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Underactuated USV path 
following mechanism based 
on the cascade method
Mingzhen Lin2, Zhiqiang Zhang1*, Yandong Pang1, Hongsheng Lin1 & Qing Ji1

The path following control under disturbance was studied for an underactuated unmanned surface 
vehicle (USV) subject to the rudder angle and velocity constraints. For this reason, a variable 
look-ahead integral line-of-sight (LOS) guidance law was designed on the basis of the disturbance 
estimation and compensation, and a cascade path following control system was created following 
the heading control law based on the model prediction. Firstly, the guidance law was designed using 
the USV three-degree-of-freedom (DOF) motion model and the LOS method, while the tracking error 
state was introduced to design the real-time estimation of disturbance observer and compensate 
for the influence of ocean current. Moreover, the stability of the system was analyzed. Secondly, 
sufficient attention was paid to the rudder angle and velocity constraints and the influence of system 
delay and other factors in the process of path following when the heading control law was designed 
with the USV motion response model and the model predictive control (MPC). The moving horizon 
optimization strategy was adopted to achieve better dynamic performance, effectively overcome 
the influence of model and environmental uncertainties, and further prove the stability of the control 
law. Thirdly, a simulation experiment was carried out to verify the effectiveness and advancement of 
the proposed algorithm. Fourthly, the “Sturgeon 03” USV was used in the lake test of the proposed 
control algorithm to prove its feasibility in the engineering practices.

Unmanned surface vehicle (USV) has become a hot research topic in the unmanned equipment field at home 
and abroad because of its intelligent, fast, flexible, stealthy, and weatherproof characteristics. It has enjoyed a 
very bright future in ocean monitoring, reconnaissance, modern military battle, and security defense in territo-
rial  waters1–3. USV path following means that a USV under the effect of the control system departs from any 
initial position, enters the expected path and sails along the expected path with the minimum tracking  error4. 
Most USVs have no direct transverse control mechanism, but relies only on the longitudinal propulsive force 
and steering torque to control the motion, so that they are typical underactuated  systems5. Due to the lack of 
control mechanism and the complex and unpredictable marine environment, it is very difficult to control a  USV6. 
Therefore, the accurate and stable path following of an underactuated USV in the marine environment becomes 
a hot topic in the research of USV control.

As a classical and effective guidance algorithm, the line-of-slight (LOS) is not restricted by model, but deter-
mines the expected heading of a ship based on its real-time position and planned path. It has been widely applied 
in the control field since it is slightly affected by high-frequency noise, highly reliable and real time.  Reference7 
designed a cascade control system based on the LOS and feedback linearization method while ignoring the 
disturbance from the external environment. The system realized the effective path following and was proved to 
achieve the uniform global K-exponential stability. Based on  References7,8 further proved the uniform semi-global 
exponential stability of the system. When the ocean current was known,  Reference9 put forward an integral LOS 
guidance law, and introduced the additional longitudinal error to offset the disturbance of ocean current. In this 
way, the path following control was realized under the disturbance of ocean current. With the designed guidance 
law, the system was proved to achieve the uniform global asymptotic stability.  Reference10 further explored the 
stability of the guidance system and proved the uniform global K-exponential stability of the system. To further 
enhance the convergence speed of path following while ensuring the stability of the system,  Reference11 put 
forth a variable look-ahead integral LOS guidance law, and proved its uniform global K-exponential stability at 
the equilibrium point.  Reference12 further verified the uniform semi-global exponential stability of the control 
system. Do designed a disturbance observer in the Serret-Frenet coordinate system for the effective path follow-
ing to realize the real-time estimation of and compensation for the disturbance of ocean current. Moreover, the 
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uniform global asymptotic stability of the system was  proved13. Assuming that the disturbance of ocean current 
was bounded and varied slowly, Fossen et al. relied on the Lyapunov stability theory and the direct feedback of 
error to compensate for the drift angle caused by the disturbance including ocean current in a real-time manner. 
Furthermore, they proved the uniform semi-global exponential stability of the entire system to further improve 
the real-time and accurate USV path following  capability14. In  Reference15, the influence of the complex marine 
environment was fully considered while designing a path following control system based on the cascade of the 
variable look-ahead integral LOS guidance algorithm and the adaptive sideslip compensation heading control 
algorithm. It proved the uniform global asymptotic stability of the system, and presented an offshore following 
test with ships to verify the effectiveness of algorithms. Considering the influence of USV motion performance, 
 Reference16 linearized and discretized the USV three degree of freedom model, considered the control quantity 
constraints and output constraints, and the path following problem was transformed into a rolling optimization 
problem under multiple constraints.  Reference17 further considered the optimization in the quasi infinite time 
domain based on the predictive control method. However, there is a lack of analysis of the stability of the designed 
controller, and the linearization of the strong nonlinear model also leads to the decline of model accuracy.

Some achievements have been made at home and abroad with regard to the path following of underactuated 
USVs, but most of them focus only on the realization of functions and rarely address the constraints on the 
actuating mechanism in the practical following. Most of controllers are designed on the basis of error feedback 
control, leading to the delay of control law. In the meantime, most studies pay attention to algorithm design 
and simulation, but lack the effective verification in the practical scenarios. To address this problem, this paper 
combines theoretical research, simulation verification, and ship test. At first, the guidance law is designed on the 
basis of the USV three-DOF motion model and the LOS to analyze the stability of the guidance system. Mean-
while, the longitudinal tracking error is introduced as the state to design the disturbance observer, and realize 
the real-time estimation and feedback compensation of the disturbance steady-state component. Compared with 
most output-based feedback compensation algorithms, it is more flexible and controllable. Subsequently, the 
control law is designed with the USV motion response model and model predictive control (MPC) to address 
such problems as the instability and large error caused by the rudder angle constraint and system delay in the 
path following. On this basis, the stability of the control system subject to multiple constraints is further analyzed. 
After that, a simulation experiment is presented to verify the effectiveness and advancement of the algorithm 
designed in this paper. At last, a USV ‘Sturgeon’ is used in the lake test for the proposed control algorithm and 
verify its feasibility in the engineering practices.

The rest of the paper is organized as follows. “Underactuated USV motion model” section establishes a 
three-degree-of-freedom maneuvering model. The adaptive integral LOS guidance law, model predictive head-
ing control law and disturbance observer are designed in “Path following control system design” section. The 
problem of path following is defined. And the proof of system stability is given in “Proof of system stability” 
section. In “Simulation verification and result analysis” section, a simulation experiment is conducted to prove 
the effectiveness and advancement of the path following system. The feasibility of the system in practical engi-
neering applications is verified by the lake test in “Vessel test and result analysis” section. “Conclusion” section 
summarizes the work of this paper.

Underactuated USV motion model
The horizontal three-DOF kinematics and response mathematical model for underactuated USV is built as 
follows:

where η = [x, y,ψ]T is the position and heading angle on the horizontal plane in the north-east-down coordinate 
system; υ = [u, v, r]T is the longitudinal and transverse velocities and the heading velocity of the USV in the 
hull coordinate system; J(ψ) is the conversion matrix from the hull coordinate system to the north-east-down 
coordinate system; δ is the input of rudder angle, T is the turning lag index, and K is the turning ability index.

Path following control system design
Guidance law design. Based on the integral LOS strategy, the expected heading is expressed as:

(1)ẋ = u cosψ − v sinψ

(2)ẏ = u sinψ − v cosψ

(3)ψ = ṙ

(4)Tψ̈ + ψ̇ = Kδ

(5)ψd = γp(ω)− tan−1

(
1

�

(
ye(t)+ yint

)
)

(6)� = (�max −�min)e
−κ|ye(t)| +�min

(7)ẏe(t) = U sin(ψ − γp(ω)+ β)
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where κ is a constant strictly greater than zero; �max and �min are the maximum and minimum of the look-ahead 
distance respectively; κ > 0 ; ye is longitudinal tracking error; ω path update rate, β is sideslip angle. When the 
path following error ye is large, limye(t)→∞ e−κ|ye(t)| ≈ 0 and the look-ahead distance is short, so that the USV 
quickly approaches the given path. When the path following error ye is small, limye(t)→0 e

−κ|ye(t)| ≈ 1 , and the 
look-ahead distance is long, so that the USV can maintain the stable following on the given path (Fig. 1).

Control law design. The USV has a limited range of rudder angle. While tracking the heading, the response 
time of rudder effect may cause the system instability and tracking delay. To address the constraint arising from 
the range of rudder angle and the influence of rudder effect response in the heading tracking control, the head-
ing controller is designed with predictive  control18,19.

Equation (4) is transformed into the design model of USV heading controller as follows:

where the range of USV rudder angle is δ ∈ [δmin, δmax].
The kinematics model in Eq. (8) is written into the state equation as follows:

where xp(t) = [ψ , r]T is the state variable; δ(t) is the control input variable; yp(t) is the output; and C = I2×2.
Equation (9) is written in the differential form:

where A =
[
0 1
0 −1/T

]

 and B =
[

0
K/T

]

.

Considering the tracking error and rudder angle constraints, the design objective function is expressed as:

where N is the moving horizon optimization predicted length; P , Q and R are the weight coefficient matrices and 
their diagonal elements are all greater than 0. In the objective function, the first term is the terminal constraint 
penalty; the second term reflects the capability of tracking the expected heading; and the third term reflects the 
demand for the stable variation of rudder angle.

The optimization problem defined in Eqs. (11) and (12) is converted into the quadratic programming problem 
and then solved.

Equation (10) is rewritten into

(8)
{
ψ̇ = r

ṙ = − 1
T r +

K
T δ

(9)
{
ẋp(t) = f (xp(t), δ(t))
yp(t) = Cxp(t)

(10)
{

x̃k+1 = Ax̃k + Bδ̃k
ỹk = Cx̃k

(11)J(σ , x̃) = x̃
′
NPx̃N +

N−1∑

k=0

x̃′kQx̃k + δ′kRδk

(12)δmin ≤ δk ≤ δmax , k = 0, . . . ,N − 1

Figure 1.  The diagram of LOS guidance.
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Equation (11) is rewritten into

w h e r e  χ =
[
x̃0 x̃1 · · · x̃N−1

]T  ,  Q = diag[Q,Q, · · ·Q
︸ ︷︷ ︸

N−1

,P]  ,  R = diag[R,R, · · ·R
︸ ︷︷ ︸

N

]  ,  χ = φσ+Ex̃  , 

φ =








Bd 0 · · · 0
AdBd Bd · · · 0

...
...

. . .
...

AN−1
d Bd AN−2

d Bd · · · Bd







.

Equation (14) is further converted to obtain

where Φ = 2(R + φ′Qφ) , Ψ = 2E′QE and Υ = (Q + E′QE).
Equation (12) for the constraints is written as

where G = [IN − IN ]T and τ = [δmax · · · δmax
︸ ︷︷ ︸

N

−δmin · · · − δmin
︸ ︷︷ ︸

N

].

To sum up, the optimization problem is converted into the quadratic programming problem subject to 
multiple constraints as follows:

Since Φ ≥ 0 , the quadratic programming has a solution for each non-negative weight matrix P , Q or R.

Disturbance observer design. Equations (5) and (7) are used to obtain

The sideslip angle caused by the disturbance of ocean current is very small, i.e. sin β ≈ β , cosβ ≈ 1.
With Eq. (18), it is further derived that

Moreover, there is

(13)x̃k=Akx̃0 +
k−1∑

j=0

AjBδk−1−j .

(14)J(σ , x̃) = x̃′Qx̃ + χ ′Qχ + σ ′Rσ

(15)

J(σ , x̃) = (φσ + Ex̃)′Q(φσ + Ex̃) + σ ′Rσ + x̃′Qx̃

= σ ′(R + φ′Qφ)σ + x̃′E′Qφσ + x̃′(Q + E′QE)x̃

= 1

2
σ ′Φσ + x̃′Ψσ + 1

2
x̃′Υ x̃

(16)Gσ ≤ τ

(17)

{

min
σ

1
2σ

′Φσ + x̃′Ψσ

Gσ ≤ τ

(18)

ẏe = U sin(ψ̃ + ψd − γp + β) = U sin(ψ̃ + tan−1

(

− 1

�
(ye + yint)

)

+ β)

= U sin

(

ψ̃ + tan−1

(

− 1

�
(ye + yint)

))

cosβ

+ U cos

(

ψ̃ + tan−1

(

− 1

�
(ye + yint)

))

sin β .

(19)

ẏe = U sin

(

ψ̃ + tan−1

(

− 1

�
(ye + yint)

))

+ U cos

(

ψ̃ + tan−1

(

− 1

�
(ye + yint)

))

β

= U sin(ψ̃) cos

(

tan−1

(

− 1

�
(ye + yint)

))

+ U cos(ψ̃) sin

(

tan−1

(

− 1

�
(ye + yint)

))

+ βU cos(ψ̃) cos

(

tan−1

(

− 1

�
(ye + yint)

))

− βU sin(ψ̃) sin

(

tan−1

(

− 1

�
(ye + yint)

))

.
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Equations (20) and (21) are substituted into Eq. (19) to obtain

where

Since 
∣
∣
∣
sin(ψ̃)

ψ̃

∣
∣
∣ ≤ 1 , 

∣
∣
∣
cos(ψ̃)−1

ψ̃

∣
∣
∣ ≤ 0.73 and 

∣
∣
∣
∣

�+β(ye+yint)√
�2+(ye+yint)

2

∣
∣
∣
∣
≤ |1+ β| , it is found that 

∣
∣
∣φ(ye, ψ̃)

∣
∣
∣ ≤ 1.73|1+ β| 

is bounded.
The disturbance of ocean current is taken into account for its real-time observation and compensation to 

obtain

It is known that � ≤ βU is bounded. At the stage of stable following, � ≈ β

√

u2d + v2c  (where vc is the trans-
verse ocean current component in the S-F coordinate system). The sideslip angle caused by the disturbance of 
ocean current is very small and varies very slowly, so that it is regarded as a constant within a short period. 
Therefore, there is β̇ ≈ 0 , and then �̇ ≈ 0.

Considering the observability of the transverse error ye , the adaptive disturbance observer is designed as 
follows:

where K1 = K1ce
(σ |ỹe|)−1 , K2 = K2ce

(σ |ỹe|)−1 , K1c and K2c are both the constants greater than zero; ỹe = ye − ŷe 
is the state estimation error of the transverse error.

When ye=0 , the compensation integral term is obtained as

Obviously, the disturbance observation subsystem achieves the uniform global asymptotic stability and uni-
form semi-global exponential stability at the equilibrium point.

Proof of system stability
The stability of the guidance subsystem is proved as follows: When the transverse component of the distance is 
accurately estimated, and ζ =

[

ũ ψ̃
˙̃
ψ

]T
= 03×1 , the guidance subsystem 

∑
1 has the uniform global asymp-

totic stability and uniform semi-global exponential stability at the equilibrium point (ye , ζ ) = (0, 0, 0, 0).

Proof Equation (22) is rewritten into

where g(t, ye, ζ ) =
[

0 Uφ(ye, ψ̃) 0
]
.

If the disturbance can be accurately estimated, and the stable tracking of heading and velocity can be realized, 
the system 

∑
1 can be written as

(20)sin

(

arctan

(

− 1

�

(
ye − yint

)
))

= − ye + yint
√

�2 + (ye(t)+ yint)2

(21)cos

(

arctan

(

− 1

�

(
ye − yint

)
))

= − �
√

�2 + (ye(t)+ yint)2
.

(22)

ẏe = U sin(ψ̃)
�

√

�2 + (ye + yint)
2
− U cos(ψ̃)

ye + yint
√

�2 + (ye + yint)
2

+ βU sin(ψ̃)
ye + yint

√

�2 + (ye + yint)
2
+ βU cos(ψ̃)

�
√

�2 + (ye + yint)
2

= − (ye + yint)
√

�2 + (ye + yint)
2
U + β�

√

�2 + (ye + yint)
2
U + Uφ(ye , ψ̃)ψ̃

(23)φ(ye, ψ̃) = U
sin(ψ̃)

ψ̃

�+ β(ye + yint)
√

�2 + (ye + yint)
2
− U

cos(ψ̃)− 1

ψ̃

(ye + yint)− β�
√

�2 + (ye + yint)
2
.

(24)� = β�
√

�2 + (ye + yint)
2
U .

(25)







˙̂ye = − U(ŷe+yint)√
�2+(ye+yint)

2
+ �̂+ K1(ye − ŷe)

˙̂
� = K2(ye − ŷe)

(26)ŷint = �
�̂/U

√

1− (�̂/U)2
.

(27)
∑

1 : ẏe = − (ye + yint)
√

�2 + (ye + yint)
2
U + β�

√

�2 + (ye + yint)
2
U + g(t, ye, ζ )ζ
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The system 
∑

1 achieves the uniform global asymptotic stability and uniform semi-global exponential stability 
at the equilibrium point (ye(t), ζ ) = (0, 0, 0, 0).

The heading control subsystem subject to the rudder angle constraint is proved as follows:
In the terminal inequality constraint x̃(k + N) ∈ � , � represents a neighborhood adjacent to the origin and 

� is a positive invariant region of the controlled system and satisfies (A+ BL)x̃(k) ∈ �, ∀x̃ ∈ �.

Lemma  Assuming that P > 0 is  the positive definite solution of the Lyapunov equation 
P = (A+ BL)TP(A+ AL)+ (CTQC + LTRL) , there is ∃α > 0 , so that the system (29) satisfies the control con-
straint in � = {x̃k ∈ Rn|x̃Tk Px̃k ≤ α}.

The problem is redefined as

Theorem If k = 0, the optimization problem (30) has solutions. Among them, P > 0 is the solution of the Lyapunov 
equation P = (A+ BL)TP(A+ BL)+ (CTQC + LTRL) . According to the lemma definition, � satisfies the rudder 
angle constraint. When external disturbance and model error are ignored, the optimization problem has solutions 
for ∀k > 0 , and the system (29) has the uniform global asymptotic stability.

Proof The solution of the problem (30) at the time k is:

It satisfies the rudder angle constraint. The corresponding predictive state sequence is {
x̃∗(k + 1|k), x̃∗(k + 2|k), . . . , x̃∗(k + N |k)

}
 , and satisfies the terminal constraint equation. The optimized 

value is:

The closed-loop control is:

It is substituted into the system Eq. (29) to obtain

and there is x̃(k+1) = x̃∗(k + 1|k).

The rudder angle sequence is selected at the time k + 1 as follows:

Since x̃∗(k + N |k) ∈ � , there is

Therefore, it satisfies the rudder angle constraint.
Since

The corresponding state sequence is:

(28)
∑

1′ : ẏe = − ye
√

�2 + (ye + yint)
2
U .

(29)x̃(k + 1) = (A+ BL)x̃(k)

(30)







min
Ŵk

J(σ , x̃)

τmin ≤ τ k ≤ τmax , k = 0, . . . ,N − 1
x̃(k + N) ∈ �

.

(31)Γ ∗
k =








τ ∗(k|k)
τ ∗(k + 1|k)

...
τ ∗(k + N − 1|k)







.

(32)J∗k =
∥
∥x̃∗(k + N |k)

∥
∥2

P
+

N−1∑

i=0

(∥
∥ỹ∗(k + i)

∥
∥2

Q
+

∥
∥δ∗(k + i)

∥
∥2

R

)

.

(33)δ(k) = δ∗(k|k).

(34)x̃(k + 1) = Ax̃(k)+ Bδ∗(k|k)

(35)Γ k+1 =









δ(k+1|k+1)
δ(k + 2|k+1)

...
δ(k + N − 1|k+1)
δ(k + N |k+1)









=









δ∗(k+1|k)
δ∗(k + 2|k)

...
δ∗(k + N − 1|k)
Lx̃∗(k + N |k)









.

(36)δmin ≤ Lx̃∗(k + N |k) ≤ δmax.

(37)
x̃(k+1+N |k+1) = Ax̃(k+N |k+1)+ Bτ (k+N |k+1)

= (A+ BL)x̃∗(k+N |k).
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and x̃∗(k + N |k) ∈ � , so that there is

The selected control sequence satisfies the terminal inequality constraint.
Equation (35) is substituted into Eq. (30) to obtain:

Let ỹ∗(k|k) = Cx̃k , δ∗(k|k) = δk , it is obtained that

Therefore, the objective function is bounded.
The rudder angle control sequence is the feasible solution of the optimization problem. If the optimiza-

tion problem (30) has an optimized solution, the optimized solution must be superior to the feasible solution. 
Therefore, it is obtained that:

When x̃ = 0 , δ = 0 . At this time, δ∗ = 0 is the feasible solution of the optimization problem, and J∗ = 0 . For 
∀k ≥ 0 , there is J∗k ≥ 0 , which monotonically decreases, and J∗k  is the minimum at x̃ = 0.

To prove the continuity of J∗k  at x̃ = 0 , let x̃ ∈ � at the equilibrium point. The feasible solution is selected as

Considering the randomness of x̃ ∈ � , for the given ε > 0 , ℓ = ℓ(ε) > 0 , so that ∀�x̃� < ℓ , and then Jk < ε . 
The optimal solution is certainly superior to the feasible solution, and J∗k ≥ 0 , so that we obtain

Therefore, J∗k  is continuous at x̃ = 0 . Based on the Theorem 5.3 in  Reference20, it is found that J∗k  is a Lyapunov 
function of the closed-loop system (29), so that the closed-loop system can realize the uniform global asymptotic 
stability at the equilibrium point. As revealed in the stability analysis, the cascade control system has the uniform 
global asymptotic stability at the equilibrium point.

Simulation verification and result analysis
In simulation and testing, the main configuration parameters of the industrial computer are as follows: CPU intel 
core i5-3610, host frequency 2.7 GHz, 8G memory, and 64-bit win7 operating system.

Heading controller simulation. The model parameters of ‘Sturgeon’ USV were K = 0.738 and T = 0.295 . 
The sampling cycle of system was Ts = 200 ms ; the prediction cycle of MPC was 40Ts ; the control cycle was 2Ts ; 
and the diagonal elements of weight matrixes Q and R were 1 and 10 respectively. According to the feedback 
linearization (FL) method in  Reference21,22, heading control law parameters kψ and kr were 5 and 1 respec-
tively. PID control law had proportional factor Kp = 0.45 , integral factor Ki = 0.001 , and differentiated factor 
Kd = 0.15 . The expected heading was 30°, and the original heading and rudder angle were both 0. The range of 
rudder angle was 

[
−π

6 rad,
π
6 rad

]
 . The heading tracking result and controller quantity are presented in Figs. 2 

and 3 respectively.
As revealed in the simulation results, the rise time, settling time, and percent overshoot of the heading con-

troller based on PID are around 3.5 s, 9.5 s and 17% respectively, and those of the heading controller based on 
FL are around 3.5 s, 7.5 s and 12% respectively, while those of the heading controller based on MPC are around 
4 s, 5 s and 0.1% respectively. All three algorithms could realize the stable heading tracking. Figure 2 clearly 

(38)x̃(k+1+N |k+1) =
{
x̃∗(k+1+i|k), i = 0, . . . ,N − 1
(A+ BL)x̃∗(k+N |k), i = N

(39)(A+ BL)x̃∗(k+N |k) ∈ �.

(40)

Jk+1 = �x̃(k+1+N |k+1)�2P+
N−1∑

i=0

(
∥
∥ỹ(k+1+i|k+1)

∥
∥2

Q
+�δ(k+1+i|k+1)�2R)

=
∥
∥(A+ BL)x̃∗(k+N |k)

∥
∥2

P
+

N−2∑

i=0

(
∥
∥ỹ∗(k+1+i|k)

∥
∥2

Q
+
∥
∥δ∗(k+1+i|k)

∥
∥2

R
)

+
∥
∥Cx̃∗(k+N |k)

∥
∥2

Q
+
∥
∥Lx̃∗(k+N |k)

∥
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∥
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Q
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∥
∥2

Q
.

(43)δk = Lx̃k L ≥ 0.

(44)0 ≤ J∗k ≤ Jk < ε.
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reveals that, the PID controller and the FL controller generate very high overshoot and oscillation at the stage 
of convergence (around 4.5 s), and need longer time to become stable. The heading controller based on MPC 
rarely has overshoot at the same rate of convergence, and is able to realize stable tracking within a short period, 
so that its control effect is much better. As clearly indicated in Fig. 3 rudder angle curve, the heading controller 
based on MPC could lower the rudder angle in advance before reaching the expected heading, so as to reduce 
overshoot, while the heading controllers based on PID and FL have obvious delay, causing the instability of the 
system. And the optimal solutions given by MPC algorithm do not exceed the set limits of rudder angle in the 
simulated conditions.

Combining algorithm principles to further analyze the results of simulation and comparison experiments, 
we can get the following conclusions.

(1) The MPC controller itself has a feedforward compensation mechanism with the moving horizon optimi-
zation strategy, and could achieve better convergence and lower overshoot. While the PID controller and 
the FL controller take compensation for existing error as tuning mechanism and may easily lead to much 
overshoot because of rudder delay and vessel inertia.

(2) The MPC controller obtains optimal control sequence based on quadratic programming, therefore, the 
solution obtained meets the constraint of rudder angle, which is difficult to achieve with the other two 
controllers.

(3) Compared with the PID controller and the FL controller, the MPC controller obtains better tracking per-
formance, but adds computational load in the implementation.
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Figure 3.  Comparison of rudder angle change curve.
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Path following simulation. USV had original waypoint (50 m, − 50 m), expected path x = 100 ∗ sin(0.005 y) 
, velocity 5 m/s , and control parameters �min = 15 m , �max = 20 m , κ = 0.01 , K1c = 5 , K2c = 1 , σ = 2 . The 
resultant velocity of steady-state disturbance was set to 0.5 m/s, and the direction was − π/4 rad. Heading control 
parameters were the same as above. The results of path following are as shown in Figs. 4, 5, 6, 7, 8 and 9. The 
path following results without disturbance observer and with disturbance observer in this paper are expressed as 
algorithm 1 and algorithm 2 respectively.

The simulation result shows that, under the effect of the control system designed in this paper, USV could 
overcome the influence of ocean current, realize the tracking of expected path successfully, and guarantee faster 
convergence and smaller tracking error. After combining Figs. 4, 5 and 6, it is known that USV is far away 
from the expected path at the initial stage, and guidance law gives the larger variation of heading. Thereafter, a 
higher rudder velocity (as shown in Fig. 9) is correspondingly given by the USV heading controller to control 
the increase of rudder angle (as shown in Fig. 8) and realize the rapid turning. At the stage of stable tracking, 
there is smaller tracking error and lower rudder velocity, so that rudder angle varies slowly to guarantee high 
stability and tracking accuracy. It also can be seen from Figs. 4 to Fig. 7, the disturbance observer in this paper 
can effectively estimate and compensate interference factors, and improve tracking accuracy.

Vessel test and result analysis
‘Sturgeon’ USV (as shown in Fig. 10) was 7.0 m long and 2.0 m wide, and had the velocity of up to 30 knots and 
the endurance of 15 h. Based on the idea of modular design, it was equipped with self-developed ship-mounted 
central control system and ground telemetering control system, and provided with attitude/bearing integrated 
navigation, wireless communication equipment, photoelectric, radar and other sensor systems, and weapon 
system, etc. Moreover, it could satisfy the needs of various missions by bearing different loads (Fig. 11).
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Test site was located in Honglian lake, Ezhou. In the test area, an expected path was set to 5 km, while the 
expected velocity was set to 10 knots. In the process of tracking, ship-mounted central control system could 
record the information on the state of USV including position, heading, velocity and attitude in a real-time 
manner. Moreover, ship-mounted wireless communication system could send back the record to the shore-
based control station in a real-time manner. USV path following result is shown in Fig. 12, while the state data 
recorded presented in Figs. 13, 14 and 15.
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Figure 10.  ‘Sturgeon’ USV.

Figure 11.  Interface of shore based remote control and monitoring system.
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As shown in test results, ‘Sturgeon’ USV departed from the original position deviated from the expected path 
(around 50 m), turned at a large rudder angle and rudder velocity, entered the expected path rapidly, and then 
cruised with smaller tracking error while maintaining the stable heading along the expected path. The vessel 
test has sufficiently verified the feasibility of this control algorithm in practical engineering applications, and 
the actual effect of tracking is good.

Conclusion
In this paper, we designed a complete and superior path following system. According to the cascade system 
theory, we designed the guidance subsystem and the heading control subsystem respectively, and proved the 
uniform global asymptotic stability based on the Lyapunov theory.

Figure 12.  Sturgeon’ USV path following test result.
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Figure 13.  Longitudinal tracking error.
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In terms of guidance law design, while proposing the integral LOS guidance law, we designed a disturbance 
observer by introducing longitudinal error as the state. Compared with most algorithms based on output feedback 
compensation, it is more flexible, controllable, and further enhances the accuracy of path following.

After considering the rudder angle constraint and the delay of rudder effect, we designed the control law 
on the basis of USV motion response model and MPC. Based on simulation and comparison experiments, we 
found it has obvious advantages compared with the PID controller and the FL controller in ensuring system 
convergence speed and stability.

In addition, based on the design of the system, we conducted a simulation experiment and further applied 
the control system to the ‘Sturgeon’ USV for the lake path following test, tracking errors could be rapidly reduced 
under the action of a stable control law and the USV accurately tracked the expected path. The result is satisfying 
and also verifies the practical feasibility of the algorithm in engineering applications.

In the following research, the adaptive regulation of the heading control law parameters can be further studied 
to optimize its control performance and achieve better effect of path following.
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