whole table, and the maximum 1.

Hout
GN and Hin

GN are able to capture concentration of flows which could potentially inform about the pres-
ence of predominant centres. If we look at the first row of networks in Fig. 4, Hin

GN results can be sorted as 
S1 = S2 > S3 > S5 > S4 . In the first two systems, flows are equally distributed among nodes, having the maxi-
mum diversity. The network S5 presents polycentricity, where flows are mainly clustered in two nodes. While 
network S4 presents monocentricity, with a concentration of flows at one destination. This system has a lower 
Hin
GN value. On the other hand, in order to differentiate patterns between S1 and S2 we need another measure. 

By looking at the HGL values, we can observe that S1 > S2 . This means that while in both systems nodes are 
equally relevant, the relationships between nodes are different. In S2 the measure is able to capture that some of 
the origin-destination pairs dominate over others.

Local measures for commuting networks are more commonly used to better understand the dynamics occur-
ring at place level. In a regional system for example, local diversity allows us to capture how heterogeneous is the 
interconnection of a city with other cities in the system. In this context, the average of all local measures among 
cities, is expected to reflect the dynamics occurring among all interconnections between the whole system com-
ponents. However, we believe that this is not a straightforward assumption, and it is necessary to question to what 
extent local measures could capture the global diversity of mobility, and how both local and global relates to each 
other. In Fig. 5, we explore those relationships between local and global measures of diversity across toy models 
presented in Fig. 4. Figure 5b shows the relationship between global Hin

GN and local Hin
Lµ in-commuting measures. 

In general we can see that both reflect different aspects of diversity in the system, and they do not present any 
obvious correlation. For example, system S4 has maximum local diversity but a relative low global diversity.

A city is not fully characterised by the relationships established with its immediate neighbours, its role within 
the wider context and dynamics of the region, country or trade network it belongs to, play an important role 
in its characterisation. For example, a city with a high local mobility diversity within a diverse region, will not 
have the same role as a city with the same local diversity but within a non-diverse regional system. In Fig. 5d, 

Figure 4.   Global and local measures across different commuting networks. Values correspond to normalised 
entropy. The total volume of trips is 40 flows in all systems. The link density D for S1 to S5 is 1.0 and for S6 to 
S10 is 0.5.
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we compute local in-commuting node entropy Hin
L  for node v5 in each system in Fig. 4, and plot it against the 

global entropy Hin
GN of its correspondent network. This shows that the node v5 in networks S1, S3, S4, S5 and S9 

is fully diverse locally, with the same entropy value, nevertheless, it belongs to systems that behave completely 
differently globally. Taking S1 and S4, as opposite examples, we can clearly see that in network S4, the node v5 
has a dominant role, functioning as a centre of destinations. Conversely in S1, node v5 has the same role as every 
other component within the overall network.

Northern Powerhouse and Greater South East structural diversity
Building on the discussion in previous sections, we took the Greater South East (GSE) and the Northern Pow-
erhouse (NP) regions in the UK and compared the structure of their commuting patterns by computing the 
different entropy measures (Fig. 6). The dataset corresponds to the aggregated commuter flows at the Local 
Authority District (LAD) level from the 2011 Census for England and Wales. Origin-Destination flows with 
weights wij > 10 within the regions of the North East, North West and Yorkshire and Humber comprise the NP 
commuter network with n = 72 nodes, while the ones within the East, the South East and the London regions 
conform the GSE network with n = 135 nodes. The total flow within the GSE and the NP is 2,449,781 and 
1,163,861 commuters respectively.

Different aspects of the functioning of each super-region as a whole can be described by the global entropies 
(Fig. 6). Global in-flow entropy at node level Hin

GN depicted a greater balance in the importance of employment 
hubs in the NP with an output of 0.91 versus a 0.79 in the GSE. The diversity of the spatial distribution of labour 
supply in various urban units in the north, supports the interpretation of the Northern Powerhouse as a polycen-
tric region in the global scale, contrasting with a more monocentric structure of the Greater South East where 
Inner London attracts a large part of the workforce trips (Fig. 6c). The global entropy at links HGL captured a 
lower diversity of commuter flows along links in both networks. The 50% of journeys to work are distributed 
within the 5% of the OD links in the NP; and within the 7% of the OD links in the GSE. The dominance of few 
links with high volume (Fig. 6d) and the relatively low link density D in both networks explain the similar results. 
The average of the local measures Hin

Lµ and Hout
Lµ  show different characteristics of the systems. Although the GSE 

has a higher Hin
Lµ value due to the significant weight of London, for both networks the local average entropies are 

low. The case of the NP is interesting when comparing a more polycentric structure at the global scale and a low 

Figure 5.   Comparison between local and global proposed normalised measures of networks in Fig. 4. (a) 
compares both global measures, (b) and (c) compare global with average local entropy, and finally (d) compares 
global with local entropy at node v5 . System S1 is a fully connected network with evenly distributed flows 
with the maximum entropy in every measure, while other systems present varying patterns across measures 
depending on their structural organisation. As an example we can see that in (d) node v5 in S1 has high entropy 
within a globally diverse system, and in contrast node v5 in S4 has high local entropy within a system which 
is centrally organised. Although individual node interactions are equally distributed among neighbours in S4, 
node v5 has a preponderant role globally. In S7 node v5 has low local entropy but is part of a fully diverse system.
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diverse commuting exchange across local entities. We observe a relation of this with the modularity of the NP 
network, which shows denser connections between the LADs within regions and sparse connection with LADs 
within other regions or “modules”. These results, however, reflect the structure of the system in 2011, before the 
Northern Powerhouse initiative in 2015, whose agenda promoted strategies to improve transport connectivity 
and more diffuse movement patterns to encourage cross-regional exchanges. Future analyses of the 2021 census 
data could reflect the level of impact of these strategies, and may eventually show greater diversity at the local 
scale consistent with the polycentric potential of the system at the global level.

On the other hand, local entropy computes diversity of relationships to or from each local authority. In 
Fig. 6a we can observe values of Hin

L  in both regions. In the GSE, the LADs with higher diversity are those in 
the central area, with values decreasing towards the boundaries of the region. In the NP, the highest values are 
geographically more scattered. Inner London has the highest values for both, Hin

L  and Hout
L  , showing significant 

diversity of flows in both directions (Fig. 7a). In important urban centres such as Manchester, Leeds and Salford, 
the diversity of workers in-flows is greater than that of their out-flows. Workers coming from other local areas 
are attracted to these employment hubs with more even volumes, than the ones of their residents commuting to 

Figure 6.   Northern Powerhouse (NP) and Greater South East (GSE) regions commuting patterns. (a) GSE 
and NP commuting networks with nodes corresponding to Local Authority District (LAD) levels. Values of 
Hin
L /HMpd are indicated in the colour scale of nodes, going from the lowest values in blue to the highest in red. 

The size of nodes reflects the total count of in-commuting flows (in-strength s). The width of links denotes the 
flow weight. (b) Outputs for normalised entropy measures for both systems, including link density (D) and 
modularity. (c) Normalised node in-strength distribution P(s) and (d) normalised link weight distribution P(w). 
(Map created by the authors with QGIS 2.18.15 software. URL www.​qgis.​org).

http://www.qgis.org
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other locations, which tend to be more polarised to fewer centres. In contrast, smaller local authorities tend to 
have higher out-flow than in-flow diversity, possibly associated with a more prominent role of workers provid-
ers. Results in Fig. 7b:d allow us to examine the relationship between values of local entropy, node strength and 
topological properties such as node degree and clustering coefficient. Figure 7b shows a negative correlation 
between both measures, and a very similar clustering coefficient for Craven, Durham and London, while our 
proposed measure of entropy Hin

L  is able to differentiate between them. In Fig. 7c,d for both cases we observe that 
the local authorities in the NP have a positive residual in the relationship between degrees and local entropy. For 
in-commuters (Fig. 7c) this increases notoriously in the most important employment centres like Manchester 
or Leeds. In terms of the out-commuters (Fig. 7d), Inner London is a particular case. Many workers prefer to 
live in the central area and commute larger distances, so Inner London is connected to almost every other LAD 
in the region being its out-degree value notoriously higher than the expected by its entropy. A different case can 
be found in LADs like Enfield, Greenwich and Barnet, with a high volume of out-flows s and low values of both, 
Hout
L  and degout . Most flows head to inner London than to the rest of the system.

Discussion
Through this work we have shown that the application of entropy theory in the analysis of commuting networks 
provides relevant information on the distribution of flows in the territory. We explored measures of entropy on 
global and local scales, as well as on the different constituent elements of the network of flows, links and nodes. 
Each measure proved relevant in capturing distinct aspects of the spatial interaction patterns.

Link entropy focuses on the interactions between pairs of urban areas, based on the distribution of origin-
destination trips. Nodal entropy on the other hand, gives us information on the concentration or dispersion of 
flows among urban centres. The local analysis examines the relationships between labour supply and demand 
that a specific area establishes with its most direct context. When extending the analysis to the larger scale, each 
of the interactions occurring in the system are considered. All the constituent elements, whether they are or not 
directly or intensely connected to each other, influence the whole-system’s entropy.

The latter is particularly useful if for example, we want to analyse the resilience of commuting networks based 
on the diversity of the structure given by connectivity. Systems can face direct or indirect changes that occur at 

Figure 7.   Local measures. Points represent Local Authority Districts (LAD) in the NP and the GSE regions. 
(a) Normalised local in and out entropy. (b) Clustering coefficient Ci as a function of Hin

L  . (c) and (d) show 
in and out-values for degree and local entropy. Degree values are normalised by the total maximum possible 
degree in each system (n − 1). The size of points in (a) and (c) corresponds to the total number of in-commuting 
(in-strength s), in (d) it corresponds to the total number of out-commuting (out-strength s), and in (b) to the 
in-degree of each node.
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different levels. Local entropy will change when endogenous changes in the local labour market alter the struc-
ture of relationships of an urban area. On the other hand, changes in global entropy can account for exogenous 
changes that occur in other local systems. These changes can end up affecting the global structure to a greater 
or lesser extent, and therefore indirectly modify the structure of relationships between all constituent parts.

It is worth mentioning that with this analysis we are not studying the optimum degree of diversity in the 
system, nor are we arguing that the maximum possible entropy should be pursued. The functioning of urban 
systems must be flexible enough to adapt to changes and at the same time efficient enough to optimise resources. 
As Cabral et al. (2013) argue, if the system falls short of a minimum entropy, the system will be very centralised 
and therefore vulnerable to changes, while if it exceeds a certain degree of entropy, the system will not be dealing 
efficiently with resources39. The distribution of workplaces and housing requires a certain degree of concentra-
tion to benefit from specialisation and proximity, but at the same time a degree of diversity and dispersion 
would increase the capacity for resilience and adaptability32. Consequently, the interpretation of the results of 
the different entropy measures presented in this paper must be made based on the specific criteria of the system 
under study.

The different measures of entropy presented here contribute to advancing our understanding of the complex-
ity of spatial flows, to inform policy development and take strategic planning actions. By analysing the entropy 
relative to a maximum possible number of interactions of the system, instead of the given or existing ones, it is 
possible to compare the system with itself in terms of its maximum capacity. We believe that this form of nor-
malisation presented in this paper facilitates the study of systems based on their own potentialities, offering a 
different perspective for planning.

This introductory work contributes to the understanding of real commuting networks across many different 
scales of organisation, in addition to providing a framework to better understand the interplay between transport 
infrastructure and the layout of economic opportunities in cities.
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