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The vibration response mechanism 
of a blade disk rotor system 
under the coupling effects of cracks 
and aerodynamic forces
J. Yang1, J. Xie1*, T. Wang1, F. Yang2 & J. Chen3

The important role of a dynamic model is to study the response characteristics of a system under 
different parameters or fault states. These response characteristics can be used in many aspects, such 
as condition monitoring and fault diagnosis. Usually, the response characteristics can be obtained 
through numerical analysis, but we do not know why such characteristics appear, which hinders our 
understanding and utilization of vibration. The innovation of this paper is to reasonably explain why 
such response characteristics appear. First, a simplified dynamic model of a typical blade disk rotor 
system is constructed by using the classical continuous parameter modeling method. Based on the 
dynamic model, for two structural forms of moving and stationary blades, the typical characteristics of 
the vibration response under the actions of aerodynamic force and blade cracks are analyzed by means 
of numerical solution. Then, from the perspective of kinematics and dynamics, the internal mechanism 
between the vibration responses and the excitations is revealed. Finally, based on Number Theory, the 
response characteristics and mechanisms of typical structures are summarized, and the general laws 
of responses with general structural forms are established.

The mechanism of vibration response characteristics and fault characteristics is the key priori information for 
equipment vibration phenomenon analysis, health assessment and fault diagnosis. Therefore, the revelation of 
the vibration response mechanism has been a basic scientific problem that experts are committed to solving for 
a long time. After continuous research, scholars have comprehensively and accurately revealed the vibration 
characteristics and response mechanisms of key parts such as shafts, bearings and gears.

The vibration characteristics of amplitude and phase are used to detect the imbalance of a rotor  system1. 
According to the characteristics and mechanism of rotor imbalance, to suppress rotor vibration caused by imbal-
ance, an active control method using a magnetic actuator has been  proposed2.  Xie3,4 discovered a new modulation 
frequency characteristic under the disturbance state of a cracked rotor system and explained the modulation 
mechanism. The instantaneous whirling speed was defined, and its response mechanism was revealed. Through 
dynamic analysis and experimental research, the mechanism of torsional vibration characteristics of cracked 
and noncracked rotor systems was  discussed5.  Li6 used the zero-stress intensity factor method to solve the 
stiffness of a rotor system with slant cracks and studied the effects of fractional order, speed and crack depth 
on the dynamic characteristics of a rotor system. The rotating orbit, time domain response and spectrum were 
obtained to show the phenomenon of superharmonic resonance in a hollow shaft cracked rotor  system7.  Cao8 
discussed the contact characteristics between a roller and race ways and the changes in roller rotation angular 
speed.  Xiang9 proposed a nonlinear dynamic model of bearings based on a collision system to simulate the 
vibration characteristics of different fault types.  Guo10 proposed a new dynamic model and studied the double 
pulse behavior and mechanism of bearing raceway surface spallation.  Bachar11 studied the influence of working 
conditions and surface roughness on the vibration characteristics of a spur gear transmission and studied the 
detection ability of a single tooth surface fault.  Chen12 analyzed the changes in dynamic responses in the time 
and frequency domains for different wear degrees at the tooth surface.  Yang13 revealed the variation law of the 
time-varying meshing stiffness, the time history and the frequency spectrum of vibration signals under chipping 
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damage.  Cao14 discussed the effects of external load and damping parameters on the frequency response and 
force response curve by using an equivalent nonlinear model of a nonlinear beam truss.

The above mechanism-revealing research has significantly promoted the mastery of the vibration law of key 
parts. Based on these efforts, many reliable and accurate fault diagnosis methods have been established, which 
has important theoretical significance and economic value.

A blade disk rotor system is different from the above typical parts and is composed of shafts, disks and multi-
ple blades. Scholars have studied the vibration characteristics and mechanisms from the aspects of single-blade, 
blade-disk, and blade-disk-rotor systems.

Zhao15,16 investigated a coupled modeling method and free vibration characteristics of a graphene nano-
platelet (GPL) reinforced blade-disk rotor system in which the blade has a pre-twist angle and setting angle and 
presented an investigation on nonlinear forced vibration characteristics of a spinning shaft-disk assembly rest-
ing on sliding bearing supports.  Yang17,18 investigated the free vibration of functionally graded (FG) pre‐twisted 
blade‐shaft/disk-shaft rotor system reinforced with GPLs.  Wang19,20 investigation on vibration characteristics 
of GPL reinforced disk-shaft rotor with eccentric mass resting on elastic supports and presented the theoretical 
modeling of a functionally graded GPL-reinforced assembled beam–plate structure resting on elastic supports. 
 Wu21 indicated that when the excitation frequency changes from 0 to the first resonance frequency of a cracked 
beam, the crack breathing frequency increases linearly, and the crack breathing frequency changes nonlinearly 
with a further increase in the excitation frequency.  Yang22,23 found that severe cracks are expected to seriously 
reduce the stiffness of rotating blades and significantly reduce the resonance frequency.  Li24 investigated the 
effects of the thickness-taper ratio, pre-twist angle, rotational speed, and connection stiffness on blade modal 
characteristics.  Zi25 indicated that the complexity of the natural frequency and forced response depends on the 
length and relative position of cracks. When cracks or detuning occur in an impeller, the response amplitude 
of the blade fluctuates periodically with the number of blades.  Joachim26 evaluated the effect of small detun-
ing on the vibration amplitude of a 2D blade disk.  Heydari27 studied the effects of the blade stagger angle and 
pre-twist angle on shaft-bending and blade-bending coupling vibration.  Jin28 revealed the nonlinear vibration 
characteristics caused by blade-casing rubbing of a real dual rotor aeroengine.  Ma29,30 showed that an original 
hardening type nonlinearity may be enhanced or transformed into a softening type due to the nonlinear stiffness 
of a bearing, and the rubbing dynamic responses of the shaft-blisk-casing system at different speeds, disc imbal-
ance, disc position and speed are solved.  Liu31 studied the dynamic behavior of casing acceleration of the whole 
aeroengine from the aspect of blade-casing rubbing fault diagnosis.  Wei32 showed that under the excitation of 
a blade loss load, the transient response of the system has obvious impact characteristics, and the stiffness and 
damping of the rear bearing of the fan have a significant impact on the transient response.  Zhao33,34 used the elas-
tic supported coupling finite element model to study the rubbing of a mistuned blade disk system with variable 
thickness blades and showed that the cracks significantly exacerbated the vibration of the blades. A large number 
of research results have been obtained in the characteristic analysis of blade disk rotor systems. However, the 
current research shows that different structures have different characteristics, the universality law has not been 
established, and the deeper mechanical essence mechanism between characteristics and excitation is not clear.

It is of great significance and a great challenge to analyze the essential mechanism and establish the general 
law of response characteristics of the bladed disk rotor system under typical excitation. In this paper, some of the 
work will be carried out tentatively, and only the response mechanism and law of a circularly symmetric bladed 
disk rotor system (structural detuning is not considered) under the coupling effects of aerodynamic forces and 
cracks will be studied.

This paper is arranged as follows. A simplified dynamic model of a typical blade disk rotor system is con-
structed in “Vibration model of blade disk rotor system” to provide the basis for response characteristic analysis. 
The typical characteristics of the vibration response under aerodynamic loading and blade cracks for two struc-
tural forms are analyzed in “Numerical analysis of response characteristics”. Finally, in “Mechanism revealing and 
law explorating of vibration response”, the response characteristics and mechanism of typical structures are sum-
marized, and general laws with general structural forms are obtained. The conclusions are drawn in “Conclusion”.

Vibration model of blade disk rotor system
This paper focuses on the response characteristics and response mechanisms of a blade disk rotor system excited 
by the aerodynamic force between the moving and stationary blades and the stiffness parametric excitation of 
the blade cracks. Therefore, the model construction in this section adopts the common and classic continuous 
parameter modeling method to establish a simplified vibration model of a single-stage blade disk rotor system. 
The aerodynamic excitation between moving and stationary blades is simulated by typical traveling waves, and the 
stiffness parameter excitation of cracks is simulated by the stiffness breathing function published in our last paper.

Modeling of normal system. The continuous parameter modeling method is a common and mature 
modeling method that has been widely used by  scholars31,35,36. Based on this method, we have established the 
vibration model of a single-stage and a three-stage blade disk rotor system in our recent  publications37,38. There-
fore, for the simplified model of the single-stage blade disk rotor system required in this paper, we will not give 
the proof of the formula in detail but only introduce the basic modeling process.

Geometric model. Figure 1 is the sketch map of the blade disk shaft system, and contains a shaft with bending 
and torsional degree of freedoms, a disk which can be treated as a rigid body, and some flexible blades fixed onto 
the outer edge of the disk with a setting angle β. 0xyz, Px1y1z1, Ω, hd and hb are the global coordinate, the rotating 
coordinate, the rotational speed, the thicknesses of the disk and the thicknesses of blade, respectively.
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Figure 1.  Schematic diagram of multistage bladed disk rotor system.
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Figure 3.  Motion decompositions in the oxy plane.
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Figures 2 and 3 show the motion decompositions of the blade-disk-shaft system in the oxy and ozx planes. In 
this paper, the disk is assumed to be a rigid body without considering its elastic deformation. The thick line and 
dashed line represent the rigid body displacements and the elastic deformations, respectively.

Figure 2 shows a schematic diagram of the motion decomposition in the ozx plane. Q, ux(z, t), ∂ux(zd ,t)
∂z  and v(l, 

t) sin (β) denote the arbitrary micro-unit in the disk, the deflection of the shaft in x-direction, the swing angle 
at zd, the out-plane deflection of blades, respectively.

Figure 3 shows a schematic diagram of the motion decomposition in the oxy plane. D, L, r1, r2, φ(zd , t) , 
v(l, t) cos (β)   denote the arbitrary microunit in the blade, the length of the blade, the inner diameter of the 
disk, the outer diameter of the disk, the torsional displacement, the in-plane deflection of blade, respectively. l 
represent the distance of D from the root of the blade.

The coordinates of the arbitrary microunit in the shaft with, the arbitrary microunit Q in the disk and the 
arbitrary microunit D in the blade are represented as u =

(

ux(z), uy(z), z
)

 , (xQ, yQ, zQ), (xD, yD, zD), respectively. 
The detailed expressions of the absolute coordinates for Q and D are shown in ESM Appendix A.

Energy equations. The velocity is the derivation of the displacement and the kinetic energy is the integration 
about the velocity. Therefore, the total kinetic energy of the shaft is

where S, ρs, As, Isp denote the length of the shaft, the density, the area of the shaft cross section, the polar moment 
of inertia, respectively, and Isp =

∫

As
r2dA = π

2
r4s .

According to the  references39,40, the potential energy of the shaft can be expressed as follows:

where Es, Gs and Isx are the Young’s modulus, the shear modulus, the area moment, respectively, and 
Isx =

∫

As
y2dA = π

4
r4s .

Similar to the shaft, the kinetic energy of the disk can be expressed as follows:

and the kinetic energy of the ith blade can be expressed as follows:

where Ab is the area of the blade cross section.
According to the  reference33, the bending and centrifugal potential energy of the ith blade can be given as 

follows:

Assumed modes. The continuous system is discretized by the assumed mode method, in which the displace-
ments of the shaft is discretized as follows:

and, the displacement of blades is discretized as follows:

where U, Φ, V denote the assumed modal matrices, qx, qy, qϕ and qv denotes the generalized coordinates.
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Discrete vibration equation. Bringing these displacements which discretized by assumed modes into the energy 
expressions, then employing the Lagrange equations (10, 11), the discretized equations of motion in matrix 
notation can be obtained in Eq. (12):

where η denotes the generalized coordinate matrix, and Q is the generalized force matrix corresponding to the 
generalized coordinates, and the detail formula is shown in ESM Appendix B.

Modeling of aerodynamic force. The working mode of the blade disk rotor system is compressed gas or 
driven by gas. As shown in Fig. 4, according to the working principle of the blade disk rotor system, each time the 
moving blade passes through a stationary blade, it will be coupled with the gas flow through the upper stationary 
blade, to form a pulse aerodynamic force on the moving blade.

Based on the principle of Fourier decomposition, the pulse signal can be decomposed into the superposition 
of sinusoidal signals with the pulse frequency as the fundamental  frequency41,42. Therefore, the aerodynamic 
force on the moving blades vi caused by the gas of the upper stationary blade can be qualitatively modeled as:

where, p0 is the constant component; pKj is the components of the Kj-th frequency; Kj is the order of frequency 
and Kj is the 1,2,3,4; φi is the initial phase of the i-th blade; Ns� is the fundamental frequency of pulse; Ns is the 
number of stationary blades.

Modeling of blade crack stiffness parameter excitation. Under the action of centrifugal stress 
caused by rotation and bending vibration caused by aerodynamic force, breathing effects appear on the contact 
surface of crack  as shown in Fig. 5, so as to transiently change the stiffness of the cracked blade. Therefore, stiff-
ness parameter excitation arises in the system.

The method adopted to model the cracked blade is from our recent  publication43. In the modeling of the 
cracked blade, the released energy associated with the crack is considered as follows:

where Kcrack is the breathing stiffness of the crack, depending on the vibration response (bending stress σb) and 
the centrifugal effect (centrifugal stress σd). The breathing function is:

(10)
d

dt

(

∂L

∂η

)

−
∂L

∂η
= Q
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Figure 4.  Schematic diagram of aerodynamic force between moving blade and stationary blade.
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where kc is the stiffness of the open crack, and kc = EI
6(1−µ2)hQ(γ )

 , and γ denote the relative crack  depth44.

Numerical analysis of response characteristics
Based on the dynamic model, special case studies for two structural forms of moving and stationary blades are 
explored by numerical solutions, to intuitively present the expression of typical response characteristics under 
aerodynamic force and crack stiffness parameter excitations.

Response characteristics of synchronous excitation. In a typical simplified system with five station-
ary blades (Ns = 5) and five moving blades (Nd = 5), the five moving blades are synchronously excited by the 
aerodynamic force (synchronous excitation).

This paper focuses on the qualitative study of the characteristics and mechanism under aerodynamic loading 
and crack excitation. Therefore, only the frequency components of transverse vibration and torsional vibration 
are compared and analyzed.

Considering the inevitable eccentricity of the system, the load forms studied in this section include: eccen-
tricity (Ecce), aerodynamic force (AeroF), crack and aerodynamic force (Crack + AeroF), and crack, eccentricity 
and aerodynamic force (Crack + Ecce + AeroF).

Transverse vibration response. Figure 6 shows the frequency spectrums of the transverse vibration responses. 
In this case, the rotation speed is 2900 RPM, and the corresponding rotation frequency ω = 48.3 Hz (1×).

As shown in Fig. 6a, the eccentricity will lead to a rapid increase in the amplitude corresponding to 1× fre-
quency component in the transverse vibration response.

As can be seen in Fig. 6b, when the system is only under the excitation of aerodynamic force, without 
eccentricity and crack excitations, the amplitude of the transverse vibration response is zero, indicating that the 
resultant force of each aerodynamic force on transverse vibration is zero.

Under the excitation of aerodynamic force, each blade has bending vibration. Due to the breathing effect of 
cracks, the bending vibration of the cracked blade is different from that of other blades, resulting in the mistun-
ing of the vibration coupling effect of the blades on the shaft. As shown in Fig. 6c, under the coupling action of 
the crack and aerodynamic force, the amplitude of frequency components such as 1× = 48 Hz, 4× = 194 Hz and 
6× = 291 Hz increases, where 1× is rotation frequency ω , 4× is (Nb+1)ω , 6× is (Nb−1)ω , and Nb = 5.

In transverse vibration, the eccentricity often dominates the vibration response, the amplitude of the 1× fre-
quency is very large, and the response characteristics under the coupling of cracks and aerodynamic forces are 
easily to be submerged, as shown in Fig. 6d. However, qualitatively, the characteristics caused by the coupling of 
cracks and aerodynamic forces are different from those of the eccentricity.

Torsional vibration response. Figure 7 shows the frequency spectrums of the torsional vibration responses.
As can be seen in Fig. 7, in this case, the amplitude of torsional vibration caused by bending-torsion coupling 

effects is very small, and it is difficult to identify the frequency components of coupled torsional vibration caused 
by eccentricity in the spectrum of torsional vibration response.

(15)Kcrack = kc ×
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Figure 6.  Spectrums of transverse vibration response (Ns = Nd = 5). (a) Ecce. (b) AeroF. (c) Crack + AeroF. (d) 
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As shown in Fig. 7, under the excitation of aerodynamic force, the amplitude of frequency components such 
as 5x = 241.7 Hz, 10x = 483.3 Hz and 15x = 725 Hz increases, where 5× is Nb ω , 10× is 2Nb ω and 15× is 3Nb ω.

In this structural form with five stationary blades and five moving blades, the fundamental frequencies of 
normal and cracked blades are 5×. The crack leads to an increase in the amplitude of the 5× frequency component 
in the torsional vibration response, as shown in Fig. 7.

Response characteristics of asynchronous excitation. In a typical simplified system with seven sta-
tionary blades (Ns = 7) and five moving blades (Nd = 5), the five moving blades are asynchronously excited by the 
aerodynamic force (asynchronous excitation), that is, each moving blade is excited by the aerodynamic force 
with a phase lag.

The transverse vibration responses under asynchronous excitation are shown in Fig. 8. There are 15× and 20× 
frequencies in both normal and cracked systems under aerodynamic force. When there is a crack in the blade, 
6× and 8× frequency components appear in the response spectrum, but there is no such frequency component 
in the normal system.

The torsional vibration responses are shown in Fig. 9. It can be seen in the figure that under the coupling 
action of aerodynamic force and cracks, there are 35× frequency components in both cracked and normal sys-
tems, indicating that the response of this frequency component is caused by aerodynamic force. However, the 
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frequency components such as 7× and 14× appear in the cracked system, but not in the normal system. Therefore, 
these frequency components are caused by the stiffness parameter excitation of the crack.

In summary, special case studies based on the dynamic model show that under asynchronous excitation, the 
aerodynamic force leads to 15× and 20× frequency components in the transverse vibration response and a 35× 
( Ns × Ndω ) frequency component in the torsional vibration response. The stiffness parameter excitation of the 
blade crack leads to frequency components such as 6× ( (Ns − 1)ω ) and 8× ( (Ns + 1)ω ) in the transverse vibration 
response and 7× ( Nsω ) and 14× ( 2Nsω ) in the torsional vibration response. The mechanism will be deduced in 
detail in “Mechanism revealing and law explorating of vibration response”.

Mechanism revealing and law explorating of vibration response
The above model based special case studies expounds the basic response characteristics of aerodynamic force 
and crack excitation. At the same time, it also shows that the structural form will significantly affect the response 
characteristics.

In a typical simplified system with five stationary blades (Ns = 5) and five moving blades (Nd = 5), the five 
moving blades are synchronously excited by the aerodynamic force (Synchronous excitation). In a typical sim-
plified system with seven stationary blades (Ns = 7) and five moving blades (Nd = 5), the five moving blades are 
asynchronously excited by the aerodynamic force (asynchronous excitation), that is, each moving blade is excited 
by the aerodynamic force with a phase lag.

In this section, from the perspective of kinematics and dynamics, the internal response mechanism of syn-
chronous excitation and asynchronous excitation are revealed first, and based on Number Theory, the general law 
of response characteristics of non-coprime forms (synchronous excitation) and coprime forms (asynchronous 
excitation) are obtained.

Response mechanism under synchronous excitation. Figure 10 is the position relationship of mov-
ing and stationary blades during one rotation cycle (Ns = 5, Nd = 5). In the figure, si (i = 1, 2, 3, 4, 5) are the posi-
tions of stationary blades and di (i = 1, 2, 3, 4, 5) are the positions of moving blades.

Figure 11 is the excitation diagram of each moving blade during one rotation cycle, and si–dj represents the 
aerodynamic excitation of the j-th moving blade at the i-th stationary blade. When the numbers of moving and 
stationary blades are five, during one rotation cycle, due to the airflow at the upper stationary blades, each mov-
ing blade is excited by aerodynamic forces at five stationary blades successively, which means the fundamental 
frequency is Nsω , and the five moving blades are excited synchronously.

Torsional vibration. In an ideal and circularly symmetric blade disk rotor system, the excitation of the torsional 
vibration of the shaft is the superposition of the excitation torque of each moving blade with the same amplitude, 
frequency and phase. Therefore, the torsional vibration of the shaft is also equivalent to being excited by an exci-
tation with the fundamental frequency Nsω , as shown in Fig. 12.

This is the mechanism why aerodynamic force causes Nsω , 2Nsω and 3Nsω frequency components in the 
torsional vibration response  (shown in Fig. 7).

Transverse vibration. The excitation of transverse vibration is the superposition of the transverse components 
of the excitation of each moving blade. Because the moving blades are circularly symmetrical, the excitation 
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amplitude A of each blade (i = 1, 2, …, Nd) is equal for the ideal system. Therefore, the excitation of transverse 
vibration is the superposition of sinusoidal components with uniform phase lag (2π/Nd)i , which satisfies:

This is the mechanism why the transverse vibration response amplitude is zero (shown in Fig. 6) under 
aerodynamic excitation but without crack and eccentric excitation.

When a blade has cracks, its coupling excitation effect on the shafting is different from that of other blades. 
Therefore, Eq. (16) is no longer equal to zeros, that is, the superposition of transverse excitation components of 
each moving blade is no longer zeros.

The mistuning excitation of a blade caused by a crack can be qualitatively expressed in the same form as 
the blade vibration A sin

(

KjNsωt
)

+ C . Moreover, since the cracked blade rotates with the rotating shaft, the 
transverse component of its mistuning excitation changes with the rotating frequency, which can be expressed as

At this time, the transverse vibration has excitation with frequency components ω and 
(

KjNs ± 1
)

ω , etc.
This explains why the amplitudes of the frequency component such as 1×, (Nb−1)ω = 4×, and (Nb+1)ω = 6× 

increase in transverse vibration under the coupling action of the crack and aerodynamic force, as shown in Fig. 6.

Response mechanism under asynchronous excitation. This section will study another special case, 
the response mechanism with seven stationary blades and five moving blades. At this time, each moving blade is 
asynchronously excited by aerodynamic load (Ns = 7, Nd = 5).

Figure 13 shows the position relationship of moving and stationary blades during the 1/Ns rotation cycle. In 
the figure, si (i = 1, 2, 3, 4, 5, 6, 7) are the positions of stationary blades and di (i = 1, 2, 3, 4, 5) are the positions 
of moving blades. As can be seen in Fig. 13, during the 1/Ns rotation cycle, each moving blade is excited once in 
turn. Moreover, the excitation order of the moving blade is d1–> d3–> d5–> d2–> d4 (a)–> (b)–> (c)–> (d)–> (e)) 
and its phase lag is (1/Ns − 1/Nd)2π , that is 2π/35.

Figure 14 shows a excitation diagram of each moving blade during one rotation cycle, and si–dj represents the 
aerodynamic excitation of the j-th moving blade at the i-th stationary blade. It can be seen in the figure that each 
moving blade is excited Ns times in one rotation cycle, and the phase lag of each excitation is 2π/Ns.

Torsional vibration. The excitation transmitted from the blade aerodynamic load to torsional vibration is the 
superposition of aerodynamic pulses with phase lag of each blade, and its schematic diagram is shown in Fig. 15. 
Therefore, the shaft torsional vibration is qualitatively excited by a load with a fundamental frequency Ns × Nd.

(16)A

Nd
∑

i=1

sin

(

ωt +
2π

Nd
i

)

= 0

(17)fc = sin (ωt)
(

A sin
(

KjNsωt
)

+ C
)

Figure 11.  Excitation diagram of each moving blade during one rotation cycle.

TF

Figure 12.  Torsional excitation diagram of shafting during one rotation cycle.
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Because the lag interval of each pulse cannot make each pulse completely independent, there is an overlap-
ping area between pulses. Therefore, after the superposition of the pulses, the excitation pulsation amplitude 
decreases and the mean value increases,

Therefore, under the excitation of aerodynamic force, there are components with small amplitude and fun-
damental frequency of Ns × Nd in the torsional vibration response. That is the 35× frequency components are 
shown in Fig. 9.

When there is a crack on a blade, the torsional vibration excitation of the cracked blade to the shaft is not 
consistent with other normal blades, and there is an additional excitation component in torsional vibration 
caused by crack mistuning, with the blade vibration frequency Nsω as the fundamental frequency. Therefore, 
under the coupling action of cracks and aerodynamic forces, 7× and 14× frequency components appear in the 
torsional vibration response, as shown in Fig. 9.
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Transverse vibration. The aerodynamic force of each blade will cause excitation on the shaft. It can be seen in 
Fig. 14 that the shaft is excited Ns × Nd times in a rotation cycle, that is, the frequency of excitation is Ns × Ndω . 
With the rotation of the shaft and the change in the excitation position, the transverse component of excitation 
changes periodically.

As can be seen in Fig. 13, the first excitation is that the moving blade d1 excited by aerodynamic force at s1 
(Fig. 13a), and the second excitation is that the moving blade d3 excited by aerodynamic force at s4 (Fig. 13b). 
In this process, the shaft rotates by 2π

NsNd
 radians and the excitation position of the aerodynamic load rotates by 

3
Ns
2π radians (from s1 to s4). The position change laws of the subsequent excitation are the same.
Therefore, in this structural form, the change frequency of the excitation position has the following relation-

ship with the shaft rotation frequency

The transverse component of aerodynamic force changes with frequency 3Ndω . Therefore, the transverse 
component of the aerodynamic force can be qualitatively expressed as

By expanding the above formula, it can be seen that the frequency components of transverse excitation are 
3Ndω , (Ns ± 3)× Ndω , etc.

This explains why the amplitudes of the frequency component such as 3Ndω = 15× and (Ns−3)× Ndω = 20×, 
increase in transverse vibration under aerodynamic force, as shown in Fig. 8.

When there is a crack in a blade, the frequency component of the additional excitation caused by crack 
mistuning is the blade vibration frequency KNsω , and the of transverse component on the shaft changes 
with the frequency ω . Therefore, the transverse component caused by crack mistuning can be expressed as 
A sin (ωt)(sin (KNsωt)+ C).

This explains why the amplitudes of the frequency component such as (Ns − 1)ω = 6×, and (Ns + 1)ω = 8×, 
increase in transverse vibration under the coupling action of the crack and aerodynamic force, as shown in Fig. 8.

General law of different structural forms. Special case studies of two typical structural forms show that 
the response characteristics of aerodynamic force and crack misuning and the mechanism of excitation are sig-
nificantly different under different structural forms. Going a step further, this section will establish the response 
law of general structural form based on number theory.

The structural forms can be divided into two categories: in the first category, the numbers of moving blades 
and stationary blades are coprime, that is, there is no common divisor other than 1; in the second category, the 
numbers of moving blades and stationary blades are non-coprime, that is, there is a common divisor other than 1.

Coprime structural form. For a system where the number of moving and stationary blades are coprime, no 
more than one moving blade is excited by aerodynamic force at any time, and the excitation of each moving 
blade has phase lag, i.e., asynchronous excitation, such as the typical special case in “Response characteristics of 
asynchronous excitation” and “Response mechanism under asynchronous excitation”, where Ns = 7 and Nd = 5.

When Ns and Nd are coprime, the general response law can be revealed by Bézout’s identity
If the integers a and b have the greatest common factor d, Then, there must be integers i and j to make 

ai + bj = d.
According to the above theorem, when Ns and Nd are coprimes, their greatest common factor d = 1. Therefore, 

there must be integers i and j to make Ndj + Nsi = 1 . Considering that i is an arbitrary integer, there must also 
be an integer i to make Ndj − Nsi = 1.

Divide NdNs on both sides of the above formula to obtain

and

Multiply 2π on both sides to obtain

The above formula shows that when Ns and Nd are coprime and the serial number of the coincident moving 
and stationary blades is set to 0, the angle difference between the i-th moving blade and the j-th stationary blade 
is 1

NdNs
2π.

Therefore, during the rotation of the shaft, the next i-th moving blade can coincide with the next j-th station-
ary blade passing through the 1

NdNs
2π radian and be excited by aerodynamic force.

(18)
(

3

Ns
2π

)/

2π

NsNd
= 3Nd

(19)fa = A sin(3Ndωt)(sin (Ns × Ndωt)+ C)

(20)
j

Ns
−

i

Nd
=

1

NdNs

(21)
j

Ns
=

i

Nd
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NdNs
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j

Ns
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Nd
2π +
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In this process, the shaft rotates by 2π
NsNd

 radians and the excitation position of the aerodynamic load rotates 
by jNs

2π radians. Therefore, the change frequency of the excitation position has the following relationship with 
the shaft rotation frequency:

The transverse component of aerodynamic force changes with frequency Ndjω . Therefore, the transverse 
component of the aerodynamic force can be qualitatively expressed as

The excitation transmitted from the blade aerodynamic force to torsional vibration is the superposition of 
aerodynamic pulses with phase the lag of each blade. Therefore, the shaft torsional vibration is qualitatively 
excited by a load with a fundamental frequency Ns × Nd . Therefore, the excitation of torsional vibration can be 
qualitatively expressed as A sin (NsNdωt)+ C.

Specifically, in “Response mechanism under asynchronous excitation”, when Ns = 7 and Nd = 5, j = 3 and i = 2,

Therefore, in Fig. 13, the next excitation positions are the next 2-th moving blades (d1–> d3–> d5–> d2–> d4) 
passing through the next 3-th stationary blades (s1–> s4–> s7–> s3–> s6).

Non‑coprime structural form. For a system where the number of moving and stationary blades are coprimes, 
that is, there is a maximum common divisor m (m ≠ 1) between Ns and Nd. The results show that at any excitation 
position, there is a group of circularly symmetrical moving blades with a number of m, which are synchronously 
excited by aerodynamic force.

According to Eq. (16), the resultant force of the transverse components of a group of cyclic symmetry blades 
under synchronous excitation is zero. Therefore, under the excitation of aerodynamic force, the response ampli-
tude of the non-coprime ideal system is zero.

Since the m moving blades are excited at the same time, the torsional excitation of the m blades is superim-
posed to form a whole excitation. Therefore, in one rotation cycle, the torsional excitation frequency is NsNdω/m . 
Therefore, torsional excitation can be qualitatively expressed as:

Crack characteristics. When there is a crack in a blade, the frequency component of the additional excitation 
caused by crack mistuning is the blade vibration frequency KNsω . Therefore, the additional excitation compo-
nent in torsional vibration caused by crack mistuning can be expressed as sin (KNsωt)+ C . Considering that 
the transverse component of the excitation of the cracked moving blade changes with the frequency ω , the trans-
verse component caused by crack mistuning can be expressed as A sin (ωt)(sin (KNsωt)+ C).

Conclusions
In this paper, the typical frequency characteristics of the vibration response for two structural forms under 
the actions of aerodynamic force and blade cracks are obtained by numerical solutions. Then, in view of why 
such frequency characteristics occur, we adopt the principles of kinematics and dynamics to reveal the internal 
mechanisms between the vibration responses and the excitations. Furthermore, generally, we adopt number 
theory to establish the general laws of responses with general structural forms. The conclusions are as follows.

(1) For a system in which the numbers of moving blades and stationary blades are coprime, the moving blades 
are asynchronously excited by the aerodynamic force at each stationary blade, successively. The general 
form of excitation for lateral vibration by aerodynamic loading is A sin

(

Ndjωt
)

(sin (NsNdωt)+ C) and 
the general form of excitation for torsional vibration by aerodynamic loading is A sin (NsNdωt)+ C.

(2) For a system in which the numbers of moving blades and stationary blades are non-coprime (the common 
divisor is m), there are m moving blades with cyclic symmetrical distribution excited by aerodynamic force. 
The excitation superposition result of transverse components of these m blades is zero. Therefore, there 
is no excitation in lateral vibration. The general form of excitation for torsional vibration by aerodynamic 
loading is A sin ((NsNdω/m)t)+ C.

(3) When there is a crack in a moving blade, the vibration response of the cracked blade under aerodynamic 
loading is different from that of other blades, and the stiffness parameter excitation of the crack appears. 
Therefore, the cracked blade will causes new excitation into the torsional vibration and transverse vibra-
tion of the system. In torsional vibraton, the amplitudes corresponding to frequency components KjNsω 
are increased. In the lateral vibration, new modulation components are produced with the blade vibration 
frequency as the carrier and the rotation frequency as the modulation source A sin (ωt)

(

sin
(

KjNsωt
)

+ C
)

.

(23)
(

j

Ns
2π

)/(

1

NdNs
2π

)

= Ndj

(24)fa = A sin
(

Ndjωt
)

(sin (NsNdωt)+ C)

(25)
3

Ns
2π =

2

Nd
2π+
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(4) At present, this study only focuses on the ideal and circularly symmetric blade disk rotor system, and 
inevitable random mistuning is not considered. The complex coupling characteristics and mechanism 
between mistuned moving blades, mistuned static blades and inherent eccentricity will be discussed in a 
future paper.
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