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Upregulated heme biosynthesis 
increases obstructive sleep 
apnea severity: a pathway‑based 
Mendelian randomization study
Heming Wang1,2*, Nuzulul Kurniansyah1, Brian E. Cade1,2, Matthew O. Goodman1,2, 
Han Chen3,4, Daniel J. Gottlieb1,5, Sina A. Gharib6, Shaun M. Purcell1,2,7, Xihong Lin2,8,9, 
Richa Saxena1,2,10,11, Xiaofeng Zhu12, Peter Durda13, Russel Tracy13, Yongmei Liu14, 
Kent D. Taylor15, W. Craig Johnson16, Stacey Gabriel2, Joshua D. Smith17, François Aguet2, 
Kirstin Ardlie2, Tom Blackwell18, Alexander P. Reiner19,20, Jerome I. Rotter15, 
Stephen S. Rich21, TOPMed Sleep Traits Working Group*, Susan Redline1 & Tamar Sofer1,2,8

Obstructive sleep apnea (OSA) is a common disorder associated with increased risk of cardiovascular 
disease and mortality. Iron and heme metabolism, implicated in ventilatory control and OSA 
comorbidities, was associated with OSA phenotypes in recent admixture mapping and gene 
enrichment analyses. However, its causal contribution was unclear. In this study, we performed 
pathway‑level transcriptional Mendelian randomization (MR) analysis to investigate the causal 
relationships between iron and heme related pathways and OSA. In primary analysis, we examined 
the expression level of four iron/heme Reactome pathways as exposures and four OSA traits as 
outcomes using cross‑tissue cis-eQTLs from the Genotype‑Tissue Expression portal and published 
genome‑wide summary statistics of OSA. We identify a significant putative causal association 
between up‑regulated heme biosynthesis pathway with higher sleep time percentage of hypoxemia 
(p = 6.14 ×  10–3). This association is supported by consistency of point estimates in one‑sample MR 
in the Multi‑Ethnic Study of Atherosclerosis using high coverage DNA and RNA sequencing data 
generated by the Trans‑Omics for Precision Medicine project. Secondary analysis for 37 additional 
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iron/heme Gene Ontology pathways did not reveal any significant causal associations. This study 
suggests a causal association between increased heme biosynthesis and OSA severity.

Obstructive sleep apnea (OSA) is a common disorder affecting more than 20% of the middle aged and older 
 population1. OSA is associated with an increased risk of multiple cardiometabolic diseases including hyperten-
sion, diabetes, coronary artery disease and  mortality2. Despite its high prevalence and co-morbidities, current 
management and treatment approaches are limited, reflecting an incomplete understanding of the underlying 
molecular bases of the disorder.

Multiple lines of recent research suggest a novel role of iron/heme metabolism and related genes in the 
pathophysiology of OSA. Iron and heme metabolism influence a wide variety of biological systems relevant to 
OSA, including redox balance, inflammatory response, oxygen transport and energy metabolism, and may be 
causally associated with OSA through pathways that influence obesity, ventilatory control, or  comorbidities3–6. 
Heme degradation regulated by heme oxygenase 1 and 2 (HMOX1 and HMOX2) and their products (including 
carbon monoxide oxygen and biliverdin) have been implicated in carotid body sensing to  hypoxia7. Our prior 
admixture mapping of OSA in a Hispanic/Latino-American cohort identified that the heme biosynthesis gene 
ferrochelatase (FECH) was associated with the apnea hypopnea index (AHI) and overnight hypoxemia  traits8. 
Gene set enrichment analyses in recent transcriptome-wide studies also identified that the heme metabolic path-
way was associated with OSA traits and was up-regulated in individuals with more severe disease or in response 
to withdrawal of continuous positive airway pressure (CPAP)  treatment9,10. It is therefore not clear whether the 
iron or heme related genes and pathways are causally associated with OSA, or rather are biomarkers of disease 
activity or severity.

Mendelian randomization (MR) is an inference method utilizing germline mutations as a natural experiment 
to investigate the causal relationship between an exposure and an outcome. There are three basic assumptions 
that need to be satisfied to ensure the validation of genetic instrument variables (IVs): (1) the IVs are strongly 
associated with the exposure; (2) the IVs are independent of unmeasured confounders for the associations 
between the IVs and outcome; and (3) the IVs are associated with the outcome exclusively through the effect on 
exposure (i.e., no horizontal pleiotropy)11. Recent MR analyses have provided evidence of causal associations 
between higher BMI with increased OSA risk, snoring, and excessive daytime  sleepiness12–14. However, no MR 
study has interrogated transcriptional causal associations for OSA, which have been applied to other disease 
outcomes and revealed new molecular  mechanisms15. In this study, we implement a novel pathway-based MR 
approach to investigate the causal relationship between expression levels of iron/heme related pathways.

Methods
Candidate iron/heme related pathways. We used Molecular Signatures Database (MSigDB) v7.416,17 to 
search for genes in iron/heme related pathways. Four canonical pathways derived from the Reactome database—
heme biosynthesis, heme degradation, heme signaling, and iron uptake and transport pathways—were investi-
gated in primary analysis. Thirty-seven Gene Ontology (GO) pathways containing the word “iron”, “heme”, or 
“hemoglobin” were also analyzed in secondary analysis. A complete list of candidate pathways and genes are 
summarized in Supplementary Table 1. Assuming that genes in a pathway act together and affect OSA uni-
formly, we investigated a pathway effect on OSA using the averaged expressions of genes as the exposure. The 
overall analysis flow is described in Fig. 1.

Discovery analysis. The discovery analysis was performed using two-sample MR R  package18 (https:// 
mrcieu. github. io/ TwoSa mpleMR/) and publicly available summary statistics from Genotype-Tissue Expres-
sion (GTEx)  Portal19 (http:// gtexp ortal. org/ home/) and genome-wide association analyses (GWAS) of OSA 
 traits20,21. The exposure and outcomes were measured in non-overlapping datasets, which minimizes false-pos-
itive  discoveries11,22.

Exposure. We used a cross-tissue exposure effect, under the assumption that multiple physiological systems are 
involved OSA and can be estimated by averaging gene expression across multiple tissues. The exposure data were 
extracted from the gene expression data across 49 tissues in 838 donors from GTEx Portal (v8)19. The donors 
were comprised of 67.1% males and 84.6% whites, and 83.5% were aged 40–70 years old. A total of 347 iron/
heme related genes were available. Local expression quantitative trait loci (cis-eQTLs; p <  10–5) within 1 Mb of 
the transcription start site for a gene in each available tissue were calculated adjusted for batch effect, sequencing 
platform, sequencing protocol (PCR-based or PCR-free), sex, and population structure, using publicly available 
data through GTEx.

Outcome. The outcome summary statistics were extracted from multi-ancestry GWAS meta-analysis of four 
key OSA traits including AHI and the metrics of sleep associated hypoxemia: average and minimal oxygen satu-
ration  (SpO2) during sleep and percent sleep time with  SpO2 < 90%20,21. The total sample sizes varied from 19,733 
to 22,736 and included 30–35% individuals of European ancestry background. Briefly, GWAS were performed 
on normalized OSA traits adjusting for sex, age, BMI (including interaction and quadratic terms), and popula-
tion and family structure. Genome-wide summary statistics are available on the sleep knowledge portal (https:// 
sleep. hugea mp. org).

https://mrcieu.github.io/TwoSampleMR/
https://mrcieu.github.io/TwoSampleMR/
http://gtexportal.org/home/
https://sleep.hugeamp.org
https://sleep.hugeamp.org


3

Vol.:(0123456789)

Scientific Reports |         (2022) 12:1472  | https://doi.org/10.1038/s41598-022-05415-4

www.nature.com/scientificreports/

Instrumental variables (IVs). The IVs for a given iron/heme related pathway were constructed as illustrated in 
Fig. 2. In brief cis-eQTL (with p value threshold <  10–5) in any gene from a pathway of interest (highlighted in 
red color in Fig. 2) were selected to mimic the tissue specific gene-level expressions. Of these, the most signifi-
cant cis-eQTLs in any tissue for a gene were selected as IVs to mimic the cross-tissue overall gene-level expres-
sions as a strategy for maximizing the instrument  strength23. If a SNP was the most significant eQTL in more 
than one tissue (e.g., Fig. 2: SNP_11 in tissue 1 and 3), the cross-tissue SNP-gene association was calculated using 
the eQTL from the most significant tissue. We then selected the IVs of all available genes in a pathway to mimic 
an aggregate pathway-level expression effect, in which the exposure is the average cross-tissue expression across 
genes in the pathway (pathway effect defined earlier), i.e. under the assumption that 
Y = (

∑p
j=1

Ejβj)+ Xα + ε = βe × (
∑p

j=1

βj
βe
E
ij
)+ Xα + ε , and Eij = βsSNPij + xiαj + εij , where Ej is the 

expression level of the j-th gene in the pathway, βe is the average effect of gene expression in the pathway and 
βj/βe represents potential heterogeneity of the effects of genes in the pathway, X and α are the covariate term and 

Figure 1.  Analysis flow.

Figure 2.  Illustration of the selection strategy of instrumental variables (IVs). The most significant cis-eQTLs in 
any tissues for a gene are highlighted in red.
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effect. We also selected IVs within each tissue (each column in Fig. 2) to evaluate the heterogeneity effect across 
tissues. Before conducting MR, we performed linkage disequilibrium (LD) based clumping  (r2 < 0.01) to retain 
independent variants in all grouping strategies (gene, tissue, and pathway level). If a SNP IV was unavailable in 
the OSA outcome GWAS, we replaced it by proxy SNPs in high LD  (r2 > 0.8).

MR, sensitivity and heterogeneity analyses. We performed MR between each iron/heme related pathway 
expression as exposures and the four OSA trait as outcomes using the TwoSampleMR  package18 to investigate 
the potential causal effect. The inverse variance weighted (IVW) method, which has better power but assumes 
no horizontal pleiotropy, was performed as the primary test. The significance level was calculated as p value 
< 6.25 ×  10–3 (accounting for two independent OSA traits, estimated based on eigenvalues of their  correlations24, 
and four canonical pathways). Significant pathways were then followed up for a set of sensitivity and heteroge-
neity analyses. Note that this significance level is conservative given the pathway expression levels contain cor-
related data. The strength of IVs was evaluated by mean F statistic in the IVW test. F ≤ 10 indicates a violation of 
the strong instrument assumption. We performed MR Egger regression to assess potential horizontal pleiotropy. 
A significant departure (p < 0.05) of the MR-Egger intercept indicates presence of horizontal pleiotropy. MR-
Egger slope was also tested as a sensitivity analysis in considering pleiotropic effects. The strength of IVs was 
evaluated by I2GX statistic in MR-Egger25. I2GX ≤ 0.9 indicates a violation of the strong instrument assumption. 
We investigated the heterogeneity of MR across IVs, genes, and tissues. The heterogeneity of SNPs in IVW was 
evaluated using Cochran’s Q statistics and leave-one-out  analyses11. The SNP heterogeneity of the MR-Egger fit 
was evaluated using Rücker’s Q′ statistic (an extended version of Cochran’s Q statistic)26. Significant Q and Q′ 
suggests significant heterogeneity effects across IVs on the outcome. MR-PRESSO test was performed to detect 
(pleiotropic) IV  outliers27. We also evaluated the heterogeneity effects across genes and tissues by performing 
MR restricted to genes and tissues in significant pathways using IVW (for number of SNP IVs ≥ 2) or the Wald 
ratio test (for single SNP IV). We further looked up the effect of the significant pathways by performing MR with 
other health outcomes including blood disorders, blood cell traits, and key comorbidities of OSA using GWAS 
summary statistics from IEU GWAS database (https:// gwas. mrcieu. ac. uk/).

Validation analysis. The significant pathway identified in discovery analysis (p < 6.25 ×  10–3) was followed 
for validation using summary level one sample MR in the Multi-Ethnic Study of Atherosclerosis (MESA), a 
study that participated in the multi-ancestry OSA GWAS used in discovery analysis and collected omics data 
independent of sleep  exam20,21. The MESA is a longitudinal study of risks for subclinical cardiovascular disease 
in multiple ethnic groups (including Asian American, African American [AA], European American [EA], His-
panic/Latino American [HA])28. In total, 6814 participants aged from 45 to 84 were recruited from 6 communi-
ties: Baltimore MD, Chicago IL, Los Angeles CA, New York NY, Minneapolis/St. Paul MN, and Winston-Salem 
NC at baseline in 2000 and then followed longitudinally, including an ancillary sleep exam in proximity to Exam 
5 (2010–2013).

Instrumental variables. Whole-genome sequencing (WGS) and other omics (including epigenomics, tran-
scriptomics, proteomics, and metabolomics) data were collected in 4595 individuals as part of the National 
Heart, Lung and Blood Institute (NHLBI) Trans-Omics for Precision Medicine (TOPMed)  program29, with both 
WGS and RNA-seq available for 966 MESA participants. In this analysis, we used the Freeze 8 release WGS data 
sequenced at the Broad Institute (mean depth > 30×) and called by the TOPMed Informatics Resource Center 
at University of Michigan. All sequences were remapped to 1000 Genomes build 38 human genome references 
and annotated using a standard  pipeline30. Variants with minor allele count < 2, minimum depth < 10× or miss-
ing rate > 5% were removed. Sample level quality control (QC) including Mendelian and sex concordance, and 
concordance with prior genotyping array data were performed. The same IVs used in discovery analyses were 
extracted for validation analyses.

Exposure. At MESA Exam 5, mRNA data were collected from peripheral blood mononuclear cell (PBMC), 
monocytes or T-cells. In this analysis we used gene level expression data from PBMCs. Quality of RNA samples 
was assessed using RNA Integrity Number (RIN, Agilent Bioanalyzer) before shipment to sequencing cent-
ers. PBMC samples were sequenced at the Broad Institute (N = 498), and at the North West Genomics Center 
(NWGC; N = 468) using harmonized protocols. Library preparation was performed using the Illumina TruSeq™ 
Stranded mRNA Sample Preparation Kit. RNA was sequenced as 2 × 101 bp paired-end reads on the Illumina 
HiSeq 4000 according to the manufacturer’s protocols. Information about the RNA-seq pipeline used for 
TOPMed can be found in https:// github. com/ broad insti tute/ gtex- pipel ine/ blob/ master/ TOPMed_ RNAseq_ 
pipel ine. md under MESA RNA-seq pilot commit 725a2bc. Overall, there were 922 individuals with gene-level 
expression data in PBMC who had complete covariate data (described below), including 180 AAs, 437 EAs, and 
305 HAs.

OSA outcomes. OSA measures were collected in MESA for 2060 individuals who did not report regular use of 
oral devices, nocturnal oxygen, or nightly positive airway pressure devices using in-home unattended15-channel 
polysomnography (Compumedics Somte System, Abbotsford, AU) as  described31. Sleep records were scored at 
a central Sleep Reading Center using standard criteria. In this paper, AHI was defined as the sum of all apneas 
plus hypopneas, each with a minimum 3% desaturation. Average and minimum  SpO2 during sleep and sleep 
time percentage below  SpO2 < 90% were extracted from the finger pulse oximetry recording during polysomnog-
raphy. A total of 492 AAs, 698 EAs, and 460 HAs had WGS data, and 98 AAs, 200 EAs, and 164 HAs had both 
WGS and gene expression data.

https://gwas.mrcieu.ac.uk/
https://github.com/broadinstitute/gtex-pipeline/blob/master/TOPMed_RNAseq_pipeline.md
https://github.com/broadinstitute/gtex-pipeline/blob/master/TOPMed_RNAseq_pipeline.md
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MR analysis. We performed summary level one sample MR between the most significant iron/heme related 
pathways and OSA traits using the IVW method. Because we used the summary level IV-exposure-outcome 
association statistics in MESA, to increase statistical power we did not restrict our analyses to individuals with 
both expression and OSA measures. The IV-exposure associations were calculated in 922 individuals with WGS 
and gene expression data. Gene expression data were log transformed (after replacing counts of 0 with half 
the minimum observed values in the sample) and adjusted for age, sex, BMI, batch effects (shipment, plate, 
and sequencing site), study site, 11 genotype PCs, and race/ethnicity in analyses that included all individuals 
together. Genetic association analysis further used the fully-adjusted two-stage procedure for rank-normalizing 
 residuals32. The IV-outcome associations were calculated in 1650 individuals with WGS and OSA measures. 
OSA traits were rank-normalized and adjusted for age, sex, BMI, study sites, genotyping PC, and race/ethnicity, 
via the fully adjusted two-stage  procedure32. We also performed ancestry specific analyses restricted to AAs, EAs, 
and HAs respectively (without adjusting for ancestry).

Ethics declarations. This work was approved by the Institutional Review Board of Mass General Brigham 
and complies with all relevant ethical regulations. All study participants provided informed consent.

Results
Discovery MR. The results of the primary two-sample MR analyses between the exposures of each of the 
four canonical iron/heme related pathways and four OSA traits using IVW approach are summarized in Table 1. 
We identified a significant putative causal association between increased heme biosynthesis pathway expres-
sion and higher sleep time% of  SpO2 < 90% ( β = 0.012, p = 6.14 ×  10–3). Associations were also suggested between 
increased heme biosynthesis pathway expression with higher AHI ( β = 0.007, p = 0.189), lower average  SpO2 
( β = − 0.008, p = 0.078) and minimum  SpO2 ( β = − 0.008, p = 0.095) (Table 1 and Fig. 3). These results were con-
sistent with higher heme biosynthesis pathway expression associated with more severe OSA. The IV-exposure 
(heme biosynthesis pathway) and IV-outcome (OSA traits) associations in the discovery analysis are provided 
in Supplementary Table  2. The IVs were sufficiently strongly associated with the exposure in the IVW test 
( F = 52 > 10).

We then performed MR Egger for this pathway to detect horizontal pleiotropy. The strength of instruments 
was sufficient for MR Egger regression ( I2GX = 0.98 > 0.9). A moderate horizontal pleiotropy effect was found for 
AHI (MR Egger intercept p = 0.013; Table 2) but not for the other traits. The sensitivity analyses using MR Egger 
slope (i.e., considering the potential horizontal pleiotropy effects) for all four OSA traits showed consistent 
association directions with IVW analysis, suggesting that the putative association we observed was not driven 
by pleiotropic mechanisms (Table 2 and Fig. 3). The MR Egger slope test was significant for AHI, average  SpO2, 
and sleep time% of  SpO2 < 90% (p = 0.031, 0.030, and 0.018, respectively).

No significant heterogeneity of effects across the IVs were observed for any OSA trait (Q and Q′ p > 0.05 in 
Table 2). Leave-one-out IVW analysis showed consistent association for all traits (Supplementary Fig. 1). MR-
PRESSO did not identify any IV outliers (Table 2). However, we observed heterogeneity effects across genes 
and tissues. Stronger effects of increased heme biosynthesis on increased OSA severity were observed in FECH 
and UROD genes, and in adiposity, esophagus mucosa, testis, lung, and artery tissues (see “Discussion”) (Sup-
plementary Table 3, Supplementary Figs. 2 and 3).

Secondary analyses in GO pathways did not reveal any significant causal associations for OSA traits (p > 0.05; 
Supplementary Table 4).

Validation MR. The MESA sample has 46.7% males, mean aged 68.6 years old and mean BMI 29.2 kg/m2, 
and 79.6% of the sample was classified with OSA (defined as AHI > 5) (Supplementary Table 5). The distributions 
of OSA traits and their correlations with demographic variables in MESA are shown in Supplementary Figs. 4 
and 5. Similar to prior  studies20,21, increasing AHI was observed with older age, male sex and higher BMI, and 
was highly correlated with all sleep-related hypoxemia measures (spearman correlation ρ = − 0.57, − 0.73, and 
0.76 with average, minimum  SpO2, and sleep time% of  SpO2 < 90%).

Although not statistically significant, we observed the same pattern for MR association directions between 
the increased heme biosynthesis expression with higher sleep time% of  SpO2 < 90% ( β = 0.438, p = 0.187), lower 
minimum  SpO2 ( β = − 0.387, p = 0.184), and higher AHI ( β=0.713, p = 0.265) (Fig. 4 and Supplementary Table 6) 
as compared with the discovery analysis. In ancestry stratified analyses, we observed consistent directions (with 

Table 1.  Discovery two sample MR of canonical iron/heme related pathways (reactome) on OSA traits using 
Inverse Weighted Variance method.

Exposure

AHI Average  SpO2 Minimum  SpO2 Sleep time% of  SpO2 < 90%

nsnp b se pval nsnp b se pval nsnp b se pval nsnp b se pval

Heme biosynthesis 29 0.007 0.005 0.189 30 − 0.008 0.005 0.095 30 − 0.008 0.005 0.078 30 0.012 0.004 6.14E − 03

Heme degradation 33 0.002 0.004 0.691 33 − 0.003 0.004 0.420 33 − 0.001 0.004 0.769 33 − 0.001 0.004 0.815

Heme signaling 128 − 0.001 0.003 0.819 129 − 0.002 0.003 0.580 129 − 0.003 0.003 0.301 129 0.001 0.003 0.761

Iron uptake and transport 138 − 0.004 0.003 0.191 138 0.001 0.003 0.729 138 0.002 0.002 0.335 138 − 0.001 0.002 0.534
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the discovery MR analyses) for all OSA traits in EAs and HAs, but inconsistent directions of the associations for 
average  SpO2 in AAs (Fig. 4 and Supplementary Table 6).

MR association for heme biosynthesis pathway. To understand the biological function of the heme 
biosynthesis pathway, we performed two-sample MR between this pathway and other health outcomes. We 
identified a significant causal association between increased expression of the heme biosynthesis pathway with 
reduced risk of iron deficiency anemia (IVW β = − 0.0003, p = 0.028 and MR-Egger β = − 0.001, p = 0.027; Sup-
plementary Table 6), consistent with prior  knowledge33. We did not identify significant causal associations with 

Figure 3.  Scatter plots of SNP effects on the expressions of genes from Heme Biosynthetic Process pathway vs 
OSA traits in discovery analysis.

Table 2.  MR sensitivity analysis between Reactome heme biosynthesis pathway and OSA traits.

Outcome Method Estimate S.E. p value Heterogeneity statistic

AHI

IVW 0.007 0.005 0.189
Q = 27.979 (p = 0.412)

MR egger intercept 0.030 0.011 0.013

MR egger slope − 0.011 0.005 0.031
Q′ = 33.367 (p = 0.222)

MR-PRESSO 0.007 0.005 0.200

Average  SpO2

IVW − 0.008 0.005 0.095
Q = 25.307 (p = 0.611)

MR egger intercept 0.008 0.005 0.095

MR egger slope − 0.025 0.011 0.030
Q′ = 28.301 (p = 0.502)

MR-PRESSO − 0.008 0.005 0.102

Minimum  SpO2

IVW − 0.008 0.005 0.078
Q = 31.140 (p = 0.311)

MR egger intercept 0.004 0.005 0.384

MR egger slope − 0.017 0.011 0.131
Q′ = 32.008 (p = 0.320)

MR-PRESSO − 0.008 0.005 0.089

Sleep time% of  SpO2 < 90%

IVW 0.012 0.004 0.006
Q = 30.966 (p = 0.319)

MR egger intercept − 0.006 0.004 0.157

MR egger slope 0.026 0.010 0.018
Q′ = 33.307 (p = 0.266)

MR-PRESSO 0.012 0.004 0.010
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specific blood cell traits or comorbid traits including obesity, asthma, type 2 diabetes, blood pressure, stroke, and 
cardiovascular, kidney, liver diseases (Supplementary Table 7).

Discussion
This is the first MR analysis interrogating the causal association between molecular pathways and OSA. We 
implemented a novel pathway-based framework that leveraged information on gene expression and GWAS 
data, identifying a potential causal association between up-regulation in the heme biosynthesis pathway with 
increased OSA severity using publicly available data. This association is supported by sensitivity analyses and 
consistency of the point estimates in the validation analysis in a modestly sized sample with both gene expres-
sion and OSA measures.

Heme biosynthesis is a highly conserved process across species that forms heme (iron-protoporphyrin IX), 
a significant component of oxygen storage and transport proteins (e.g., hemoglobin, myoglobin) and enzymes 
involved in oxidative  phosphorylation34, in the mitochondria and cytosol. Deficiency of heme synthesis enzymes 
results in the accumulation of intermediate porphyrins, which is associated with porphyria, a group of rare blood 
disorders characterized by various degrees of neurological deficits and photocutaneous  lesions35. Lack of heme 
and hemoproteins are also associated with some types of  anemia35. We were able to confirm a causal association 
between the increased expression of heme biosynthetic process pathway and decreased risk of iron deficiency 
anemia (Supplementary Table 6).

However, increased expression of heme synthesis enzymes may lead to excess heme. Cellular free heme is 
toxic and catalyzes the formation of reactive oxygen species, and thus increases oxidative  stress36, which may 
augment the effects of intermittent hypoxia (a cardinal physiological manifestation of OSA), causing lung injury 
and subsequent gas exchange deficits, potentially leading to more severe sleep related hypoxemia in a setting 
of  OSA21. In addition, heme may modulate ventilatory responses to hypoxia. In particular, heme degradation 
products (including carbon monoxide and biliverdin) have been shown to influence carotid body (the primary 
peripheral oxygen chemoreceptor) responses to hypoxia in  rodent7, providing a ventilatory-related pathway 
linking heme to propensity for OSA. However, we did not detect any causal association between the heme deg-
radation pathway with OSA traits. Future analyses using physiologically meaningful endotypes such as those that 
directly characterize hypoxia  sensing37–39 and model organism research are needed to validate our hypothesis 
and rule out alternative mechanisms.

In this study, we observed some degree of heterogeneity of the MR associations across tissues (Supplemen-
tary Fig. 2). The largest effects of the upregulated heme biosynthesis pathway on increased OSA severity were 
observed using data from adipose tissue, testis, lung, esophagus mucosa, and artery tissues. Smaller effects were 
observed for data from whole blood. Validation analysis using expression data from blood cells therefore may 
be underpowered. Note that, the effect directions of heme biosynthesis on sleep time% of  SpO2 < 90% (the most 
significant effect in our discovery analysis) is consistent across all tissues.

We also observed heterogeneity of the MR associations for heme biosynthesis on OSA across genes (Sup-
plementary Fig. 3 and Supplementary Table 3). The largest effect of increased gene expression on increased OSA 

Figure 4.  Validation MR analysis of the effect of upregulated Heme Biosynthetic Process pathway on OSA traits 
in MESA.
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severity was observed for FECH, the last enzyme of this pathway that inserts iron to the protoporphyrin IX to 
generate heme. The effect direction is consistent with our prior admixture mapping  results40. In the gene specific 
MR analyses for this pathway, we additionally identified potential causal associations for uroporphyrinogen decar-
boxylase (UROD). The increased expression of UROD was significantly associated with a more severe minimum 
 SpO2 (IVW beta = − 0.042 and p = 0.004).

We also performed ancestry specific MR analyses in the MESA sample. We observed consistent directions of 
the associations in HA and EAs, but inconsistent directions for minimum  SpO2 in AAs. This observation echoes 
our admixture mapping findings of FECH eQTLs which were driven by associations for higher AHI and sleep 
time% of  SpO2 < 90% in European and Amerindian  backgrounds40. While speculative, it is possible that there 
are distinct evolutionary pressures that influence the linkage between ventilatory and blood phenotypes across 
continents (e.g., reflecting adaptation to high altitude in Amerindians or to resistance to malaria in Africans)41.

This study has several strengths. The use of MR limits the unmeasured confounding bias and possible reverse 
causation between the instrument and the exposure because genetic variants are fixed at  conception11. In the 
discovery analyses, we applied a well-powered two-sample MR analysis using publicly available summary sta-
tistics generated from a large gene expression database and OSA GWAS without need to access to original data. 
The two-sample design (no overlap between the exposure sample and outcome sample) further reduces the 
potential sample selection  bias22. We implemented a set of sensitivity and heterogeneity analyses and validation 
analyses to interrogate the consistency of our findings in support of the potential causal association between 
heme biosynthesis pathway and OSA. The validity of our approach is supported by confirming a causal asso-
ciation between increased heme biosynthetic process expression and decreased risk of iron deficiency anemia 
(Supplementary Table 6).

This study also has several limitations. First, the effect sizes do not reflect the true effects of a potential clinical 
intervention. This is partly because MR estimates the cumulative effects of a lifelong exposure while the expres-
sion data were collected at a specific time point. It is also challenging to quantify pathway level expression across 
tissues in humans. Second, we were not able to formally confirm our findings in MESA (p > 0.05), which may 
be due to the insufficient statistical power in small samples, restriction to samples from peripheral blood cells, 
and heterogeneity effects across ancestry groups. However, we still observed the same association directions of 
point estimates in the validation analyses. Future analyses using experimental data from additional tissues (e.g., 
carotid body) may help elucidate more specific mechanisms. Analyses of a larger samples are needed to replicate 
our results. Third, given that we observed ancestry specific effects in the validation analyses, our primary analyses 
using multi-ancestry samples may reduce statistical power. Finally, due to the restricted use of cis-eQTL data (not 
GWAS of gene expressions), we did not test the reverse causality. Sustained hypoxia is associated with erythro-
poiesis and  polycythemia42. Clinically evident differences in hematocrit levels are, however, rarely observed with 
OSA, but rather associate with sustained daytime hypoxemia rather than the intermittent nocturnal hypoxemia 
characteristics of  OSA43. Nonetheless, a recent study showed that heme metabolism pathway is upregulated by 
intermittent hypoxia as shown by the results of continuous positive airway pressure (CPAP) withdrawal in OSA 
 patients10. It is possible that there is bi-directional causal association between heme biosynthesis and OSA. While 
tracking erythropoietin levels has been suggested as a biomarker of OSA  severity44, our data support the potential 
use of gene expression levels in heme biosynthesis pathways as a promising biomarker.

In conclusion, this study suggests a potential causal association between increased heme biosynthesis and 
OSA severity. Future work is needed to identify the mechanisms for this association, to address reverse causality, 
and evaluate utility of assessing gene expression of heme biosynthesis pathways as clinical biomarkers of disease 
susceptibility as well as disease severity.

Data availability
The datasets used in the current study are available on dbGaP. Analysis code and intermediate results are avail-
able from the corresponding author on reasonable request.
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