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One‑way flow over uniformly 
heated U‑shaped bodies driven 
by thermal edge effects
Satoshi Taguchi  1,2* & Tetsuro Tsuji  1,2

The thermal edge flow is a gas flow typically induced near a sharp edge (or a tip) of a uniformly 
heated (or cooled) flat plate. This flow has potential applicability as a nonmechanical pump or flow 
controller in microelectromechanical systems (MEMS). However, it has a shortcoming: the thermal 
edge flows from each edge cancel out, resulting in no net flow. In this study, to circumvent this 
difficulty, the use of a U-shaped body is proposed and is examined numerically. More specifically, 
a rarefied gas flow over an array of U-shaped bodies, periodically arranged in a straight channel, is 
investigated using the direct simulation Monte-Carlo (DSMC) method. The U-shaped bodies are kept 
at a uniform temperature different from that of the channel wall. Two types of U-shaped bodies are 
considered, namely, a square-U shape and a round-U shape. It is demonstrated that a steady one-
way flow is induced in the channel for both types. The mass flow rate is obtained for a wide range of 
the Knudsen numbers, i.e., the ratio of the molecular mean free path to the characteristic size of the 
U-shape body. For the square-U type, the direction of the overall mass flow is in the same direction for 
the entire range of the Knudsen numbers investigated. For the round-U type, the direction of the total 
mass flux is reversed when the Knudsen number is moderate or larger. This reversal of the mass flow 
rate is attributed to a kind of thermal edge flow induced over the curved part of the round-U-shaped 
body, which overwhelms the thermal edge flow induced near the tip. The force acting on each of the 
bodies is also investigated.

In a gas in which the molecular mean free path is not vanishingly small compared to the system characteristic 
length, that is, in a rarefied gas, a steady flow is induced thermally in the absence of external forces (e.g., grav-
ity). Examples of thermally induced flow, peculiar to a rarefied gas, include the thermal stress slip flow1,2, the 
nonlinear thermal stress flow2,3, and the thermal edge flow4–6 in addition to the classical thermal creep flow (or 
the thermal transpiration)7–11.

The thermal creep flow is induced along a nonuniformly heated wall. In contrast, the thermal stress slip 
flow occurs along a wall when the distance between neighboring isothermal lines (or surfaces) of the gas varies 
along the wall. The nonlinear thermal stress flow is induced when the distance between neighboring isothermal 
lines varies along the lines in the interior of the gas, provided the temperature variation is considerable. These 
properties have been clarified by a systematic asymptotic analysis of the Boltzmann equation with small Knud-
sen numbers12,13. Here, the Knudsen number, denoted by Kn , is the ratio between the mean free path of the gas 
molecules and the characteristic length of the system. According to the theory, the magnitude of the flow velocity 
divided by the thermal speed is of the order of Kn , Kn2 , and Kn , for the thermal creep flow, thermal stress slip 
flow, and nonlinear thermal stress flow, respectively. Note that when the temperature variation of the gas is small, 
the nonlinear thermal stress flow is negligibly small compared to the other two flows.

As mentioned, the above classification is based on the asymptotic theory of the Boltzmann equation (in the 
presence of boundaries). The asymptotic theory assumes that the wall temperature variation and the shape of 
the boundary are smooth. Therefore, if one of these conditions is violated, another type of flow is possible. The 
thermal edge flow is of this kind. An abrupt temperature variation near a heated edge (or tip) introduces a strong 
anisotropy in the momentum transfer to the tip, which results in a flow near the tip by reaction13. In this paper, 
we are concerned with the application of the thermal edge flow with an emphasis on the possibility to induce a 
one-way flow, which is potentially significant, e.g., for microelectromechanical systems (MEMS)14,15.

The thermal edge flow is, typically, induced near the edges of a uniformly heated (or cooled) flat plate. It is 
known that the magnitude of the flow velocity is proportional to Kn1/2 when the Knudsen number is small5,6,13. 
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Here, the Knudsen number is taken to be the ratio between the molecular mean free path and the size of the 
plate. Thus, though localized near the edge, the order of magnitude of the flow velocity is more significant for 
the thermal edge flow than for the thermal creep flow, which makes it attractive for various applications. Moreo-
ver, unlike the thermal creep flow, there is no need to maintain the temperature gradient of the plate, making 
it easy to use in practice13,15. In this regard, a prototypical thermal edge pump has been fabricated in ref.16, in 
which heated and unheated arrays of plates are arranged cleverly so that a net flow is produced. Later, the use 
of structured channels with ratchet-like topography was proposed with numerical verification, e.g., in refs.17–19.

In the original thermal edge flow, a single flat plate is insufficient to induce a net mass flow in a particular 
direction because forward and backward thermal edge flows from each end cancel out each other (see Fig. 1a). 
Now, suppose that a flat plate is bent so that it forms a U-shaped body, as shown in Fig. 1b. Then, the two tips 
are aligned, and the other side of the object is of a round (or curved) shape. In this situation, each tip will induce 
a thermal edge flow toward the curved side when heated, but the curved part is unlikely to induce a counter 
flow. Thus, we expect a net flow to occur from the tips toward the curved side, or a one-way flow to occur if the 
U-shaped bodies are arranged repeatedly in a channel. Motivated by this consideration, in this study, we inves-
tigate a rarefied gas flow over periodically arranged U-shaped bodies using the direct simulation Monte-Carlo 
(DSMC) method. We will demonstrate that a one-way flow is induced over the array of the U-shaped bodies. 
Further insights into the flow property are also obtained by considering two types of U-shaped bodies, i.e., a 
square-U type and round-U type.

As shown in this work, each U-shaped body in the array is subject to a force. The situation is similar to the 
radiometric force exerted on a heated plate6,20,21. Thus, if the array is freely movable along the channel, a motion 
of the array will be induced upon being heated. In this connection, it would be worth mentioning a Crookes radi-
ometer with cup-shaped vanes7. The present analysis can be viewed as a model of a cup-shaped-vane radiometer.

The rest of the paper is organized as follows. The formulation of the problem is given in “Formulation,” in 
which two types of U-shaped bodies are introduced. Subsequently, we present numerical results and related 
discussions in “Results and Discussion.” First, we consider the case in which a single U-shaped body is confined 
in a closed vessel and perform a numerical analysis to grasp basic flow properties. Then, we consider a rarefied 
gas flow over an array of U-shaped bodies and carry out numerical simulations for this case. The mass flow rate 
and the force acting on the body are then discussed. Finally, we present conclusions in “Concluding Remarks”.

Formulation
Problem.  Let us consider a two-dimensional straight channel between two parallel plates at x2 = L and 
x2 = −L kept at a uniform temperature T0 filled with a rarefied gas ( xi , i = 1, 2, 3 , are Cartesian coordinates). 
The parallel plates are separated by the distance 2L. Inside the channel, infinitely many U-shaped bodies are 
arranged periodically along the x1-axis with period H, as shown in Fig. 2. In this paper, we consider two types of 
(two-dimensional) U-shaped bodies.

•	 Type I (square-U type): Type I (also called the square-U type) consists of two horizontal line segments with 
length D joined by a vertical line segment (length D) (see Fig. 2a).

•	 Type II (round-U type): Type II (also called the round-U type) consists of two horizontal line segments with 
length D/2 joined by a semicircle with radius D/2 (see Fig. 2b).

The U-shaped bodies are kept at a uniform temperature T1(> T0) . There is no external force acting on the gas. 
In this situation, a flow is induced thermally around each body. We investigate the steady behavior of the gas in 
the channel under the following assumptions: 

1.	 The behavior of the gas is described by the Boltzmann equation for a hard sphere gas.
2.	 The gas molecules impinging on the plates or the bodies leave the boundary according to the corresponding 

part of the stationary Maxwellian distribution with temperature and density given by the temperature of 
the wall and by the impermeability condition across the surface, respectively. In other words, we impose the 
diffuse reflection boundary conditions13 on the plates and on the bodies.

A B

A

B

Heated flat plate

Thermal edge flow

Edge Edge
Bend

Thermal edge flow

(a) (b)
No thermal edge flow

Figure 1.   Schematics of the concept. (a) A uniformly heated flat plate. A thermal edge flow is induced at each 
tip (i.e., edge) in the direction depicted in the figure, resulting in no net flow. (b) A uniformly heated U-shaped 
body. The tips A and B induce thermal edge flows in the same direction, leading to a rightward net flow. Note 
that the curved part is unlikely to induce a thermal edge flow.
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In the present study, we assume that the state of the gas is uniform in the x3 direction (i.e., ∂
∂x3

= 0).

Basic equations.  Let ρav be the average density of the gas in the domain −H/2 < x1 < H/2 and 
−L < x2 < L and let p0 = ρavRT0 be the reference pressure, where R = kB/m is the specific gas constant with 
kB the Boltzmann constant and m the mass of a gas molecule. Besides the notation introduced in “Problem,” 
we denote the molecular velocity by ξ = (ξ1, ξ2, ξ3) , the velocity distribution function of the gas molecules by 
f (x1, x2, ξ) , the mass density of the gas by ρ , the flow velocity by vi ( i = 1, 2, 3 ), the temperature of the gas by T, 
the pressure of the gas by p, and the stress tensor by pij ( i, j = 1, 2, 3 ). The steady Boltzmann equation for a hard 
sphere gas in the present spatially two-dimensional problem is written as 

where dm is the molecular diameter, α = (α1,α2,α3) denotes unit vectors, and d�(α) denotes the solid angle 
element in the direction of α ; the integral in (1a) is carried out over the whole space for ξ∗ = (ξ∗1, ξ∗2, ξ∗3) and 
all directions for α . Note that the functional dependency of f on (x1, x2) is omitted in (1b).

The diffuse reflection boundary conditions on the two parallel plates are written as 

(1a)ξ1
∂f
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=

d2m
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∫

(
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(1b)f = f (ξi), f ′ = f (ξ ′i ), f ′∗ = f (ξ ′∗i), f∗ = f (ξ∗i),
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(2a)f =
σw0

(2πRT0)3/2
exp

(

−
|ξ |2

2RT0

)

, ξ2 ≶ 0 (−∞ < x1 < ∞, x2 = ±L),
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Temperature
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Figure 2.   Schematics of the problem: (a) type I and (b) type II. In panel (a) [or (b)], infinitely many square-U 
(or round-U) bodies are arranged periodically along the x1-axis with period H between two parallel plates. The 
U-shaped bodies, located at nH − D

2 ≤ x1 ≤ nH + D
2  ( n = 0 , ±1 , ±2 , . . . ), are uniformly heated at a constant 

temperature T1 , while the plates are kept at a uniform temperature T0 ( T1 > T0 ). In both type I and type II, the 
part −H

2 < x1 <
H
2  and −L < x2 < L forms a basic unit.
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where dξ = dξ1dξ2dξ3 . Here and in what follows, the upper and lower signs go together.
The diffuse reflection boundary condition on the U-shaped body in the basic unit −H/2 < x1 < H/2 and 

−L < x2 < L is described as follows. Let the U-shaped bodies of type I and II be denoted by DI and DII , respec-
tively, that is, 

 We also denote by DJ+ and DJ− , J = I or II, the convex and concave sides of DJ , respectively (see Fig. 3). Then, 
the unit normal vector n+i  (or n−i  ) on DJ+ (or DJ− ) pointing to the gas are given by
(Type I) 

(Type II)

where the upper (or lower) sign corresponds to DJ+ (or DJ− ). In the sequel, ni represents either n+i  or n−i  . With 
this preparation, the boundary conditions on the U-shaped bodies in the basic unit are summarized as 
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Figure 3.   The computational domains in the basic unit for (a) type I and (b) type II.
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Since the U-shaped bodies are periodically arranged with the uniform interval H in the current setting, we 
look for a periodic solution with period H, that is,

In other words, we restrict ourselves to the basic unit −H/2 < x1 < H/2 and −L < x2 < L and impose the 
periodic boundary conditions at x1 = ±H/2 (see Fig. 3). Moreover, since x2 = 0 is the symmetry plane, we shall 
analyze the problem in the upper half domain by imposing the following specular reflection at x2 = 0:

The solution in the lower half domain is obtained by the mirror image of that in the upper half domain, that is, 
f (x1, x2, ξ1, ξ2, ξ3) = f (x1,−x2, ξ1,−ξ2, ξ3) for −L < x2 < 0.

Once the velocity distribution function f is obtained by solving the boundary-value problem (1), (2), and (5), 
the macroscopic quantities are given as the moments of f:

where the range of integration is the whole space of ξ . To evaluate the pumping performance, the mass flow rate 
per unit length in the x3 direction is introduced as Mf  , i.e.,

Furthermore, we introduce the force Fi acting on each of the U-shaped body per unit length in the x3 direction:

where dS is the surface element and the integration is carried out on the surface � = DI+ ∪ DI− (or 
� = DII+ ∪ DII− ) for type I (or type II); see the sentence below Eq. (3). Note that the geometrical symmetry 
leads to F2 = F3 = 0 for both type I and II.

Finally, we list the physical parameters that characterize the problem. They are summarized as

where we have introduced the Knudsen number Kn with ℓ0 being the mean free path of the gas molecules at 
the reference equilibrium state at rest. The DSMC simulation is carried out for various sets of these parameters. 
Further details of the simulation are given in “Method.”

Results and discussion
In the present paper, the geometric parameters are fixed to H/D = 2 and L/D = 1 . There should be some optimal 
parameter set (L/D, H/D) for given T1/T0 and Kn that maximizes Mf  . Nonetheless, in this paper, we focus on the 
effects of Kn and T1/T0 , and, in particular, the impact of the difference between the square and round-U types.

Case of a single body.  Before presenting the main results, we first consider the case in which a single 
U-shaped body is confined in a two-dimensional rectangular vessel filled with a rarefied gas and investigate the 
flow induced thermally in the vessel as a preliminary. To be more specific, we consider a U-shaped body (type 
I or II) placed in a vessel enclosed by planes x1 = ±H/2 and x2 = ±L kept at a uniform temperature T0 . The 
U-shaped body is located in the region −D/2 ≤ x1 ≤ D/2 and −D/2 ≤ x2 ≤ D/2 and is kept at a uniform tem-
perature T1(> T0) . We investigate the steady behavior of the gas induced in the vessel under the same assump-
tions as expressed in “Formulation,” that is, the molecules make diffuse reflections on the sidewalls of the vessel 
as well as on the upper and lower walls. This situation is appropriate for investigating the qualitative behavior of 
the gas flow induced by the uniformly heated U-shaped body because there is no interaction between neighbor-
ing bodies inherent in the original problem. The parameters are the same as those shown in Eq. (11), and we will 
show the results for the case H/D = 2 , L/D = 1 , and T1/T0 = 2.

Figure 4 shows the flow velocity vector (v1, v2) and the contour curves of the temperature T for the square-U 
body case, in which (a) Kn = 0.01 , (b) 0.05, (c) 0.1, (d) 0.5, (e) 1, and (f) 5. In panels (a), (e), and (f), the flow 
speed is much smaller than those in panels (b)–(d). Therefore, the magnitude of the reference vector is smaller 
in panels (a), (e), and (f) to magnify the velocity vector for better visibility. It is seen from the figure that a sig-
nificant flow is induced near the tip (x1/D, x2/D) = (−0.5, 0.5) in the rightward direction when Kn � 0.5 . The 
magnitude of this flow becomes relatively large when Kn ≈ 0.1 and decreases as Kn is further increased. There is 
another relatively strong flow near the right corner (x1/D, x2/D) = (0.5, 0.5) along the top and side plates when 
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Kn � 0.1 . The corner flow is attributed to the same mechanism as the thermal edge flow and its flow direction 
over the top side is opposite to the edge flow near the tip (x1/D, x2/D) = (−0.5, 0.5) . This leftward corner flow is 
weaker than the thermal edge flow near the tip when Kn is small, but it competes well against the rightward edge 
flow when Kn � 0.5 . Consequently, we observe four circulating flow patterns when 0.1 � Kn � 1 , whose cent-
ers are located near (x1/D, x2/D) ≈ (−0.5, 0.25) (clockwise), (x1/D, x2/D) ≈ (−0.5, 0.75) (counter clockwise), 
(x1/D, x2/D) ≈ (0.5, 0.75) (clockwise), and (x1/D, x2/D) ≈ (0.75, 0.25) (counter clockwise), see Fig. 4d,e. At 
Kn = 5 , the flow velocity is considerably reduced with the roll structure remaining unchanged. The magnitude of 
the flow velocity is most significant for (c) Kn = 0.1 and (d) Kn = 0.5 and tend to vanish with a further increase 
of Kn (see the last two paragraphs of this subsection for more quantitative discussions).

The contour curves of the temperature T are concentrated near the tip when Kn is small, indicating a steep 
temperature variation there, as pointed out in refs.4,6. As Kn increases, the deviation of the gas temperature from 
that of the body becomes large, and it is more prominent outside the body than inside. The gas is hotter inside 
the U shape than outside because the molecules inside have more chances to hit the heated wall and to encounter 
faster molecules. For high Kn cases (e.g., Kn = 5 ), the contour curves are bent near the tip and the corner. The 
mechanism of such bending of isolines is discussed in the case of a free molecular gas in ref.22.

1 1.5 2

(a) Kn = 0.01

1 1.5 2

(b) Kn = 0.05

1 1.5 2

(c) Kn = 0.1

1 1.5 2

(d) Kn = 0.5

1 1.5 2

(e) Kn = 1

1 1.5 2

(f) Kn = 5

Figure 4.   Flow velocity vector (v1, v2) and contour map T in the case of a single square-U body in a closed 
vessel ( T1/T0 = 2 , H/D = 2 , and L/D = 1 ) for typical Knudsen numbers Kn = (a) 0.01, (b) 0.05, (c) 0.1, (d) 
0.5, (e) 1, and (f) 5. Note that the magnitude of the reference vector is different in panels (a), (e) and (f).
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Now, to compare the flow field between the cases of square and round-U bodies, we show in Fig. 5 the cor-
responding figure for the round-U body. First, we notice that the overall flow structures are similar for the square 
and round-U types in the left half region, i.e., x1 < 0 . A difference in the flow field is observed around the outer 
face of the curved part, i.e., x21 + x22 � (D/2)2 with x1 > 0 . When Kn ≤ 0.1 , we hardly see the flow in this right 
half region for the round-U shape. With the increase of Kn (≥ 0.5) , a flow in the negative x1 direction becomes 
noticeable along the outer face of the curved part. This flow is caused by the geometry of the round-U shape (it 
may be called a blunt edge effect), as discussed later. As we will see later in “Mass flow rate,” the flow in the nega-
tive x1 direction overwhelms the flow near the tip and results in a negative pumping. The temperature isolines 
around the round-U type exhibit a similar bending in the left half domain, as seen in Fig. 4, and a milder bending 
in the right half domain for high Kn (= 5) compared with the square-U type [cf. Figs. 4f and 5f].

To support the descriptions given above, Fig. 6 presents the magnitude of the local flow velocity as a 
function of Kn at four locations in the gas for the types I and II. More precisely, Fig. 6a shows, for the type 
I body, |vi| = (v21 + v22)

1/2 versus Kn at the following four locations: (A) (x1/D, x2/D) = (−0.525, 0.525) , (B) 
(−0.525, 0.025) , (C) (0, 0.75), and (D) (0.525, 0.525). Similarly, Fig. 6b shows the same quantity for the type II 
body at the locations (A), (B), (C), and (E) (x1/D, x2/D) = (0.25, 0.45) . At every location, the flow speed increases 

1 1.5 2

(a) Kn = 0.01

1 1.5 2

(b) Kn = 0.05

1 1.5 2

(c) Kn = 0.1

1 1.5 2

(d) Kn = 0.5

1 1.5 2

(e) Kn = 1

1 1.5 2

(f) Kn = 5

Figure 5.   Flow velocity vector (v1, v2) and contour map T in the case of a single round-U body in a closed 
vessel ( T1/T0 = 2 , H/D = 2 , and L/D = 1 ) for typical Knudsen numbers Kn = (a) 0.01, (b) 0.05, (c) 0.1, (d) 
0.5, (e) 1, and (f) 5. See the caption of Fig. 4.
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with Kn when Kn is small, attains its maximum, and decreases with a further increase of Kn . The flow speed is 
the fastest near the tip when the Knudsen number is small, irrespective of the type of U-shape (see point A).

Incidentally, the flow vanishes when Kn → ∞ in both square and round-U cases, as proved by a general 
theory for the free molecular flow (see ref.13, Chap. 2).  

Flows over a periodic array of U‑shaped bodies.  In this subsection, we examine the behavior of the 
macroscopic quantities of the main problem described in “Formulation.” The values of the physical parameters 
(Kn and T1/T0) are the same as those in “Case of a single body”.

First, we show the flow velocity and the temperature field in Fig. 7 for the square-U body array. For 
relatively small Knudsen numbers Kn ≤ 0.1 (panels (a–c)), we see the onset of a thermal edge flow at 
(x1/D, x2/D) ≈ (−0.5, 0.5) as in the case of a closed vessel (see Fig. 4). We also observe a weaker corner flow 
near (x1/D, x2/D) = (0.5, 0.5) . This leftward corner flow is overwhelmed by the rightward thermal edge flow 
in the region 0 < x1/D < 0.5 and 0.5 < x2/D < 1 . Since the mass flow rate Mf  across x1 = const should be 
independent of x1 , this means that a net mass flow in the positive x1 direction occurs in the channel. Note 
that 

∫ D/2
0 ρv1dx2 = 0 at any cross section x1 = const inside the U-shaped body (i.e., −0.5 < x1/D < 0.5 and 

0 ≤ x2/D < 0.5 ). The magnitude of the flow tends to decrease with the decrease of Kn , as seen from panels (c)→
(b)→(a). On the contrary, for relatively large Knudsen numbers Kn ≥ 0.5 (panels (d–f)), the flow patterns near 
the corner are similar between Figs. 4 and 7; there are two rolls near the corner. In particular, the appearance of 
two rolls near the tip and the right corner in Fig. 7d–f suggests that the pumping effect, if exists, is weak for these 
Kn (≥ 0.5) . It is also seen that the magnitude of the flow decreases as Kn becomes large (see, panels (d)→(e)→(f)).

The temperature field exhibits the same feature as in the case of a single body presented in Fig. 4. However, 
since the heated bodies repeatedly appear in the current periodic case, the overall temperature inside the chan-
nel is higher.

Now, let us move on to the results for the array of round-U bodies, which are shown in Fig. 8. In the region 
0 < x1/D < 0.5 and 0.5 < x2/D < 1 , we observe a net mass flow in the positive x1 direction for relatively small 
Kn ≤ 0.1 , as in the case of the array of square-U bodies. However, the case of round-U bodies leads to more x1
-aligned flow patterns, and the magnitude of the flow in Fig. 8 is more significant than in Fig. 7. For relatively 
larger Kn (≥ 0.5) , the flow along the curved part, directed in the negative x1 direction, is apparent. We have also 
observed such a flow in the closed case (see Fig. 5). If we look at the flow velocity across a particular plane per-
pendicular to the channel, e.g., x1 = H/2 (= D) , we notice that the mass flow rate across the plane seems to be 
reduced due to this backward flow. The magnitude of the backflow is the largest around Kn ≈ 1 and decreases 
when Kn is further increased.

We notice that the temperature is lower inside the round-U shape than inside the square-U shape when Kn 
is large (see Figs. 7f and 8f). This difference can be understood in the following way. The molecules leaving the 
channel wall tend to have a slower speed compared with those leaving the U-shaped body. Suppose that there is 
few inter-molecular collisions. Then, these slow molecules have more chances to reach the point near the closed 

(a) Type I (b) Type II

Figure 6.   Magnitude of the local flow velocity |vi| = (v21 + v22)
1/2 versus Kn at a given location in the gas in the 

closed domain case; (a) Type I, (b) type II. The locations are as follows. A: (x1/D, x2/D) = (−0.525, 0.525) ; B: 
(−0.525, 0.025) ; C: (0, 0.75); D: (0.525, 0.525); E: (0.25, 0.45). Note that, for the point E in panel (b), the values of 
|vi|/

√
2RT0 are less than 10−4 for Kn = 0.01 and 0.05, which are of the order of statistical error and therefore not 

considered to be meaningful.
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end inside the U shape in the case of the round-U body than in the case of the square-U body. On the other 
hand, there is no noticeable difference in the temperature value when Kn is small because the inter-molecular 
collisions result in more enhanced temperature diffusion.

Mass flow rate.  We now show the results for the mass flow rate as a measure of pumping performance. We 
show in Fig. 9 the mass flow rate Mf  in the x1 direction per unit length in x3 for various Kn and T1/T0 ( Kn = 0.1 , 
0.15, ..., 20; T1/T0 = 1.2 , 1.5, and 2). The results for even smaller Knudsen numbers, Kn = 0.01 , 0.015, ..., 0.07, 
are also included for the case of T1/T0 = 2.

First, let us look at the mass flow rate in the case of type I body, i.e., the square-U shape. When T1/T0 = 2 , 
the mass flow rate increases (or decreases) with Kn when the Knudsen number is small (or large). There is a 
Knudsen number ( Kn ≈ 0.1 ) at which Mf  reaches its maximum for given T1/T0 . In this problem, in which the 
flow is induced by the thermal edge effects, the numerical analysis using the DSMC method becomes increas-
ingly severer as T1/T0 becomes small, particularly for small Kn . (Note that the appreciable flow is more and 
more localized near the edge as Kn is decreased.) For this reason, the number of numerical results for small Kn 
is limited in the cases of T1/T0 = 1.5 and 1.2. However, we expect the same tendency to occur for smaller values 

1 1.5 2

(a) Kn = 0.01

1 1.5 2

(b) Kn = 0.05

1 1.5 2

(c) Kn = 0.1

1 1.5 2

(d) Kn = 0.5

1 1.5 2

(e) Kn = 1

1 1.5 2

(f) Kn = 5

Figure 7.   Flow velocity vector (v1, v2) and contour map T in the case of an array of square-U bodies 
( T1/T0 = 2 , H/D = 2 , and L/D = 1 ) for typical Knudsen numbers Kn = (a) 0.01, (b) 0.05, (c) 0.1, (d) 0.5, (e) 1, 
and (f) 5. See the caption of Fig. 4.
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of T1/T0 . Note that Mf  takes positive values for all Kn (except possibly noise effects). In other words, the mass 
flow rate is always in the positive x1 direction in the case of a square-U type.

In the case of type II body, i.e., a round-U shape, the mass flow rate is also increasing in Kn when Kn is small. 
This trend is observed in the range Kn � 0.1 , as in type I body. Note that the values of Mf  are considerably larger 
than those for type I body. We can understand the reason from a difference in the flow pattern observed in Fig. 7 
(type I) and Fig. 8 (type II). That is, a leftward (weaker) thermal edge flow induced near the corner partly cancels 
the rightward thermal edge flow induced near the tip in the case of type I, while there is no such a (backward) 
thermal edge flow in the case of type II body, when Kn is small.

When Kn is large, the behavior of Mf  for type II is qualitatively different from that for type I. In the case of 
type II, Mf  decreases first, becomes negative, and then increases again to zero as Kn increases. In other words, 
a backward one-way flow occurs when Kn is large for type II. This negative Mf  is caused by a thermal “blunt” 
edge flow induced along the round face as seen in Fig. 8d–f. More precisely, as Kn becomes large, the round face 
roughly acts as a (blunt) edge in the scale of the mean free path and induces a leftward flow along the heated 
surface. Moreover, the numerical result shows that this leftward flow dominates the rightward flow. We note that 
a similar blunt edge flow is also observed around an oval shape body23. We also mention that switching between 
positive and negative mass flow rates for large Kn has also been reported in the case of a structured channel19. 

1 1.5 2

(a) Kn = 0.01

1 1.5 2

(b) Kn = 0.05

1 1.5 2

(c) Kn = 0.1

1 1.5 2

(d) Kn = 0.5

1 1.5 2

(e) Kn = 1

1 1.5 2

(f) Kn = 5

Figure 8.   Flow velocity vector (v1, v2) and contour map T in the case of an array of round-U bodies 
( T1/T0 = 2 , H/D = 2 , and L/D = 1 ) for typical Knudsen numbers Kn = (a) 0.01, (b) 0.05, (c) 0.1, (d) 0.5, (e) 1, 
and (f) 5. See the caption of Fig. 4.
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In general, the behavior of Mf  for large Kn is affected by the geometrical configuration of the boundary, and the 
flow feature is highly problem-dependent.

To summarize, Table 1 shows the maximum value of Mf  for given T1/T0 along with the value of Kn at which 
the maximum occurs in our computation ( H/D = 2 , L/D = 1).

Forces acting on U‑shaped bodies.  Finally, we discuss the force acting on the U-shaped body. Figure 10 
summarizes the (normalized) force in the x1 direction (per unit length in x3 ) acting on (a) a square-U type body 
(type I) and (b) a round-U type body (type II), i.e., F1 in Eq. (10), for various Kn and T1/T0 . The values of Kn and 
T1/T0 are the same as those in Fig. 9.

First, we observe that the force is in the direction of negative x1 for both square and round-U types, and its 
magnitude increases with T1/T0 . Concerning the dependency on Kn , the magnitude of the force increases with 
Kn when Kn is small, attains its maximum at Kn ≈ 0.5 , and then decreases with a further increase of Kn . Table 2 
shows the maximum value of −F1 obtained in our numerical computations for various T1/T0 , along with the value 
of Kn at which the maximum is attained. The maximum force acting on the round-U-type body is nearly twice 
larger than that of the square-U-type body. Indeed, it is found that a more significant force acts on the round-U 
type for all the Knudsen numbers investigated, as seen from Fig. 10. For small Kn , the force likely decreases in 
proportion to Kn3/2 with the decrease of Kn for both types I and II.

Let us focus our attention on the case of small Kn . The momentum conservation implies that the thermal 
edge flow near the tip (x1/D, x2/D) = (−0.5, 0.5) in the positive x1 direction pulls the tips (and the body) in 
the negative x1 direction. Indeed, as we see below, the distribution of the (local) tangential force on the body is 
leftward (i.e., the negative x1 direction) on the whole horizontal part of the type II body (i.e., round-U type) and 
almost the entire horizontal part of the type I body (i.e., square-U type). Here, “almost” means that the local 
force is positive near the right corner located at (x1/D, x2/D) = (0.5, 0.5) when Kn is small ( Kn � 0.1 ). Near the 

(a) Type I (b) Type II

Figure 9.   Mass flow rate Mf  in the x1 direction per unit length in x3 as a function of the Knudsen number Kn 
in the cases of T1/T0 = 1.2 , 1.5, and 2 ( H/D = 2 , L/D = 1 ). (a) Square-U type, (b) round-U type. The symbols 
represent the numerical results, which are joined by the line segments.

Table 1.   Maximum values of Mf  with respect to Knudsen number Kn for various T1/T0 in the case of 
H/D = 2 and L/D = 1.

Type T1/T0 Kn Maximum of Mf /ρavD
√

2RT0

Type I (Square-U)

1.2 0.15 0.42× 10−3

1.5 0.1 0.95× 10−3

2.0 0.15 1.67× 10−3

Type II (Round-U)

1.2 0.15 0.69× 10−3

1.5 0.15 1.51× 10−3

2.0 0.15 2.70× 10−3
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right corner, another (weaker) thermal edge flow occurs in the negative x1 direction. This counter-flow gives a 
contribution that partly cancels the negative force in the case of a type I shape.

As shown in the previous subsection, the direction of mass flow rate is reversed when Kn becomes large in 
type II. However, we do not observe such an inversion of the force acting on the array of round-U-shaped bodies 
(the total force is always negative, irrespective of Kn).

To provide a further insight into the force acting on the U-shaped body, we look at the distribution of the 
local stress p1jnj along the body. For this purpose, we introduce a new coordinate (arc length) along the surface 
of the body, denoted by s, as follows (see also the inset in Fig. 11): 
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Figure 10.   Semi-logarithmic plot of the force (F1, 0, 0) acting on each of the U-shape bodies as a function of the 
Knudsen number Kn for T1/T0 = 1.2 , 1.5, and 2 in the case of H/D = 2 and L/D = 1 ( T1/T0 = 1.2 , 1.5, and 2). 
(a) Type I (square-U shape) and (b) Type II (round-U shape). See the caption of Fig. 9.

Table 2.   Maximum values of −F1 with respect to the Knudsen number Kn for various T1/T0 in the case of 
H/D = 2 and L/D = 1.

Type T1/T0 Kn Maximum of −F1/(p0D)

Type I (Square-U)

1.2 0.4 1.16× 10−3

1.5 0.4 2.90× 10−3

2.0 0.4 5.58× 10−3

Type II (Round-U)

1.2 0.4 2.49× 10−3

1.5 0.5 6.10× 10−3

2.0 0.5 11.47× 10−3
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 Then, the sum of the local stress over two faces DJ+ and DJ− (J = I, II) exerted by the gas, which we denote by 
P1 , is defined as a function of s:

Note that the integration of P1(s) over the entire s ( 0 ≤ s/D ≤ 3/2 for type I and 0 ≤ s/D ≤ (1+ π/2)/2 for 
type II) leads to half the force F1.

We show in Fig. 11 the distribution of P1(s) for types I and II for Kn = 0.1 , 0.4, 2, and 10 in the case of 
T1/T0 = 2 . It is seen that the negative component is dominant for the part 0 ≤ s/D ≤ 0.5 for both types of I and 
II and for all Kn , contributing to a leftward force. In particular, the open symbols (type I) and closed symbols 
(type II) almost overlap when Kn is small (cf. Kn = 0.1 ) in the same range, indicating that the local flow structures 
near the tips are the same for both types I and II in the near continuum regime: a thermal edge flow prevails 
there for both cases. A difference between type I and type II becomes apparent in the region s/D > 0.5 . For type 
II, P1 increases with s and changes the sign from negative to positive at some value of s. If we magnify the figure 
(not shown here), we see that the coordinate s at which P1 changes the sign is larger for smaller Kn . On the 
other hand, for type I, P1 is negative up to s/D = 1− for Kn = 0.4 , 2, and 10, and suddenly changes to positive 
values at s/D = 1+ and remains positive for s/D > 1 . In the case of Kn = 0.1 , P1 becomes slightly positive in the 
region 0.9 � s/D < 1 , jumps to a negative value at s/D = 1+ , and then goes up to positive values as s increases. 
The decrease of P1 at s/D = 1+ when Kn = 0.1 is attributed to the thermal stress enhanced by the presence of 
a sharp corner. We will come back to this point below. The area of the positive part in Fig. 11 is larger for type I 
than for type II, and this excess positive contribution explains smaller |F1| for type I.

Considering that the body’s surface area is smaller for the round-U type than for the square-U type, such an 
enhancement of the force is helpful in applications for microflows, for which a design for further miniaturiza-
tion is essential.

Finally, we discuss the cause of the negative jump of P1 at the right corner observed in the type I body when 
Kn is small. Figure 12 shows the profiles of the normal stress p11 along the outer and inner sides of the vertical 
segment of the type I body (i.e., x1 = D/2± 0 and 0 ≤ x2 < D/2 ) for various Kn ( T1/T0 = 2 ). It is seen that, with 
the decrease of Kn , a peak is formed near the corner x2 = D/2 on the outer side of the segment [see Fig. 12a]. 
On the other hand, we observe no formation of such a peak on the inner side; the profile becomes more flattened 
as Kn decreases [see Fig. 12b]. Therefore, the negative jump in P1 near s/D = 1 (see Fig. 11, open symbols ◦ ) is 
caused by the peak on the outer side near the corner.

Note that a peak-like distribution for p11 is also observed for Kn = 0.4 in Fig. 12a. However, the values of p11 
are much higher on the concave side than on the convex side of the vertical plate (see Fig. 12b). Therefore, the 
distribution of P1 shows no negative jump at s/D = 1 in Fig. 11 for Kn = 0.4.

Here, we try to explain the origin of the peak observed in Fig. 12a using a crude estimate of the thermal stress 
near the corner, following the discussion of ref.6. Let us consider an infinite expanse of a gas separated by a corner 

(13)P1(s) = −p1jn
+
j |(x1,x2)∈DJ+ − p1jn

−
j |(x1,x2)∈DJ− .

Figure 11.   Profile of P1 (Eq. (13)) along each of the U-shape bodies as a function of the length s measured 
from the edge (x1/D, x2/D) = (−0.5,−0.5) for Kn = 0.1 , 0.4, 2, and 10 in the case of T1/T0 = 2 , L/D = 1 , and 
H/D = 2 . The symbols represent the numerical results, which are joined by the line segments. The empty (or 
filled) symbols indicate the results of type I (or type II). The inset shows the definition of the coordinate s.
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with a right angle formed by two semi-infinite lines, as depicted in Fig. 13. Suppose that the temperature of the 
gas is described by a steady heat conduction equation (with a constant thermal conductivity for simplicity). Then, 
the temperature of the gas around the corner is given for the convex side by

and for the concave side by

where (r, θ) are polar coordinates with the origin on the corner, T1 is the uniform temperature of the body, and 
a+ and a− are constants ( a+ and a− are positive when the body is heated). Now we consider a plane x1 = const 
in the vicinity of the corner and estimate the normal stress τ11 on the plane, which is roughly given by6

(14)T = T1

[

1− a+ r2/3 sin

(

2

3
θ +

π

3

)]

, −
π

2
< θ < π ,

(15)T = T1[1− a− r2 sin(2θ)], π < θ <
3

2
π ,

Kn=10

(a)

Kn=10

(b)

Figure 12.   Normal stress p11 along the vertical part of the type I shape, i.e., x1 = D/2± 0 and 0 ≤ x2 < D/2 , 
for various Kn in the case of T1/T0 = 2 ( H/D = 2 , L/D = 1 ). (a,b) Profiles of p11 along (a) x1 = D/2+ 0 and 
(b) x1 = D/2− 0 for various Kn . Filled symbols are used for Kn ≥ 0.1 and empty symbols for Kn < 0.1.

O

Temperature

Convex side

Concave side

Figure 13.   An infinite expanse of a gas separated by a sharp-cornered two dimensional body with a uniform 
temperature T1 . The temperature isolines around the body are schematically shown.
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Here, ℓ is the mean free path of the gas molecules. Thus, the normal component of the stress tensor is modulated 
by the term (∂2T/∂x21)ℓ2 when a temperature inhomogeneity is present in the gas. This contribution, known as 
the thermal stress13, is usually a small correction when ℓ is small. However, it can be large around a sharp edge, 
where the temperature field varies abruptly, as shown in ref.6. In the present case with a sharp corner, a similar 
enhancement may be possible. In fact, if we take three points (x1, x2) = (0, 0) , (ℓ, 0) , and (2ℓ, 0) in the vicinity of 
the corner, and estimate ∂2T/∂x21 by the central finite difference formula, we have, using (14),

Therefore, the thermal stress is proportional to ℓ2/3 , which is more substantial than ℓ2 when ℓ is small. Note that 
a similar estimate applied to the inner side results in no enhancement of the thermal stress (due to the uniform 
temperature along the horizontal surface), which is also consistent with the behavior of the normal stress pre-
sented in Fig. 12b.

To support the above crude estimate, Fig. 14 shows a double-log plot of 

as a measure of the peak on the outer side of the vertical segment, as a function of Kn for type I ( T1/T0 = 2 ). 
Since the DSMC method is a cell-based method, it is rather difficult to evaluate the value of p11 at the corner 
(x1, x2) = (D2 + 0, D2 ) precisely. Therefore, we extrapolate p11 using the values on the nearest cells. As we can see 
from the figure, the peak decreases in proportion to Kn2/3 as Kn is reduced, which is consistent with the above 
estimate (the thermal stress ∼ ℓ2/3 ). In this way, the peak of the normal stress, and thus the sudden change in 
the local force at the corner, are explained by the enhancement of the thermal stress near the sharp corner when 
Kn is small.

Concluding remarks
In this paper, we have considered a steady flow of a rarefied gas over an infinite array of uniformly heated 
U-shaped bodies. This configuration is motivated by the question of whether one can extract a net flow effec-
tively using a thermal edge flow only by devising the geometry of a body. We addressed this issue numerically 
using the DSMC method, a standard numerical technique for solving the Boltzmann equation. Two types of 
U-shaped bodies have been considered and compared to obtain further insights into the flow properties around 
the U-shape body.

Our computations using the DSMC method show that a one-way flow is induced in the channel for both 
types. Locally, the flow direction near the tips is such that the tips are facing the induced flow (i.e., the thermal 
edge flow). The direction of the overall mass flow rate is in the same direction as the thermal edge flow for type 

(16)τ11 ∼ T(x1 + ℓ, x2)+ T(x1 − ℓ, x2) ∼ 2T|(x1,x2) +
∂2T

∂x21

∣

∣

∣

(x1,x2)
ℓ2.

(17)
∂2T

∂x21
ℓ2 ∼

T(0, 0)− 2T(ℓ, 0)+ T(2ℓ, 0)

ℓ2
ℓ2 =

√
3(2− 22/3)

2
a+ℓ2/3.

�p11 ≡ sup
0<x2<D/2

(p11(x1 = D
2 + 0, x2)− p11(x1 = D

2 + 0, 0))

Figure 14.   Double-log plot of �p11 ≡ sup0<x2<D/2(p11(x1 =
D
2 + 0, x2)− p11(x1 = D

2 + 0, 0)) versus Kn . 
The value of p11(x1 = D

2 + 0, 12D) is approximated by the node nearest to the corner (red circle), the linear 
extrapolation using two points near the corner (green square), and the 2nd-order extrapolation using 3 points 
near the corner (blue lower triangle). Extrapolation is based on the Lagrange formula.
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I for the entire range of Kn investigated. In type II shape, on the other hand, the mass flow rate is reversed when 
the Knudsen number becomes large ( Kn � 1 ). A kind of thermal edge flow (or a blunt edge flow) induced along 
the outer face of the curved part causes this reversal of the mass flow rate, by dominating the rightward thermal 
edge flow. Thus, there is a threshold of the Knudsen number above which the mass flow rate is reversed for type 
II. The mass flow rate is generally more significant for type II than type I for the same Knudsen number when 
they are in the same direction (Fig. 9).

With regard to the force acting on each of the bodies, the force direction is such that it tends to push the 
body with convex side trailing, irrespective of the value of Kn . The force is, in general, larger for the round-U 
shape than for the square-U shape for the same parameter set (Fig. 10). For type I body, the normal stress along 
the vertical side of the body exhibits a negative peak near the corner, which is explained by the thermal stress 
near the sharp corner.

Method
The simulation is carried out based on a non-dimensional version of the Boltzmann equation (1), in which all 
the quantities are scaled by suitable reference values. For instance, we use D and 

√
2RT0 as the reference length 

and speed, respectively.
The DSMC method solves the time-dependent Boltzmann equation and needs an initial condition at time 

t = 0 . We use the reference equilibrium distribution

as the initial condition. The computational domain V J

where DJ
∗ is the set obtained from DJ by restricting the range of x2 to x2 > 0 , is divided into square cells with the 

area �x2 , where �x/D = 2.5× 10−2 , i.e., the number of cells is 3200 for the square-U type. In the case of the 
round-U type, we need additional non-rectangular cells along the curved part. To be more precise, if a square 
cell has intersections with DII

∗  at two points, the cell is divided into two portions, where the curve of DII
∗  is 

approximated by a segment that connects these two intersections. These two portions are either (i) two trapezoids 
or (ii) a triangle and a pentagon, depending on the position of the intersections. The collision process and the 
computations of moments are carried out using these new cells with areas smaller than �x2 . On the other hand, 
the process of the free transport of the particles is done using the curve of DII

∗  . The difference between the curve 
and the segment is so small that it does not affect the discussion of the paper. For Kn ≤ 0.05 , a smaller size of 
the basic cell with the length �x/D = 1.25× 10−2 is used.

At the initial time, N test particles are distributed in each cell, where N = 102 is used. Time step of the simula-
tion is �t/t0 = 10−3 (or 5× 10−4 ) for �x/D = 2.5× 10−2 (or 1.25× 10−2 ), where the reference time t0 is defined 
as t0 = D/

√
2RT0 . We judge steady state at t/t0 = 2× 102 and start sampling at every time step. The number 

of samples is at least 2× 107 for all the cases and increased up to 4× 108 for the cases with small T1/T0 . Note 
that the macroscopic quantities obtained by the DSMC method are cell-based quantities, that is, any function 
of (x1, x2) (e.g., ρ ) represents the value in a cell with its center at (x1, x2).

To compute the mass flow rate Mf  and the force F1 , we use the following procedures instead of the direct 
integration of (9) and (10). In a steady state, the impulse acting on a body over a period �t̄ is written as F1�t̄ . 
This should be equal to the summation of the impulse given by a gas molecule that hit the body during the same 
interval �t̄ . Since the impulse is computed from the momentum change between before and after the impact, 
we have

where m∗ is a mass of a test particle, ξ (j)1  and ξ ′(j)1  are the x1 component of the velocity of the j-th particle before 
and after the impact, respectively, and the summation in Eq. (20) runs over the index j for the molecules that 
hit the body during the interval �t̄ . The mass flow rate Mf  is obtained by counting the number of test particle 
that goes across a plane x1 = H/2 during the interval �t̄ . To be more specific, let n(j)+  and n(j)−  be the number of 
translocation from x1 < H/2 to x1 > H/2 and x1 > H/2 to x1 < H/2 , respectively, of the j-th particle during 
the interval �t̄ . Then, Mf  is given by

where j runs over whole particles intersecting the plane x1 = H/2.

Data availability
The datasets generated during the current study are available from the corresponding author on reasonable 
request.

(18)f =
ρav

(2πRT0)3/2
exp

(

−
ξ 2i

2RT0

)

, t = 0,

(19)V
J =

{

(x1, x2)
∣

∣

∣
−

H

2
< x1 <

H

2
, 0 < x2 < L

}

\ DJ
∗, J = I, II,

(20)F1�t̄ = m∗
∑

j

(ξ
(j)
1 − ξ

′(j)
1 ),

(21)Mf�t̄ = m∗
∑

j

(n
(j)
+ − n

(j)
− ),
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