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T cell subtype profiling measures 
exhaustion and predicts anti‑PD‑1 
response
Ian Schillebeeckx1*, Jon Earls1, Kevin C. Flanagan1, Jeffrey Hiken1, Alex Bode1, 
Jon R. Armstrong1, David N. Messina1, Douglas Adkins2, Jessica Ley2, Ilaria Alborelli3, 
Philip Jermann3 & Jarret I. Glasscock1

Anti‑PD‑1 therapy can provide long, durable benefit to a fraction of patients. The on‑label PD‑L1 test, 
however, does not accurately predict response. To build a better biomarker, we created a method 
called T Cell Subtype Profiling (TCSP) that characterizes the abundance of T cell subtypes (TCSs) in 
FFPE specimens using five RNA models. These TCS RNA models are created using functional methods, 
and robustly discriminate between naïve, activated, exhausted, effector memory, and central 
memory TCSs, without the reliance on non‑specific, classical markers. TCSP is analytically valid and 
corroborates associations between TCSs and clinical outcomes. Multianalyte biomarkers based on TCS 
estimates predicted response to anti‑PD‑1 therapy in three different cancers and outperformed the 
indicated PD‑L1 test, as well as Tumor Mutational Burden. Given the utility of TCSP, we investigated 
the abundance of TCSs in TCGA cancers and created a portal to enable researchers to discover other 
TCSP‑based biomarkers.

Anti-PD-1 therapies are an increasingly important treatment option across many cancer  types1,2. Anti-PD-1 
therapy and other checkpoint inhibitors are approved for the treatment of 14 cancer types, making around 39%3 
of all cancer patients eligible for checkpoint therapy. Unfortunately, only approximately 11%3 of all cancer patients 
benefit from anti-PD-1 therapies. Yet, among patients who respond to anti-PD-1 therapy, many experience a 
robust, durable response even in cancers with historically poor long-term  survival4,5. In an effort to unlock these 
improved outcomes and more cost-efficient treatments, researchers have investigated various  biomarkers6. The 
most commonly used biomarker for anti-PD-1 therapies is PD-L1 expression measured by IHC. PD-L1 is the 
ligand for the PD-1 receptor and a target of checkpoint inhibitors in its own right. Unfortunately, PD-L1 is an 
unreliable biomarker for predicting  response7.

Although the PD-L1 molecule is involved in the mechanism of action of anti-PD-1 therapies, other aspects of 
adaptive immunity, namely T cells, may be more useful in predicting  response8. T cells can be classified according 
to their activation and differentiation status, which capture the activity, antigen-exposure, and specific func-
tional role of a T cell population. In particular, five T cell subtypes (TCSs)—naïve9,  activated10, effector memory 
(EM)11, central memory (CM)11, and  exhausted12—are descriptive of the immunogenic status of T cell adaptive 
immune response and, when measured in isolation, have offered insights into response to anti-PD-1 therapy. 
For instance, in Head and Neck Squamous Cell Carcinoma (HNSCC), higher levels of EM T cells are associated 
with  response13, while exhausted T cells are associated with poor  prognosis13,14. PD-1 inhibits effector function 
upon ligand binding and is heavily expressed in exhausted T  cells12, and has been associated with response in 
Non-Small Cell Lung Cancer (NSCLC)15,16. In addition, exhausted T Cells are an important component of the 
anti-tumor immune response following PD-1 or CTLA-4 blockade in several  cancers17–23. Furthermore, higher 
levels of CM T cells have been associated with anti-PD-1 response in  melanoma24. These works suggest that a 
more nuanced and comprehensive characterization of TCSs might more successfully predict anti-PD-1 response.

With this goal, we developed a biomarker platform that estimates the prevalence of these five TCSs using 
novel RNA models, called Subtype Health Expression Models (sHEMs). This novel approach has several advan-
tages: 1) Estimating TCSs using sHEMs is easy to perform on commonly available clinical samples. Traditional 
methods of measuring TCSs, especially the activated and exhausted subtypes, require functional assays and/
or flow cytometry and are difficult or impossible to perform routinely on common clinical specimens. Similar 
to Immune Health Expression  Models25, sHEMs eliminate this limitation and allow characterization of TCSs 
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in formalin fixed and paraffin embedded (FFPE) tissues. 2) The sHEMs do not rely on canonical single analyte 
measurements (like PD-1) and thus more specifically characterize TCSs. 3) Substantial RNA-seq datasets are 
available for validating and applying RNA-based sHEMs. This RNA-based biomarker approach mirrors other 
commercial tests like Oncotype  DX26, Veracyte  Afirma27, and Agendia  MammaPrint28, which have found clinical 
utility in other oncology indications.

Other work has looked at using gene signatures to measure the immune component of tumors and predicting 
response to anti-PD-1 therapy. Digital cytometry or cell deconvolution methods enable researchers to estimate 
the abundance of certain cell types using RNAseq data. Methods such as  ESTIMATE29,  Cibersort30,  CibersortX31, 
 quanTIseq32,  xCell33, MCP-counter34, and  EPIC35 are generally derived from public datasets including microarray 
and RNAseq data. These methods quantify the abundance of lymphocytes at a high level, i.e. CD4+ and CD8+ , 
and not at a more granular functional level, preventing the full characterization of all important TCSs. XCell ena-
bles the estimation of enrichment of naïve, EM, and CM TCSs for both CD4+ and CD8+ , but lacks activated and 
exhaustion states. Gene expression of T cell infiltration has been previously considered for predicting response 
to anti-PD-1 therapy.  Inflammation36,  cytotoxicity37, IFNγ38,39, antigen  presentation39, and  exhaustion39 gene 
signatures, have been explored, but have yet to be adopted into oncology practice.

In this work, we use sHEMs to predict response to anti-PD-1 therapy in three indications. First, we show how 
we built and used sHEMs to characterize the five TCSs. Then, we tested that the process of characterizing TCS 
using these sHEMs, called T Cell Subtype Profiling (TCSP), is analytically robust. Next, we validated TCSP in 
CD39+ and PD-1+ T cell isolates from tumors and show that CD39 and PD-1 surface markers are not specific to 
exhaustion. In addition, we characterized how virus infection can affect the TCS breakdown of T cell infiltrate 
in cancers with viral etiologies. Then, we used TCSP to characterize HNSCC, NSCLC, and Melanoma cohorts 
and show multiple associations between TCSs and response to anti-PD-1 therapy. Leveraging these insights, we 
built multianalyte biomarkers in these three indications using machine learning. These TCSP-based biomarkers 
predicted response to anti-PD-1 therapies in HNSCC, NSCLC, and Melanoma, and out-performed the on label 
PD-L1 test and Tumor Mutational Burden (TMB). Finally, we used TCSP to explore other cancer types in The 
Cancer Genome Atlas (TCGA). Given its robustness and practicality, we have made the TCSP platform available 
(via tcsp.cofactorgenomics.com) to other researchers so that they may characterize TCSs in their own datasets 
and investigate other biomarkers.

Results
Subtype health expression models discriminate T cell subtypes. We created sHEMs as a tool to 
estimate the abundance of TCSs in newly sequenced FFPE samples or in public datasets. To create them, we 
isolated cells that define each TCS (Fig. 1A), including naïve, effector memory (EM), and central memory (CM) 
CD8+ T cells, from healthy PBMC donors using flow cytometry. Activated and exhausted T cells were gener-
ated in vitro via continuous CD3/CD28/CD2 stimulation of isolated naïve CD8+ T cells. Activated T Cells cor-
responded to early stimulation and had maximal proliferative capacity according to IL2 and IFNγ expression. 
In contrast, exhausted T cells corresponded to late chronic stimulation having impaired cytokine production, 
little to no proliferation, and high expression of PD-1, TIM3, and LAG3 inhibitory receptors, in agreement with 
observations in  literature12.

Total RNA isolated from these five types of cell isolates were respectively processed and sequenced. Dif-
ferentially expressed genes were chosen to identify the five TCSs (Fig. 1A). sHEMs for each of the five TCSs 
were created using the mean value for each of the differentially expressed genes for the five respective isolates. 
This data-driven approach has an advantage of being unbiased, which is especially important given the overlap 
between classical effector and exhaustion genes. These initial models adequately estimated TCS abundance in 
simple, PBMC based samples, but suffered from high false positive estimates in more heterogeneous tumor sam-
ples. To improve performance in complex samples, genes with relatively high expression in the cell lines of the 
Cancer Cell Line Encyclopedia (CCLE)40 were filtered out (Fig. 1A). The resulting five sHEMs were composed 
each of 46 genes (Fig. 1B).

The five sHEMs differentiate the five TCSs in heterogeneous FFPE tumor samples. Using these models and 
gene expression data from a sample, an unknown FFPE tumor sample can be characterized by solving a linear 
equation. The estimated abundances of each of the five TCSs represent what ratio of RNA in a whole sample is 
comprised of each TCS (Fig. 1A) and are reported as a number between 0 and 100. Often, for example when 
comparing against other measurement modalities or previous work, it is most useful to consider TCS estimates 
normalized to their sum. In this case, axis labels are reported as “TCS Estimate ” and are reported as a number 
between 0 and 1. We refer to the process of characterizing a sample in regard to TCSs as T Cell Subtype Profil-
ing (TCSP). TCSP characterizes the immune response in a tumor and, as shown later in this work, can predict 
patient response to anti-PD-1 therapy. sHEMs were created using whole exome sequencing data, enabling TCSP 
to characterize the infiltrating immune response within and across many cancer types using publicly available 
RNA-seq data.

We show the normalized expression of each gene across all five sHEMs (Fig. 1B, Supplementary Fig. 1). Per 
the Reactome  database41, effectively all of these genes are involved in immunity related pathways (Supplementary 
Fig. 2). Each model had a few notable, constituent genes which characterize each TCS. The naïve sHEM displayed 
high expression of LEF1, a gene involved in T cell development and peripheral T cell  differentiation42. A set of 
genes involved in homeostasis  (NR4A243) and quiescence  (CD24844 and  DUSP845) were also highly expressed 
in the naïve model versus others. The activated sHEM showed high expression of cytokines related to inflam-
mation and proliferation including  EBI346,  IL247, and  IL23A48. The transcription factor TBX21 (T-Bet), which 
is involved in the regulation of development and CD4+ T Cell  differentiation49, was also highly expressed. The 
inhibitory receptor, LAG3 (HAVCR2), negatively regulates T cell  activation50,51 and was also a constituent gene 
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of the activated sHEM. The exhausted sHEM had high expression of CSF2, a gene associated with prolonged 
stimulation and cell  aging52. This model also had the highest expression of genes that prohibit differentiation 
 (ASB253), cell growth  (CSF2RB52), and inflammation  (CCR254). The EM sHEM had high expression of KLRD1 
(CD94), which may regulate effector functions and cell survival of CD8+ T  cells55. Additionally, MAF, a regulator 
of differentiation and function in a wide variety of T  cells56, and CCR5, a gene involved in chemokine-induced 
 costimulation57, were highly expressed. The CM sHEM had high expression of LY9, a gene that negatively regu-
lates the development of memory CD8+ T  cells58. In addition, genes associated with trafficking  (GCNT459) and 
adhesion (VSIG1) were also more highly expressed in the CM model.

Interestingly, some canonical genes associated with the five TCSs in literature are missing from the sHEMs due 
to our data-driven approach. These genes are not differentially expressed between the five TCSs nor between the 
five TCSs and the tumor microenvironment (via the CCLE database) and therefore aren’t useful for estimating 
abundances in the tumor microenvironment. For example, the exhausted sHEM does not include other inhibi-
tory receptors such as PD-1 (PDCD1) and TIM3 (HAVCR2)12 because these genes are also highly expressed in 
the activated subtype. Genes such as TCF7, TOX, EOMES, and CD39 (ENTPD1)12 were also not discriminative 
(Supplementary Fig. 1 and 3).

T cell subtype profiling is analytically robust. The five sHEMs were developed with the goal to charac-
terize the immune response in heterogeneous specimens and predict response to anti-PD-1 therapy. Therefore, 
it is imperative that TCSP is accurate and analytically robust. This section focuses on the analytical experimenta-
tion done to validate the five sHEMs and specifically, the abundances estimated by the TCSP technique.

Figure 1.  Subtype Health Expression Models discriminate T cell subtypes. (A) Schematic of the approach 
to creating data and using data-driven Subtype Health Expression Models (sHEMs). (B) A heatmap shows 
the gene-normalized expression of genes that comprise the 5 sHEMs. N naïve model; A activated model; EX 
exhausted model; EM effector memory model; CM central memory model.
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First, we demonstrate the performance of estimating the abundance of the naïve, activated, and exhausted 
TCSs. Naïve CD8+ cells from a donor withheld from creating the models were chronically stimulated in vitro for 
14 days. At days 4 and 6, there is a peak abundance of extracellular IL2 and IFNγ cytokines, respectively (Fig. 2A). 
Meanwhile, the abundance of cells triple-positive for PD-1, TIM3, and LAG3 receptors grow through day 4 and 
peak at day 10, with sustained abundance into days 12 and 14 (Fig. 2A, Supplementary Fig. 4B). In accordance 
with previous  studies12,60–62, there is also: a progressive increase in expression of TIGIT, 2B4, CD39 (ENTPD1), 
and TOX; a progressive decrease in expression of LAG3 and GZMB after peak activation; and a peak of EOMES 
expression early and at the end of chronic stimulation (Supplementary Fig. 4). This progressive increase in 
several inhibitory receptors, coupled with progressive loss of proliferative and cytotoxic expression and a later 
stabilization or decrease of inhibitory receptors is a hallmark of T cell  exhaustion12. These readouts suggest that 
in this chronic stimulation experiment the cells start out as naïve, became activated by day 4 and are exhausted 
by days 12 and 14. We compared these orthogonal measurements to TCS estimates. Our characterization mir-
rored this trend as the cells on day 0 are estimated to be naïve, day 4 is chiefly characterized to be activated, days 
6 through 10 are characterized as a progressive transition from a population of activated to exhausted, while 
days 12 and 14 are estimated to be exhausted (Fig. 2A). These trends are preserved regardless of which donors 
are used for creating the sHEMs and which withheld donor is used for evaluation (Supplementary Fig. 5). The 
xCell method observes a state switch on Day 2 from Naïve, but lacks any ability for determining the activation 

Figure 2.  T Cell Subtype Profiling is analytically robust. (A) The transient change of naïve CD8+ T cells 
during a chronic stimulation in vitro model. Naïve CD8+ T cells were isolated from a donor and stimulated for 
14 days. This donor was not used in creating the Subtype Health Expression Models (sHEMs). Every two days, 
the presence of the extracellular cytokines IL2 and IFNγ was measured via ELISA and the abundance of cells 
jointly expressing the PD1, TIM3, and LAG3 inhibitory receptors (3-IR+) was measured via flow cytometry. 
The IL2, IFNγ, and 3-IR+ readouts are independently normalized to their max expression during the time series 
and shown as lines (left y-axis). Cells were harvested every two days and characterized using T Cell Subtype 
Profiling (TCSP). T Cell subtype (TCS) estimates are shown as stacked bars (right y-axis). N naïve subtype; A 
activated subtype; EX exhausted subtype; EM effector memory subtype; CM central memory subtype. (B) The 
sum-normalized TCS estimates of T Cell populations isolated from blood: naïve CD8+ T cells (N, n = 5), effector 
memory CD8+ T Cells (EM, n = 5), central memory CD8+ T Cells (CM, n = 3), CD8+ T cells (CD8, n = 8), and 
CD4+ T cells (CD4, n = 8). (C) TCSP of CD45− cells isolated from lung adenocarcinoma (Lung, n = 1), ovarian 
adenocarcinoma (Ov, n = 1), and melanoma (Mel, n = 1) tumor samples. Numbers shown are on a scale of 0 
to 100. Bars show average estimated abundance of each TCS across all three tumors (points). (D) Exhaustion 
subtype estimates of synthetic samples comprised of varying fractions of chronically stimulated CD8+ T cells 
(day 14 from A) and CD45− cells isolated from tumor samples (from C). The expected exhaustion estimates 
(Exp EX) are shown as a black line. (E) TCSP of dissociated whole tumor samples (from C) compared against % 
of CD45+ immune cells determined by canonical flow cytometry estimation (Flow %). Point shapes correspond 
to cancer type, while colors correspond to TCS.
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or exhaustion of the CD8+ cells, instead suggesting that late (days 10–14) stimulated cells are enriched for EM 
(Supplementary Fig. 6A).

Increased inhibitory receptor levels alone are not sufficient to specifically measure the exhaustion of T cells 
(Fig. 2A). Rather, it is the measurement of secreted cytokine levels after stimulation coupled with inhibitory 
receptor expression that enables one to approximate exhaustion in of a population of T cells. Performing this sort 
of multi-faceted analysis is not only laborious, but also infeasible in FFPE tumor samples. Our exhausted sHEM 
addresses these challenges and thus provides a powerful tool in profiling dysfunction of the immune response 
in a preserved tumor. We next evaluated the performance of TCSP using PBMCs. For a single donor, live T cells 
were sorted for naïve, EM, and CM CD8+ cells via flow cytometry. We did not sort for activated or exhausted 
T cells, which are typically rare in healthy patient PBMCs and are difficult to accurately characterize with flow 
markers alone. Samples were profiled and normalized to the total estimated abundance of all five TCSs. TCSP 
correctly characterized the naïve and EM isolates as predominately being naïve and EM subtypes, respectively. 
The CM isolate was estimated to be ~ 80% the CM subtype, but also estimated some fraction of the isolate to be 
naïve and EM subtypes (Fig. 2B). We also profiled the CD4+ and CD8+ isolates of PBMCs from eight donors. 
The CD8+ isolates had a mean estimate of 37% naive, 0% activated, 4% exhausted, 53% EM, and 5% CM, while 
the CD4+ isolates had a mean estimate of 26% naïve, 0% activated, 4% exhausted, 30% EM, and 40% CM. The 
estimated abundances of the naïve, EM, and CM TCSs in CD4+ and CD8+ T cells reflect those reported in other 
healthy  donors63. The CD4+ and CD8+ samples are estimated to have a low level of exhaustion, perhaps due to 
latent viral infections, for example from Epstein-Barr Virus, where up to 2.5% of CD8+ T cells are specific to 
EBV in healthy  individuals62,64. In general, the xCell method struggles with these T cell isolates, exhibiting false 
positives of high CD4+ cell enrichment across all isolates and an inability to differentiate between EM and CM 
isolates (Supplementary Fig. 6B). These results suggest that TCSP can accurately estimate TCSs across both 
CD4+ and CD8+ T cells and is superior to the xCell T cell enrichment method.

TCSP of the tumor microenvironment is challenging because immune cells are integrated in and affected by 
a heterogenous mix of tumor and stroma. Therefore, we next aimed to validate performance with various isolates 
of dissociated tumor cells from single donors of lung cancer, melanoma, and ovarian cancer. CD45− isolates 
are devoid of immune cells and were sorted to establish the specificity of TCS estimates. The average estimates 
across the three tissue types are < 0.25 (out of 100 parts) for the activated and CM subtypes, and effectively 0 
for the exhausted subtype (Fig. 2C). On average, the naïve and EM subtypes suffered from higher false positive 
estimation, although still very low and to different degrees depending on the cancer type (Fig. 2C). We further 
sought to explore the sensitivity of profiling the exhausted subtype by titrating RNA-seq data from an exhausted 
sample (from day 12 of the chronic stimulation) into the CD45− sample, in silico. In fractions of 1% to 100% 
exhausted reads, we see a reliable estimate when independently titrating in the 3 different cancer types (Fig. 2D). 
In these titrations, the level of the other four TCSs are at or near 0 (Supplementary Fig. 7) as expected. Finally, 
we measured the unsorted lung, melanoma, and ovarian samples, which consisted of a mix of immune, stromal, 
and cancer cells. Estimates of these three samples correlate with flow cytometry measurements for EM, CM, 
and activated TCSs (Fig. 2E). The naïve subtype was estimated to be more abundant than what was measured 
by flow cytometry, which may be a result of reduced specificity for this TCS (Fig. 2C). As described before, it is 
not possible to functionally characterize exhaustion level with flow cytometry alone, thus we were not able to 
evaluate our exhaustion estimates in these 3 samples. However, when comparing CD45+ isolates to the unsorted 
samples, the rank order of exhausted subtype estimates is preserved among all TCSs (Supplementary Fig. 8). In 
all, these results build confidence in TCSP of infiltrating T cells in heterogeneous tumor samples.

T cell subtype profiling is consistent with external observations. TCSP is robust in estimating the 
abundance of TCSs and can be used to characterize public datasets, making TCSP unique in its ability to inves-
tigate many biological and clinical questions across specimen types and datasets. In addition, the breadth of our 
functionally validated sHEMs enables a detailed, yet comprehensive approach to investigate TCSs in the context 
of chronic infection and cancer. As such, we next sought to validate our approach by corroborating external 
observations in literature.

We performed TCSP on a set of previously characterized CD39+ and CD39− sorted cell isolates from 
Non-small Cell Lung Cancer (NSCLC) and Colorectal Cancer (CRC)65. CD39+ tumor infiltrating T cells have 
been associated with both exhausted and effector memory  phenotypes62,65–67. As observed  previously66, both 
CD39+ and CD39− T cell isolates were estimated to be primarily comprised of the EM subtype (Fig. 3A). In addi-
tion, we confirmed that the CD39+ isolate exhibited a higher relative level of exhausted subtype than CD39− T 
cells (Fig. 3B). These two trends held in both subsets when NSCLC and CRC samples were analyzed individually 
(Supplementary Fig. 9A and B).

Tumor infiltrating T cells that express a high level of PD-1 have also been associated with  exhaustion12,16,68. A 
previously characterized set of T cell isolates from blood and NSCLC  tumors16 were profiled for TCSs.

Exhausted subtype estimates increased as PD-1 expression increased in isolates, corroborating previous 
observations (Fig. 3D). EM cells isolated from blood had the lowest exhausted estimates, while PD-1 high iso-
lates from tumors had the highest. Similarly, activated subtype estimates were positively correlated with PD-1 
expression. Conversely, naïve and EM subtype estimates were negatively correlated with PD-1 expression (Fig. 3C, 
Supplementary Fig. 9D). This suggests that expression of PD-1 in CD8+ infiltrates, along with expression of other 
classical inhibitory receptors (Supplementary Fig. 9C), correlates with a population of cells that are increasingly 
antigen experienced with a decreasing effector function.

T cell exhaustion and dysfunction may be caused by a variety of  factors12,69, but are typically associated 
with persistent, chronic antigen stimulation. This model of exhaustion has its origins in viral research but has 
also been demonstrated in solid  tumors12. We investigated viral and tumor induced exhaustion in tandem, by 
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performing TCSP on solid tumors with etiologies involving persistent viral infection. In Cervical Squamous Cell 
Cancer (CESC)70, exhaustion was highest in tumor samples with HPV infection, as previously  suggested71–73 
(Fig. 3E). Interestingly, TCS estimates suggest that naïve T cells decrease in abundance from normal tissue to 
HPV− to HPV+ tumor tissue (Supplementary Fig. 10A). In Head and Neck Squamous Cell Cancer (HNSCC)74, 
exhausted T cells were most abundant in HPV+ tumor samples, as previously  observed75–78 (Fig. 3E). In addition, 
a higher estimated abundance of total T cell infiltrate in HPV+ tumor samples corroborate previous HNSCC 
 research76,79 (Supplementary Fig. 10B). In Liver Hepatocellular Cancer (LIHC)80, exhaustion trends were mixed. 
Exhaustion was estimated to be higher in tumors with active HCV infections, but not HBV infections (Fig. 3E). 
TCS profiles were similar across both malignant and non-malignant tissue and regardless of viral status (Sup-
plementary Fig. 10C and D). Similarly, observations in literature indicate few differences in T cell exhaustion, 
T cell type, and T cell abundance when comparing viral status in this LIHC  dataset78,80. Yet, in agreement with 
our estimates, alternative work has found HCV specific T cells to be highly  exhausted62. These data suggest 
that exhausted T cells are elevated in at least some tumor types during concurrent viral infection, but may be 
dependent on the type of virus. Regardless, TCSP is able to measure heightened levels of exhaustion caused by 
both viral and tumor induced exhaustion.

T cell subtype profiling predicts anti‑PD‑1 response. TCSP is robust in measuring biologically rel-
evant physiology. In addition, T cell biology is heavily implicated in patient response to immunotherapies, espe-
cially in  HNSCC13,14,  NSCLC16,81–84, and  Melanoma20,85. Therefore, we used TCSP to study and retrospectively 
predict anti-PD-1 therapy response in these three cancer types.

First, we examined response in recurrent and metastatic HNSCC. This cohort of 85 samples consists of non-
nasopharyngeal samples collected from patients at Washington University School of Medicine and processed 
at Cofactor Genomics. With TCSP, we found that the EM T cells were more abundant in tumors of responders 
and that overall T cell infiltrate was higher in responders, in line with other  work13,14 (Fig. 4A, Supplementary 
Fig. 11A). Using machine learning, we built a multianalyte biomarker to predict response to anti-PD-1 treat-
ment in this indication. We used bootstrap sampling to best approximate future performance in an independent 
validation set. Notably, this biomarker (AUC = 0.71) better predicted objective response relative to PD-L1 IHC 
testing (AUC = 0.62), which is an indicated companion diagnostic in this cohort (Fig. 4B). The TCSP based 
biomarker also predicted overall survival outcomes, with predicted responders having longer survival (Fig. 4C).

Next, we considered a cohort of recurrent and metastatic NSCLC patients with primary tumors that were 
treated with anti-PD-1 therapies in early treatment  lines86. We investigated the differences between 21 patients 
with durable clinical benefit (DCB) and non-durable benefit (NDB). DCB was defined as complete response 
(CR), partial response (PR), or stable disease (SD) as defined by RECIST 1.1 for at least 6 months. Similar to 
HNSCC, we observed a greater proportion of exhausted and EM T cells in NDB and DCB samples, respectively 
(Fig. 4D, Supplementary Fig. 11B).

These sum-normalized exhausted and EM T cell observations measured from FFPE tissue in two different 
cancers are reminiscent of the characteristics observed in tumor-isolated T Cells gated on CD39 and PD-1 
(Fig. 3A,C) and suggest that CD39+ and/or PD-1+ T cell populations may be higher in responders in both 
cancers. This corroborates the previously observed association of PD-1+ T cells and response in  NSCLC16. In 
this NSCLC cohort, we also observed that estimates of exhaustion were higher in NDB patients, consistent with 
this previous work (Supplementary Fig. 11B). In contrast with other previous  work81–84, however, we found 
that total infiltrate levels were higher in this population of NDB patients (Supplementary Fig. 11B). Similar to 
HNSCC, we used the TCSP readouts as inputs to train a multianalyte biomarker and evaluate the performance 
in predicting DCB in NSCLC. The TCSP biomarker better predicted DCB (AUC = 0.78) compared to both the 
indicated companion diagnostic, PD-L1 IHC (AUC = 0.73), and also Tumor Mutational Burden (AUC = 0.71) 

Figure 3.  T Cell Subtype Profiling is consistent with external observations. (A) The sum-normalized T Cell 
subtype (TCS) estimates (TCS Estimate ) for CD39− (n = 11) and CD39+ (n = 12) CD8+ T cells isolated from 
Non-small Cell Lung Cancer (NSCLC) and Colorectal Cancer (CRC) tumors. The distribution of estimates 
per group is shown as a box and whisker. The box represents the 1st and 3rd quartiles, while the center line 
represents the median. The whiskers encompass 1.5 times past the 1st and 3rd interquartiles and points 
outside this range are shown as diamonds. N naïve subtype; A activated subtype; EX exhausted subtype; EM 
effector memory subtype; CM central memory subtype. (B) A composite exhaustion level for CD39− and 
CD39+ isolates. The composite level is calculated as exhausted divided by EM (C) The sum-normalized TCS 
estimates for CD8+ T cell isolates sorted by varying levels of PD1 expression as measured by flow cytometry. 
EM CD8+ T cells isolated from blood (EM-B, n = 4) were compared against CD8+ T cells isolated from NSCLC 
tumors with no PD1 (PD1n, n = 11), intermediate PD1 (PD1i, n = 11), and high PD1 (PD1h, n = 11) expression. 
(D) The composite exhaustion level for the same isolates as (C). The composite level is calculated the same as 
(B). (E) The exhausted subtype estimates for normal and tumor tissue from three cancers with viral etiologies. 
Samples were grouped as tumor normal (Normal), tumor without viral infection (Tumor Virus−), and tumor 
with viral infection (Tumor Virus+) in three cancer types: Cervical Squamous Cell Cancer (CESC-HPV), Head 
and Neck Squamous Cell Cancer (HNSCC-HPV), and Liver Hepatocellular Carcinoma (LIHC). For LIHC 
samples, both Hepatitis B (HBV) C (HCV) were investigated separately. The following number of normal, tumor 
(virus−), and tumor (virus+) samples for each cancer type were analyzed: CESC, 3/9/169; HNSCC, 44/241/36; 
LIHC-HBV, 50/118/44; LIHC-HCV, 50/118/35. For all subfigures, hypotheses were tested using the one-sided 
Mann–Whitney U test and p-values are visualized as follows: ns, p ≥ 0.05; *p < 0.05; **p < 0.01; ***p < 0.001. 
Alternative hypotheses are listed in Supplementary Table 1.

◂



8

Vol:.(1234567890)

Scientific Reports |         (2022) 12:1342  | https://doi.org/10.1038/s41598-022-05474-7

www.nature.com/scientificreports/

Figure 4.  T Cell Subtype Profiling predicts anti-PD1 response. Cohorts of patients with recurrent and 
metastatic Head and Neck Squamous Cell Cancer (HNSCC, A–C), recurrent and metastatic Non-small Cell 
Lung Cancer (NSCLC, D–F), and recurrent and metastatic Melanoma (G–I) were explored. Boxplots (A,D,G) 
show the sum-normalized (A,D) or non-normalized (G) T Cell Subtype estimates grouped by response to 
anti-PD1 therapy in the respective indications. R responder; NR non-responder; DCB durable clinical benefit; 
NDB non-durable benefit; N naïve subtype; A activated subtype; EX exhausted subtype; EM effector memory 
subtype; CM central memory subtype; Sum Sum of all five subtypes. The receiver operator characteristic (ROC) 
curves (B,E,H) of a biomarker derived from TCS estimates (TCSP), and where available, PD-L1 IHC (PDL1), 
and tumor mutational burden (TMB) are shown for each respective indication. Chance is shown as a dotted 
black line, and the area under each ROC curve (AUC) is detailed in the legend. Kaplan–Meier plots (C,F,I) of 
overall survival of patients who were predicted by the TCSP biomarker to be responders (+) and non-responder 
(−) in each respective indication. The following number of samples were in each cohort: HNSCC (I), R = 22 and 
NR = 63; NSCLC (D), DCB = 6 and NDB = 15; Melanoma (G), R = 10 and NR = 21. Hypotheses in (A,D,G) were 
tested using the one-sided Mann–Whitney U test. The alternative hypotheses in (A,D) are that EM is higher in 
responders and EX is higher in non-responders. The alternative hypotheses in (G) are that EX, EM, and Sum are 
higher in responders. Hypotheses in (C,F,I) were tested using the log rank test.



9

Vol.:(0123456789)

Scientific Reports |         (2022) 12:1342  | https://doi.org/10.1038/s41598-022-05474-7

www.nature.com/scientificreports/

(Fig. 4E). In addition, patients predicted to have DCB by the TCSP-based biomarker had significantly longer 
overall survival (Fig. 4F).

Next, we explored an existing public dataset of advanced Melanoma patients treated with  Nivolumab87. We 
investigated the TCSs in 31 on-treatment tumors. Patients who responded to Nivolumab were found to have 
higher levels of exhausted, EM, and total T cell infiltrate (Fig. 4G), echoing observations in HNSCC (Supplemen-
tary Fig. 11A). However, no trends were observed when considering sum-normalized readouts (Supplementary 
Fig. 11C). These non-normalized observations agreed with some  work85, while normalized observations failed 
to corroborate other  work20, perhaps due to differences in methods of measuring T cell abundance, i.e. IHC vs 
single cell RNA-seq. In line with the above HNSCC and NSCLC experimentation, we built a third multianalyte 
biomarker to predict response to Nivolumab. This biomarker also predicted objective response (AUC = 0.69) 
and overall survival in this third indication (Fig. 4H,I).

Last, we investigated immune gene sets related to  inflammation36,  cytotoxicity37, IFNγ38,39, antigen 
 presentation39, and  exhaustion39. These gene sets have been associated with response and survival for patients 
undergoing anti-PD1 therapy in several tumor types including the ones investigate in this work: HNSCC, NSCLC, 
and melanoma. Using the same multi-analyte and cross validation approach, we evaluated biomarkers using 
these gene sets in these three cohorts, as compared to TCSP. TCSP performed the best in NSCLC and HNSCC 
cohorts, only being surpassed in performance by antigen presentation genes in NSCLC (Supplementary Fig. 12). 
TCSP and antigen presentation genes had the highest average AUC performances across all three cohorts: 0.72 
and 0.73, respectively (Supplementary Fig. 12).

Although varying across difference cancers, the TCSP of tumors has shown early promise in predicting clinical 
outcomes to treatment with anti-PD-1 therapies. Further development considering other additional analytes, 
especially antigen presentation gene expression, may further improve performance. In addition, additional inde-
pendent samples are required to validate the biomarkers for clinical use. With its unique ability to characterize 
FFPE samples, TCSP can facilitate previously impossible translational research. To aid other researchers in 
characterizing the TCS of their cohorts and discovering other TCSP-based biomarkers in oncology, we have 
made TCSP available at tcsp.cofactorgenomics.com.

T cell subtype profiling of many cancers. Given the performance of TCSP-based biomarkers in 
HNSCC, NSCLC, and melanoma, we leveraged TCGA data to expand our investigation to 32 additional indica-
tions. We identified additional tumor types in which response to anti-PD-1 might be predicted by searching for 
tumor types with similar characteristics to HNSCC, NSCLC, and melanoma. The HNSCC, NSCLC, and mela-
noma cohorts presented in the previous section had a high ratio of exhausted to EM cells (Fig. 4). As expected, 
in the TCGA data, Head and Neck Squamous Cell Cancer (HNSC), Lung Squamous Cell Cancer (LUSC), and 
Skin Cutaneous Melanoma (SKCM) were among the eight highest exhausted to EM T cell ratios (Fig. 5). Other 
indications with a high exhausted to EM ratio include Large B-cell Lymphoma (DLBC), Uterine Carcinosarcoma 
(UCS), and Stomach adenocarcinoma (STAD). HNSCC and LUSC are the two highest in the ratio of activated 
to EM, followed by Pancreatic Adenocarcinoma (PAAD), Bladder Urothelial Carcinoma (BLCA), and Ovarian 

Figure 5.  T Cell Subtype Profiling of many cancers. Box and whisker plots show the inter- and intra-tumor 
variance of various TCGA projects for: the effector memory-normalized exhausted levels (EX/EM), and the 
effector memory-normalized activated levels (A/EM), and the sum total infiltrate (Sum). Outliers are omitted 
for visual clarity.
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Serous Cystadenocarincoma (OV) (Fig. 5). These additional tumor types are potential candidates for TCSP-
based biomarkers to predict anti-PD-1 response.

We also investigated other general immunological trends across tumor types in TCGA. When considering 
the abundance of many TCSs, the inter-disease variance was as large as intra-disease variance (Supplementary 
Fig. 13). Several observations fit expectations. Thymoma (THYM) and DLBC had the highest total T cell infil-
trate (Fig. 5), while Thyroid Carcinoma (THCA) had the highest presence of the naïve T cells (Supplementary 
Fig. 13). Almost all cancers lacked CM T cells, except THYM, which had the highest abundance (Supplementary 
Fig. 13). Other observations may provide new insights. DLBC, Cholangiocarcinoma (CHOL), and UCS were the 
three highest exhausted diseases (Supplementary Fig. 14). OV had the highest levels of activated T Cells, while 
Glioblastoma Multiforme (GBM) had the highest abundance of EM T Cells (Supplementary Fig. 13). The TCSP 
of TCGA cancers discussed here are available for download at the TCSP portal.

Discussion
The TCSP method described in this paper is a novel way to characterize T cells. Characterizing the five TCSs in 
FFPE patient samples enables new opportunities for researching the tumor-immune microenvironment, studying 
response to immunotherapies, and developing biomarkers to predict patient response to treatment. sHEMs were 
designed to be specific to each TCS, allowing one to discriminate between TCSs in heterogeneous FFPE tumor 
samples rather than relying on commonly used non-specific markers (e.g., PD-1 as a marker for exhaustion).

Indeed, we found that, with both in vitro and in-patient samples, many traditional markers for T cell exhaus-
tion are correlated with, but not specific to exhaustion. For instance, gene expression of the inhibitory receptors 
PD-1, TIM3, and LAG3 is increased in activated T cells as well as exhausted T cells during chronic stimulation 
(Fig. 2A;49). In NSCLC patients, PD-1+ CD8+ cells are associated with exhaustion (Fig. 3D;12,16), however, these 
PD-1+ cell isolates are also associated with increased activation (Supplementary Fig. 9D). Likewise, in NSCLC 
and CRC patients, CD39+ T cells are associated with both exhausted and EM T  cells62,65–67. While TCSP cor-
roborated these findings, we also found that CD39+ T cells are associated with higher activation, suggesting 
that CD39 is not a specific marker for exhaustion nor EM T cells (Fig. 3A,B, Supplementary Figs. 8A-B). These 
findings, paired with observations in literature, suggest a more complex interaction between single-analyte 
markers and TCSs, and demonstrate that our TCSP method is a more specific way to characterize infiltrating T 
cells, especially those that are exhausted.

The use of single-analyte surrogates for complex TCSs is likely driven by the difficulty of comprehensively 
characterizing TCSs, particularly in FFPE tissue. Typically, accurately estimating TCSs requires flow cytometry 
and/or functional tests using unpreserved tissue. The TCSP method presented here is the first platform for 
comprehensive and specific profiling of TCSs in FFPE samples, whether in new or existing RNA-seq datasets.

Importantly, TCSP is not only useful for characterization, but also for developing multianalyte biomarkers to 
predict patient response to immunotherapy. In HNSCC and NSCLC patients, TCSP-based biomarkers outper-
formed existing biomarkers, namely the companion diagnostic PD-L1 IHC (Fig. 4A–F). Similarly, a TCSP-based 
biomarker predicted objective response and overall survival in a public melanoma patient cohort (Fig. 4G–I). 
Additional development and independent cohorts are needed to validate these biomarkers, but this work dem-
onstrates the potential of TCSP for building biomarkers across multiple cancer types. Supporting this idea, we 
characterized TCSs across 32 cancer types and found potential indications to pursue biomarker development.

Given the utility of TCSP across multiple cancer types, we have created an online portal where other research-
ers can leverage this technology. At tcsp.cofactorgenomics.com, researchers can perform TCSP on their own 
samples by uploading RNA-seq counts. Optionally, researchers can upload sample grouping information to 
compare sets of samples or explore potential TCSP-based biomarkers in their indication of interest. At this 
portal, researchers can also download the TCSP of TCGA samples for further inquiry into specific diseases. We 
hope that this TCSP portal may help others discover biomarkers predictive of anti-PD-1 and other therapies.

Methods
Isolation of T cell subsets by flow cytometry. Naïve T cells, effector memory T cells, and central mem-
ory T cells were isolated by FACS sorting. Cryopreserved human peripheral blood mononuclear cells (PBMCs) 
from normal healthy donors were obtained from StemExpress (Folsom, CA) and Astarte Biologics (Bothwell, 
WA). Cryopreserved CD4+ and CD8+ T cells, enriched by negative selection from PBMCs from normal healthy 
donors, were obtained from StemExpress. Cells were removed from liquid nitrogen storage and rapidly thawed 
in a 37 °C water bath with gentle hand shaking until only a small piece of ice remained. Cells were transferred 
to a 50 mL conical centrifuge tube. One mL of prewarmed media (RPMI-1640 (no phenol red) supplemented 
with 10% FBS, 10 mmol/L HEPES buffer, 1X GlutaMAX, 50 µg/mL gentamicin) was added dropwise to the 
cells. Fifteen mL prewarmed media was then slowly added. Cells were centrifuged at 200 × g for 10 min at room 
temperature. The supernatant was aspirated, and cells were resuspended in FACS buffer (calcium- and magne-
sium-free Hank’s balanced salt solution (HBSS) supplemented with 2% FBS). Seventy five µL aliquots of cell 
suspension (5 million cells) were transferred to tubes containing 25 µl T cell antibody panel (5 µl each of Brilliant 
Violet 421™ anti-human CD3 (clone UCHT1, BioLegend (San Diego, CA)), PerCP/Cyanine5.5 anti-human CD4 
(clone SK3, BioLegend), APC-H7 anti-human CD8 (clone SK1, BD Biosciences (San Jose, CA)), PE anti-human 
CCR7 (clone G043H7, BioLegend), PE-Cy™7 anti-human CD45RA (clone L48, BD Biosciences), and incubated 
at 4 °C for 20 min. The cells were washed twice with 1 mL cold FACS buffer by centrifugation at 350 × g, 5 min, 
4 °C. Pellets were each resuspended in 100 µL cold FACS buffer and then pooled. SYTOX™ Green dead cell stain 
(Thermo Fisher, Waltham, MA) was added to a final dilution of 1:1000. FACS sorting was performed using the 
BD Biosciences Aria Fusion at the Flow Cytometry Research Core Facility at Saint Louis University School of 
Medicine. Compensation was established using Anti-Mouse Ig, κ/Negative Control Compensation Particles Set 



11

Vol.:(0123456789)

Scientific Reports |         (2022) 12:1342  | https://doi.org/10.1038/s41598-022-05474-7

www.nature.com/scientificreports/

(BD Biosciences) for conjugated antibodies, and PBMCs for SYTOX™ Green dead cell stain. Cells were sorted 
using a 70 µm nozzle into cold sort buffer (80% HBSS, 20% FBS). Gating for T cell subtypes was as follows: naïve 
CD4+ T cells (CD3+ /CD4+ /CD45RA+ /CCR7+); naïve CD8+ T cells (CD3+ /CD8+ /CD45RA+ /CCR7+); 
effector memory CD4+ T cells (CD3+ /CD4+ /CD45RA− /CCR7−); effector memory CD8+ T cells (CD3+ /
CD8+ /CD45RA− /CCR7−); central memory CD4+ T cells (CD3+ /CD4+ /CD45RA− /CCR7+); central memory 
CD8+ T cells (CD3+ /CD8+ /CD45RA− /CCR7+); activated CD4+ T Cells (CD3+ /CD4+ /CD45RA+ /CCR7−); 
activated CD8+ T Cells (CD3+ /CD8+ /CD45RA+ CCR7−). Supplementary ry Figure 15 shows the gating strat-
egy for a representative donor. Sorted lymphocytes were centrifuged at 1000 × g for 5 min and pellets lysed in 350 
µL Buffer RLT Plus (Qiagen, Germantown, MD) supplemented with 1/100th volume ß-mercaptoethanol. RNA 
was extracted using the RNeasy Plus Micro Kit (Qiagen, Germantown, MD) according to the manufacturer’s 
instructions, and used for RNA-seq library preparation and sequencing.

In vitro T cell exhaustion. The in vitro generation of exhausted T cells was modified from Balkhi, et al.88, 
and performed by STEMCELL Technologies (Vancouver, BC, Canada). Naïve CD8+ T cells were isolated from 
fresh leukapheresis samples from three normal healthy donors using the EasySep™ Human Naïve CD8+ T Cell 
Isolation Kit II (STEMCELL Technologies) following the manufacturer’s recommended protocol. The isolated 
cells were resuspended in media (RPMI supplemented with 10% FBS) to a final concentration of 1.5–2 ×  106 cells/
mL. One hundred microliter aliquots of cell suspension (1.5–2 ×  105 cells) were transferred to 96-well U-bottom 
plates. Cultures were rested at 37 °C, 5% CO2 for 30 min before the addition of tetrameric antibody complexes 
(ImmunoCult™ Human CD3/CD28/CD2 T Cell Activator, STEMCELL Technologies). A two-fold working stock 
of T Cell Activator was first prepared in media at a concentration of 50 µl/ml. One hundred microliters of work-
ing stock were then added to wells for a final concentration of 25 µl/ml. Cultures were incubated at 37 °C, 5% 
CO2 for a total of 14 days with re-stimulation occurring every two days, as follows. Every two days (Day 2, 4, 6, 8, 
10 and 12) average viable cell numbers were determined using the Cellometer Auto 2000 Cell Viability Counter 
(Nexcelom). Cells were pelleted by centrifugation, supernatants were removed and cells washed once with media 
before being resuspended in 200 μL media containing 25 μL/mL of the T Cell Activator. In each stimulation step, 
the number of viable cells was readjusted to the same number as originally seeded on Day 0 (1.5–2 × 105 cells/
well depending on the donor). Likewise, at each timepoint, triplicate cell pellets were lysed with Buffer RLT Plus 
(Qiagen, Germantown, MD) supplemented with 1/100th volume ß-mercaptoethanol. RNA was then extracted 
using the RNeasy Plus Micro Kit (Qiagen) according to the manufacturer’s instructions and used for RNA-seq 
library preparation and sequencing.

Cytokine assays. At each 2  day timepoint of the in  vitro generation of exhausted T cells, supernatants 
from triplicate wells were collected and stored at − 80 °C for cytokine evaluation. Cytokine concentrations were 
measured using the Meso Scale Discovery (MSD®) multiplex immunoassay as follows. On the day of the assay, 
the V-Plex Custom Human Cytokine Proinflammatory Panel 1 (2-Plex) kit and the supernatant samples were 
brought to room temperature. The assay plates were washed three times with 150 μL of wash buffer (PBS supple-
mented with 0.05% Tween-20 (Sigma-Aldrich, Saint Louis, MO). Eight concentrations of the Calibrator Blend 
(standard) were prepared in Diluent 2 in microcentruge tubes, and 50 μL of each concentration of the Calibrator 
was added to each assay plate in duplicate. Next, 25 μL of Diluent 2 was added to the remaining wells of the assay 
plates. Supernatants were diluted 1:100 in PBS supplemented with 1% BSA (Sigma-Aldrich) and 25 μL of each 
sample (undiluted and 1:100) was added to the assay plates to yield final dilutions of 1:2 and 1:200. The assay 
plates were sealed with adhesive plate seals and incubated at room temperature on a plate shaker (650 rpm) 
for 2 h. After the 2 h incubation, the plates were washed three times with 150 μL of wash buffer. The detection 
antibody solution was prepared by combining 240 μL of each supplied detection antibody (IFNγ and IL2) with 
11.52 mL of Diluent 3 and 25 μL of the detection antibody solution was then added to each well. The assay 
plates were sealed with adhesive plate seals and incubated at room temperature on a plate shaker (650 rpm) for 
2 h. After the 2 h incubation, the plates were washed three times with 150 μL of 1 × wash buffer and 150 μL of 
2 × Read Buffer T was then added to each well. The plates were read immediately on a Meso QuickPlex SQ 120 
Instrument.

Flow cytometric analysis of T cell exhaustion markers. At each 2 day timepoint of the in vitro gen-
eration of exhausted T cells, one sample from each donor was assessed for LAG3, Tim3 and PD-1 expression by 
flow cytometry. Cells were distributed into a 96-well U-bottom plate for staining. Cells were first washed twice 
with FACS buffer followed by centrifugation at 1500 rpm for 5 min and removal of the supernatant. Human Fc 
block (BD Biosciences) was diluted in FACS buffer, and 50 μL of diluted Fc block was then added to each well 
(1 μg/sample), after which the cells were gently resuspended and incubated for 10 min at room temperature. 
Antibodies to surface markers CD8, LAG3, Tim3 and PD-1 were used to stain the cells to assess purity by flow 
cytometry. Working concentrations of the antibodies were prepared in FACS buffer (50 μL per staining point), 
and 50 μL of each diluted antibody mixture was added to the appropriate wells. For staining controls either 
previously stimulated and cryopreserved Concanavalin A (ConA) stimulated PBMCs were thawed and used, or 
extra ImmunoCult™ Human T Cell Activator stimulated cells from the study were used depending on the time 
point. After the appropriate antibody, or antibody mixture had been added to each well, cells were incubated at 
4 °C in the dark for 30 min. At the end of the incubation period, cells were washed twice with FACS buffer, fol-
lowed by centrifugation at 1500 rpm for 5 min and removal of the supernatant. Cells were then resuspended in 
150 μL of FACS buffer followed by addition of the viability dye 7-AAD to the appropriate wells (2 μL/sample). 
Cells were analyzed by flow cytometry on a Beckman Coulter CytoFLEX Flow Cytometer, collecting 20,000–
50,000 cell events (or a maximum of 60 s) per well for each sample. Antibodies were obtained from BioLegend 
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(San Diego, CA): Brilliant Violet 421™ anti-human CD8, FITC anti-human LAG3, PE anti-human TIM3, APC 
anti-human PD-1.

RNA‑seq library preparation and sequencing. Libraries were prepared using the TruSeq RNA Access 
Library Prep Kit from Illumina (San Diego, CA) according to the manufacturer’s instructions (naïve, effec-
tor memory, central memory); or the NEBNext® Ultra™ II Directional RNA Library Prep Kit for Illumina® 
(NEB, Ipswich, MA) along with the xGen Exome Research Panel biotinylated oligonucleotide pool and xGen 
Hybridization and Wash Kit from Integrated DNA Technologies (Coralville, IA) according to the manufacturer’s 
instructions (naïve, activated, exhausted, HNSCC and NSCLC FFPE specimens). Final libraries were sequenced 
as single-end 75 base pair reads on a NextSeq500 (Illumina, San Diego, CA) following the manufacturer’s pro-
tocols.

Dissociated tumor cells. Cryopreserved dissociated tumor cells from three indications (ovarian adeno-
carcinoma, lung adenocarcinoma, and melanoma) were obtained from Discovery Life Sciences (Huntsville, AL). 
Cells were processed and stained for FACS analysis and sorting as described above for cryopreserved PBMCs, 
except that prior to antibody staining Fc receptors were blocked using Human TruStain FcX™ according to 
manufacturer’s instructions (BioLegend, San Diego, CA).

Processing of RNA‑seq data. FASTQ files were preprocessed with trim_galore/cutadapt to remove 
adapter sequences as well as reads with PHRED quality scores less than 20 and reads that were shorter than 20 
base pairs. The trimmed reads were aligned to the human genome GRCh38 with STAR using the 2-pass method. 
Read counts were generated using htseq-counts and annotation from Gencode v22.

T cell subtype health expression model creation. Differential expression of the five sHEMs was ini-
tially performed using DeSeq2. Eight, three, six, five, and three libraries were used for the naive, activated, 
exhausted, EM, CM subtypes, respectively. EM and CM models were derived from T cell isolates sorted by flow 
cytometry. Activated and exhausted models were derived from day 4 and days 12 and 14 of the chronic stimu-
lation in vitro experiment, respectively. The naïve model was derived from both T cell isolates sorted by flow 
cytometry and day 0 cells of the chronic stimulation in vitro experiment. For each subtype, genes were consid-
ered in descending order of log fold difference versus all other subtypes. Genes with a coefficient of variation 
larger than 0.25 and a maximum counts per million (CPM) less than 15 were ignored until 10 genes were chosen. 
The mean CPM of respective libraries for these selected genes was used to create the preliminary sHEM for each 
TCS consisting of 123 genes. The genes in these models were then filtered using Cancer Cell Line Encyclopedia 
(CCLE). Cell lines with disease origins related to immune cells were not considered. Mean expression across all 
other cell lines was normalized per gene by the max value (CPM) of the five sHEMs. Genes corresponding to 
a normalized, average CCLE expression ≥ 0.2 were removed from the models. After filtering, the sHEMs were 
comprised of 46 genes. For analytical validation experiments, certain libraries were omitted to remove bias, e.g. 
naive, activated, and exhausted libraries from donor 3 were removed to estimate those libraries during the per-
formance evaluation. In addition, for biomarker experiments, sHEMs were optimized for the three indications.

T cell subtype characterization. Estimation of TCSs can be modelled as a linear combination of the gene 
expression of each TCS present in the bulk RNA sequencing data: B = S x F, where B is a vector representing the 
gene expression of the 46 genes from a heterogenous sample comprised of tumor, stroma, and immune cells, 
S is a 46 by 5 matrix of sHEMs, and F is a vector of length 5 that represents the estimated mRNA fractions of 
each TCS present in the heterogenous sample. For every sample, S is known, B is sequenced, and T cell Subtype 
Profiling (TCSP) solves for F. CPMs of each gene of input samples were normalized to the max expression of the 
sHEMs. Then, linear epsilon Support Vector Regression was used to solve the above equation, yielding estimated 
mRNA fractions of the TCSs.

xCell deconvolution. xCell estimations were calculated using the TIMER web  service89. Of the 39 immune 
readouts available with xCell (via TIMER), we focused on the 6 that measured T cell states, namely naïve, central 
memory, and effector memory CD4+ and CD8+ T cells. Although the authors recommend estimating cell abun-
dances with a heterogeneous set of samples, we found that the most plausible results came from estimating T cell 
isolate samples (CD4+ , CD8+ , N, CM, EM) only, i.e. without FFPE libraries.

Data creation and access. Exhaustion titrations were created in silico by randomly selecting reads from 
CD45− libraries of 3 different tumors (Lung, Ovarian, Melanoma) and the day 14 library from donor 3. Mixes 
with ovarian CD45− libraries were created such that 0, 1, 2, 5, 8, 12, 17, 25, 50, 75, 100% of reads came from 
the exhausted library, while for mixes with lung and melanoma CD45− libraries, 0, 25, 50, 75, 100% of reads 
came from the exhausted library. Fastq files for CD39+ isolates (GSE113590)65, PD-1+ isolates (GSE99531)16, 
and Melanoma tumor (GSE91061)  samples87 were downloaded from the European Nucleotide Archive (ENA) 
via the Aspera transfer tool. Head and Neck Squamous Cell Carcinoma (HNSCC), Cervical Squamous Cell Car-
cinoma (CESC), and Liver Hepatocellular Carcinoma (LIHC) counts files were downloaded via the GDC/TCGA 
REST API (https:// api. gdc. cancer. gov). For these three datasets, virus status labels were used as published in the 
respective supplementary  materials70,74,80.

https://api.gdc.cancer.gov
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Specimens. 85 HNSCC samples were collected from pre-immunotherapy tumor tissue obtained from 
patients with RM-HNSCC that were treated with a PD-1 inhibitor (pembrolizumab or nivolumab). Sequential 
sections of formalin-fixed and paraffin embedded (FFPE) tissue blocks were utilized for analysis via T Cell 
Subtype Profiling and the on-label PD-L1 IHC assay. Patients were grouped according to tumor response to 
immunotherapy using RECIST criteria. The study design was approved by Washington University School of 
Medicine IRB.

21 NSCLC samples were collected at time of first diagnosis from patients before treatment with a PD-1 inhibi-
tor (pembrolizumab or nivolumab) between April 2013 and January 2018 at the University Hospital Basel, the 
Cantonal Hospital Baselland, Switzerland, and the St. Clara Hospital Basel. The groups of patients analyzed is 
a subset of a cohort previously  published86. PD-L1 IHC and TMB were performed and evaluated as previously 
 described86. The study was approved by the local Ethical Review Board (Ethikkommission Nordwestschweiz, 
Project-ID 2018-01751) and performed in compliance with all relevant ethical regulations.

31 Melanoma samples were a subset of a cohort previously  published87. Responders are defined as those 
with complete response and partial response and non-responders are defined as those with progressive disease 
according to RECIST criteria.

Informed consent was obtained from patients for all specimens according to the local IRBs.
RNA was extracted from HNSCC FFPE samples using the RNAstorm™ Kit (Cell Data Sciences, Fremont, 

CA). RNA was extracted from NSCLC FFPE samples using the RecoverAll™ Total Nucleic Acid Isolation Kit 
(Thermo Fisher Scientific, Waltham, MA).

TCSP‑based biomarker creation and analysis. TCSP-based biomarkers were optimized indepen-
dently for each of the three indications via cross validation. Normalized and/or non-normalized TCSP readouts 
were used as (5 or 10) input features and were estimated using a single set of sHEMs optimized for all three 
indications. No other gene expression was included as a feature. Supplementary Table 2 summarizes the sHEMs 
used for each figure. After feature standardization, several feature projection (Principal Component Analysis, 
Independent Component Analysis, Kernel Principal Component Analysis) and machine learning algorithms 
(Adaboost, K-Nearest Neighbors, Random Forest, Support Vector Machine) were evaluated via cross valida-
tion. The machine learning (ML) model with the highest cross validated Area Under the Receiver Operating 
Characteristic curve (AUC) was chosen as the biomarker. Bootstrap sampling was used to cross validate and 
approximate ML model performance for future independent datasets. In bootstrap sampling, a set of samples 
are randomly sampled with replacement for training the ML model, with the remaining samples—called the 
out-of-bag set—used to evaluate the ML model’s performance. This is done iteratively (hundreds of times) and a 
model’s performance is evaluated by averaging the performance over all out-of-bag samples. Bootstrap sampling 
is the most rigorous statistical approach to predicting the performance of an ML model in future independent 
cohorts. Receiver Operating Characteristic (ROC) curves are used to show overall performance of TCSP-based 
biomarkers in predicting objective response. The curves shown for TCSP-based biomarkers are the mean out-
of-bag ROC of the optimal ML model. PD-L1 IHC and TMB ROC curves include all samples without any 
sampling procedure. Kaplan–Meier plots are used to show the ability for the same TCSP-based biomarkers to 
predict overall survival. To do so, the average out-of-bag prediction scores of all samples were thresholded at 
0.5 to determine if a sample was biomarker positive or negative. All ML model optimization and evaluation was 
performed with Python (3.8.3) via the Scipy library (1.5.0).

Gene‑set‑based biomarker creation and analysis. The genes of six immune-related gene sets (Sup-
plementary Table 3) were used for multi-analyte biomarker creation. The same machine learning algorithms 
and cross validations approaches used for creating TCSP-based biomarkers were used. In effect, TCSP features 
were exchanged for gene expression features, while controlling for the same algorithms, e.g. linear PCA+ SVM. 
A unique model was fit for each of the three tumor types. The mean OOB AUC was calculated for each tumor 
type, as well as a mean AUC across all tumor types per gene set.
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