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Impact of COVID‑19 forecast 
visualizations on pandemic risk 
perceptions
Lace Padilla1*, Helia Hosseinpour1,5, Racquel Fygenson2,5, Jennifer Howell3,5, 
Rumi Chunara2,5 & Enrico Bertini2,4,5

People worldwide use SARS‑CoV‑2 (COVID‑19) visualizations to make life and death decisions 
about pandemic risks. Understanding how these visualizations influence risk perceptions to 
improve pandemic communication is crucial. To examine how COVID‑19 visualizations influence 
risk perception, we conducted two experiments online in October and December of 2020 (N = 2549) 
where we presented participants with 34 visualization techniques (available at the time of publication 
on the CDC’s website) of the same COVID‑19 mortality data. We found that visualizing data using a 
cumulative scale consistently led to participants believing that they and others were at more risk than 
before viewing the visualizations. In contrast, visualizing the same data with a weekly incident scale 
led to variable changes in risk perceptions. Further, uncertainty forecast visualizations also affected 
risk perceptions, with visualizations showing six or more models increasing risk estimates more than 
the others tested. Differences between COVID‑19 visualizations of the same data produce different 
risk perceptions, fundamentally changing viewers’ interpretation of information.

The fast-acting and deadly nature of SARS-CoV-2 (also known as COVID-19 and the coronavirus) have 
prompted scientists and media outlets to produce thousands of visualizations to convey the pandemic  risk1. 
Government organizations and the public rely heavily on line charts of COVID-19 infection and morbidity rates 
to make decisions that have life-or-death consequences for the health of the global  population2. Many line charts 
of COVID-19 data also include forecasts using a wide range of modeling techniques to show predicted COVID-
19 trends. All forecasts inherently include uncertainty, and there are multiple ways to visualize the uncertainty 
associated with COVID-19 forecasts. Although different fields have various definitions of uncertainty (for a 
discussion, see Ref.3), we focus on quantified forms of error and variability in pandemic forecasts, such as those 
communicated through confidence  intervals4.

Understanding the effects of forecast visualizations on risk perceptions during a pandemic is vital for ensur-
ing that the public takes appropriate actions to mitigate the spread of a virus and reduce personal risk. Because 
we have numerous ways to visualize the same data, risk communicators may inadvertently use a visualization 
technique that minimizes viewers’ perception of their pandemic risk, indirectly contributing to inappropriate 
actions. This work aims to determine if COVID-19 forecast visualizations impact pandemic risk perception. 
Further, we seek to test if standard uncertainty visualization techniques produce differences in people’s beliefs 
about the pandemic risks to themselves and others.

Effectively designed visualizations can be powerful tools for communicating health risks, particularly those 
that include probability, which can be highly challenging for many people to understand. For example, one study 
found that approximately 18% of college-educated people incorrectly answer the question, “Which represents 
the larger risk: 1%, 5%, or 10%?”5. Rather than requiring the completion of mathematical calculations, visualiza-
tions allow viewers to extract patterns in the data intuitively. Within the context of health care, research finds 
that effectively designed visual aids can improve risk assessments, reduce biases, increase healthy behaviors, 
and support trust in treatments (for reviews,  see6–8). Similarly, work outside the health care context finds that 
poorly designed visualizations can mislead and confuse. For example, truncating the y-axis can result in view-
ers overestimating minor  differences9, 10, rainbow color schemes can create visual artifacts that viewers think 
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are properties of the  data11, 12, and hurricane forecasts that use a cone to show the path of the storm lead people 
to incorrectly think that the storm is growing in  size13. Both the positive and negative effects of visualizations 
illustrate the strong hold that visualizations have on our understanding of data.

Risk communicators have responded to the urgent need to inform the public about COVID-19 risks with an 
unprecedented deployment of data visualizations (for a review of over 600 COVID-19 visualizations, see Ref.1), 
without evidence of how these visualizations influence the global population’s understanding of pandemic risk. 
Of the visualizations developed by government agencies, news media, and academics, the most common is a line 
chart that shows COVID-19 metrics over time (e.g., time-series data)1. For example, Fig. 1A (leftmost column) 
shows two COVID-19 line charts from the Reich Lab COVID-19 Forecast Hub, a central repository of forecasts 
and predictions from over 50 international research groups. The Centers for Disease Control and Prevention 
(CDC) features the Reich Lab’s charts on the CDC’s website at the time of  publication14. Both charts use the 
same data and show time on the x-axis. Figure 1A (top) uses a linear y-axis that shows weekly COVID-19 death 
counts in California (i.e., incident y-axis). Incident y-axis scales can show upward or downward trends based on 
increasing or decreasing cases compared to prior weeks. In contrast, Fig. 1A (bottom) shows the same data but 
displayed with a linear cumulative y-axis that summarizes the deaths in California. Incident y-axis scales can 
show variable trends, whereas cumulative scales can show only an upward or flat trend of the same data. Risk 
communicators have no guidance about when to use each scale or why one scale would be preferable.

Line charts became popular over a century ago to intuitively visualize time-series  data15. Recent research on 
COVID-19-specific line charts has examined viewers’ understanding of linear and logarithmic y-axes, finding 
that viewers who read a graph with a linear y-axis answer comprehension questions more accurately, predict 
the data’s future trends more reasonably, and report being more worried about the COVID-19 health  crisis16. 
Outside the COVID-19-specific literature, visualization research suggests that the audience’s interpretation of 
line charts is influenced by truncating y-axes and varying the scaling of the  axes9, 17, 18. Together, these studies 
suggest that laypeople’s interpretation of line charts and their consequent perception of personal risk is meaning-
fully impacted by the scaling of the y-axis.

Many COVID-19 line charts also include forecasts of the COVID-19 trends in the coming weeks. A survey 
of COVID-19 visualizations found that 84% of forecast visualizations include the prediction’s  uncertainty1. A 
growing body of research offers mixed findings regarding the efficacy of visualizing uncertainty. Multiple studies 
have found that conventional uncertainty visualizations, such as 95% confidence intervals, can be confusing or 
lead to misinterpretations of  data13, 19–24, even for  experts23, 25, and when controlling for  education26. Widespread 
misconceptions about the meaning and interpretations of standard statistical concepts related to uncertainty 
(e.g., frequentist confidence intervals, Bayesian creditable intervals, and  variability27, 28) form the foundation 
of misunderstandings of uncertainty visualizations. Poorly designed visualizations can add complexity and 
visual-spatial  biases29 to statistical concepts that people already struggle to understand. For example, the Cone 
of Uncertainty, produced by the National Hurricane Center, shows a 66% confidence interval around the storm’s 
predicted path. It starts as a point—the hurricane’s current position—and widens to cover areas that the storm 
has a 66% probability of crossing in the following five days. The resultant visualization looks like a semitranspar-
ent cone with a line down the middle overlaid on a map. Research demonstrates that people misinterpret the 
increasing cone size as the storm’s size and intensity growing over  time13. This misinterpretation persists even 
after training on interpreting the forecast  correctly30 (see  also19). Indeed, both  novices13, 20–24, 26 and published 
researchers in psychology, neuroscience, and medicine misinterpret confidence  intervals25 (for reviews of errors 
in uncertainty visualization,  see20, 31). Of the 48 COVID-19 forecast line charts reviewed by Zhang et al.1, 60% 
used confidence intervals to convey uncertainty (see Fig. 1C,E for examples). The CDC used a 95% confidence 
interval as their default visualization to convey COVID-19 forecast predictions when this work was conducted.

Given that confidence intervals can produce biases, some researchers have advocated for text to convey uncer-
tainty rather than  visualizations20. Zhang et al.1 found that 10% of COVID-19 visualizations used text to convey 
uncertainty. Skeptics of uncertainty visualizations cite biases that visualizations create, studies that do not find 
differences between uncertainty intervals and textual expressions of uncertainty (e.g.,32, 33), and differences that 
diminish when participants have a longer time to complete a  task34. Visual intervals and text summarize continu-
ous probabilistic data into discrete values such as mean, mode, and 95% confidence intervals (see, Fig. 1C–F for 
examples). Summaries of probabilistic data, visual or textual, are discrete, and viewers interpret these expressions 
of data discretely (i.e., dichotomous thinking). However, studies find that, compared to textual expressions, well-
designed distributional uncertainty visualizations (see Fig. 1G,H for examples) produce better  accuracy35, 36 and 
require less mental effort to  understand35. A parallel body of work finds that distributional uncertainty visualiza-
tions evoke a less  biased13, 37 and more accurate understanding of the  data21, 24, 36, 38 than summaries (e.g., mean, 
95% confidence and containment intervals) of the same data, while requiring less mental  effort35. For instance, 
an ensemble  visualization39 that uses lines to show a distribution of routes the hurricane could take eliminates 
the biases produced by the Cone of  Uncertainty13, 37 (for examples with COVID-19 data, see Fig. 1G,H). Zhang 
et al.1 found that 29% of COVID-19 visualizations expressed uncertainty using multiple models or scenarios.

Results
To test if pandemic visualizations impact people’s risk perceptions, we conducted two online experiments in 
October (Experiment 1, N = 1200) and December (Experiment 2,  N = 1350) 2020, during the height of the 
COVID-19 pandemic in the United States. These studies examine the impact of real-time uncertainty visuali-
zations on participants’ understanding of their risks during a pandemic. For the primary outcome measure, 
participants responded to a series of 12 questions using 7-point Likert scales where higher numbers indicated 
greater risk (see “Materials and methods” section for full question text and scales). Participants viewed one of 
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the 16 COVID-19 data visualizations (shown in Fig. 1) along with brief instructions about the different elements 
in the chart.

We selected the stimuli in Experiment 1 based on modern theories of uncertainty communication, which 
make distinctions between summary (e.g., Fig. 1C–F) and distributional visualizations (e.g., Fig. 1G,H)4, 21, 24, 40. 
The Reich Lab COVID-19 Forecast Hub created the stimuli in this study, and this group later partnered with 
the CDC. The CDC used the visualizations tested in this study in their interactive COVID-19 data tracker in 
 202014. Visualizations of only historical COVID-19 data (Fig. 1A) and those showing a mean forecast with no 
uncertainty (Fig. 1B) were used as controls. We tested each of the eight visualization types with cumulative and 
incident y-axes.

Participants, who currently live in California, were randomly assigned to one of 16 groups (N = 75 per group) 
and viewed one of the visualizations depicting current COVID-19 death data and forecasts for California, shown 
in Fig. 1. Participants completed the same risk judgments before and after viewing one of the visualizations. 
Following the primary study, participants answered questions about their demographics, COVID-19 health risk 
factors, and prior experiences with COVID-19. They also answered true and false questions about COVID-1941 
and completed a brief graph literacy  questionnaire42.

To further understand the relationship between the axis scaling (cumulative vs. incident) and the data’s 
trending direction (e.g., cumulative y-axes can never have downward trends vs. incident y-axes, which are 
omnidirectional), we conducted a follow-up study in December 2020 with participants in California and New 
York. At the time, California had upward trending COVID-19 death data, and New York had a flatter trend.

We used mixed-effect models to examine the proportion of variance in risk judgments accounted for by the 
visualization elements and participants’ characteristics. Mixed-effect models are a generalized form of linear 
regression, appropriate for analyzing experimental outcomes of within-subjects (in the present case, time points) 
and between-subjects conditions (in the present case, pre- and post-visualization exposure). Mixed-effect models 
are also ideal for determining the proportion of variance accounted for in risk judgments from categorical (e.g., 
visualization type) and continuous variables (e.g., COVID-19 knowledge). Importantly, mixed-effect models 
allowed us to determine the effects of our visualization manipulation on risk judgments over and beyond the 
meaningful impacts of (1) graph literacy, (2) COVID-19 knowledge, (3) COVID-19 health risk, (4) participants 
contracting COVID-19, (5) participants being tested for COVID-19, (6) age, (7) gender, and (8) education.

1 2 3 4 5 6 7

All Models

6 Models

3 Mod CI 95

CI 95

3 Mod CI 50

CI 50

Mean

No Forecast

All Models

6 Models

3 Mod CI 95

CI 95

3 Mod CI 50

CI 50

Mean

No Forecast

Risk Rating

Incident Y-Axis

Cumulative Y-Axis Pre-visualization Exposure Post-visualization Exposure

Figure 2.  Results of Experiment 1, where pre-visualization risk judgments are colored gray and post-
visualization judgments blue, for cumulative y-axis (top) and incident y-axis (bottom). Dashed lines show 
the mean pre- and post-visualization risk judgments for each y-axis group as a whole. Black bars show 95% 
confidence intervals around the mean (black dot) for each condition using the Cousineau–Morey  method44 and 
the density plots were generated from this data.
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To test if our data met the assumptions of mixed-effect models, we used the Kolmogorov–Smirnov test to 
determine that the residuals were normally  distributed43. We visually inspected the residual plots and did not 
observe violations from homoscedasticity or normality. Further, variance inflation factors indicated that multi-
collinearity was not a problem. Our data met the assumptions for mixed-effect models. Detailed information 
about the analysis procedure is in the “Materials and methods”, and complete analysis in R-Markdown is in the 
Supplementary Information.

The main objective of this work was to determine whether COVID-19 data visualizations changed par-
ticipants’ risk judgments. Therefore, we report only on the effects that involve the time points (pre- and post-
visualization exposure), but full model results are available in the Supplementary Information.

Experiment 1. The analysis revealed an interaction between time point and y-axes (b = − 0.33, p = − 0.000, 
t(1178) = − 10.48, CIs[− 0.39, − 0.27]). To break down this interaction, we used the same modeling procedure 
described above but separately analyzed the cumulative and incident y-axis groups, which suggested that visu-
alizations with a cumulative y-axis evoked a significant increase in participants’ risk estimates (means shown in 
Fig. 2, top) (b = 0.34, t(582) = 5.38, p = 0.000, CIs[0.21, 0.46]). In contrast, the results from the visualizations with 
incident y-axes suggested they had little impact on participants’ risk estimates (means shown in the dashed lines 
of Fig. 2, bottom) (b = − 0.06, t(581) = − 0.99, p = 0.33, CIs[− 0.18, 0.06]). We used the same approach to break 
down all the interactions reported in this paper. The conditional R2 for the first model was 0.57.

The second interaction revealed by the main analysis was between time points and the No Forecast vs. CI 50 
visualizations (b = − 0.16, t(1178) = − 2.62, p = 0.009, CIs[− 0.29, − 0.04]). To break down this interaction, we 
ran separate models for the No Forecast and CI 50 visualizations. These analyses revealed a larger increase in risk 
estimates when participants viewed the COVID-19 line chart with no forecast (b = 0.33, t(132) = 4.79, p = 0.000, 
CIs[0.20, 0.47]; pre-visualization exposure m = 3.73, SD = 1.99, post-visualization exposure m = 3.86, SD = 1.83, 
change = 0.13) compared to the visualizations showing 50% CIs (b = 0.17, t(132) = 2.66, p = 0.008, CIs[0.05, 0.3]; 
pre-visualization exposure m = 3.97, SD = 1.97, post-visualization exposure m = 3.94, SD = 1.82, change = 0.03).

As a post hoc analysis, we tested if CI 50 showed less of a change in risk estimates compared to the other 
visualizations by running the previously described omnibus model with CI 50 as the referent. Note that the 
model failed to converge, and we removed time point from the random effects structure but left it in as a fixed 
effect to support convergence (model conditional R2

= 0.56 ). This model revealed multiple interactions between 
time point and CI 50 vs. All Models, 6 Models, CI 95, 3 Models CI95, and the previously described interaction 
with No Forecast. The coefficients of the interactions are shown in Table 1. We ran separate models with each of 
the relevant visualizations to break down these interactions. The rows in Table 1 also include the main effects of 
time point produced by the individual models, the mean pre- and post-visualization exposure ratings, and the 
change in ratings. The rows are ordered according to the amount of change in risk judgments. Although all the 
visualizations that had interactions with CI 50 showed a meaningful increase in risk estimates, All Models had 
the largest change, followed by No Forecast, 6 Models, CI 95, and then 3 Models CI95. The interactions were 
driven by the larger changes in risk estimates produced by these visualizations compared to CI 50.

Finally, we noticed that CI 50 produced a negative change in risk estimates when shown with an incident 
y-axis (see Fig. 2, bottom third row). To determine if the CI 50 produced a reliably negative change in risk esti-
mates compared to the other visualization types, we ran a post hoc analysis with just the incident y-axis and CI 
50 as the referent. The model provided evidence for a negative impact of time point for CI 50 (b = − 0.22, t(581) 
= − 3.68, p = 0.000, CIs [− 0.34, − 0.11]) and interactions with 6 Models (b = 0.24, t(581) = 2.73, p = 0.006, CIs 
[0.07, 0.40]) and 3 Models CI95 (b = 0.20, t(581) = 2.34, p = 0.019, CIs [0.03, 0.37]). We ran follow-up analyses 
with the 6 Models and 3 Models CI95 as the referents, which showed little evidence for an effect of time point. 
These analyses suggested that participants who viewed incident y-axes with a forecast showing 50% confidence 
intervals significantly decreased their risk ratings compared to those who viewed forecast with 6 Models or 3 
Models CI95.

In sum, Experiment 1 provided evidence that cumulative y-axis scaling showing an upward trend and distri-
butional visualizations (All Models and 6 Models) produced some of the largest increases in risk estimates. Also, 

Table 1.  Interactions between each visualization type and CI 50, along with the effects of time point when 
models were computed for each visualization type (ordered by size of the time point main effect). These results 
are collapsed across the y-axes.

Interactions Effect of time point

Mean risk ratings

Pre Post Change

CI 50 b = 0.128, t(1179) = 3.274, p = 0.001, CIs [0.05, 0.20] 3.966 3.937 0.029

All models b = 0.158, t(1179) = 3.02, p = 0.003, CIs [0.06, 0.26] b = 0.314, t(132) = 5.69, p = 0.000, CIs [0.21, 0.42] 3.93 4.066 0.136

No forecast b = 0.17, t(1179) = 3.18, p = 0.001, CIs [0.06, 0.27] b = 0.330, t(132) = 4.79, p = 0.000, CIs [0.20, 0.47] 3.736 3.864 0.128

6 Models b = 0.153, t(1179) = 2.94, p = 0.003, CIs[0.05, 0.26] b = 0.237, t(132) = 4.50, p = 0.000, CIs [0.13, 0.34] 3.96 4.09 0.13

CI 95 b = 0.12, t(1179) = 2.31, p = 0.021, CIs [0.02, 0.22] b = 0.254, t(131) = 5.33, p = 0.000, CIs [0.16, 0.35] 4.00 4.089 0.089

3 Model CI95 b = 0.11, t(1179) = 2.16, p = 0.031, CIs [0.01, 0.21] b = 0.202, t(132) = 4.06, p = 0.000, CIs [0.11, 0.30] 4.108 4.195 0.087

3 Model CI 50 NA NA 3.9 3.99 0.09

Mean NA NA 3.915 3.949 0.034
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Figure 3.  Left of figure shows line charts displaying historical COVID-19 mortality data with incident and 
cumulative y-axis for California and New York used in Experiment 2. Right of figure shows the visualization 
forecasts that were added to the data (B. CI 50 and C. 6 Models).
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CI 50 showed the smallest effects on risk judgments and was the only visualization that reduced risk estimates 
when paired with the incident y-axes, which showed a downward trend.

Experiment 2. In Experiment 1, the y-axes (incident vs. cumulative) had the greatest impact on risk judg-
ments, with the cumulative y-axis producing higher risk judgments and the incident y-axis not affecting risk 
judgments or sometimes producing lower risk judgments (in the case of CI 50). However, the experiment con-
founded the y-axis scaling with the recent trend in the data. The visualizations with an incident y-axis showed 
a downward trend, and those with a cumulative y-axis showed an upward trend. To understand the effect of the 

Incident deaths in CaliforniaCumulative deaths in California

A CI95 No Mean B Gradient C Gradient + MeanA CI95 No Mean B Gradient C Gradient + Mean

Figure 4.  Additional uncertainty visualization techniques tested in Experiment 2 with California data.

1 2 3 4 5 6 7

CI 50

6 Models

No Forecast

CI 50

6 Models

No Forecast

CI 50

6 Models

No Forecast

CI 50

6 Models

No Forecast

Risk Rating

Pre-visualization Exposure Post-visualization ExposureIncident Y−Axis, California

Cumulative Y−Axis, California

Incident Y−Axis, New York

Cumulative Y−Axis, New York

Figure 5.  Results of the trend comparison in Experiment 2, where pre-visualization risk judgments are colored 
gray and post-visualization judgments blue, for cumulative y-axis (top) and incident y-axis (bottom). Dashed 
lines show the mean pre- and post-visualization risk judgments for each y-axis group as a whole. Black bars 
show 95% confidence intervals around the mean (black dot) for each condition using the Cousineau–Morey 
 method44 and the density plots were generated from this data.
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y-axis scaling, we ran a second experiment in December 2020 with participants in California and New York. 
At that time, California’s incident and cumulative y-axes showed rising trends (see Fig. 3, top two rows). If the 
effects in our prior experiment were due to the upward (cumulative) and downward (incident) trend of the data 
in the stimuli, we should see little difference between the two axes in Experiment 2, which both show upward 
trends. In December, no states had a downward trending incident y-axis, but New York had both incident and 
cumulative y-axis scaling that showed relatively flat trends (see Fig. 3, bottom two rows). We decided to conduct 
the same experiment with participants in New York to test if we would observe a lessened effect of time point 
due to the flatter upward trend of the data. To compare the y-axes across California and New York, we tested a 
subset of the visualizations that produced the more notable findings in Experiment 1, including No Forecast (as 
a control), CI 50, and 6 Models. We selected 6 Models over All Models because the 6 Models approach is more 
in line with visualization recommendations to reduce visual clutter. Figure 3 shows the stimuli types that we 
compared across the two states.

In addition to comparing the y-axes scaling, we wanted to test three new visualization techniques that used 
modern visualization  recommendations21, 24. Two of the visualizations used a Gaussian blur to convey a distribu-
tion of COVID-19  trends24 (referred to as gradients, see Fig. 4B,C)4. One of the gradient visualizations included 
a mean line (Fig. 4C), and the other did not (Fig. 4B). We also tested a CI 95 without a centerline (Fig. 4A) since 
recent work suggests that centerlines can bias viewers’ judgments by encouraging them to focus on the  mean21. 
We tested the three new visualizations with participants only in California.

The first analysis used the previously described mixed-effects modeling procedure that included each of the 
four rows of Fig. 3 as a factor with the California incident y-axis as the referent (model conditional R2

= 0.51 ). 
This analysis revealed three interactions. The first two were between time point * California incident y-axis vs. 
the two types of New York axes: New York incident (b = − 0.24, t(879) = − 4.69, p = 0.000, CIs[− 0.34, − 0.14]) 
and New York cumulative y-axis (b = − 0.16, t(879) = − 3.17, p = 0.002, CIs[− 0.26, − 0.06]; means shown in 
the dashed lines of Fig. 5). We ran separate models for California incident, New York incident, and New York 
cumulative y-axes to break down these interactions. This analysis revealed a larger effect of time point for Cali-
fornia incident y-axis (b = 0.22 , t(207) = 3.59, p = 0.000, CIs[0.10, 0.33]) than the New York cumulative y-axis 
(b = 0.17, t(207) = 2.63, p = 0.009, CIs[0.04, 0.29]) and little evidence for an effect of time point for the New York 
incident y-axis (b = − 0.02, t(207) = − 0.26, p = 0.79, CIs[− 0.13, 0.10]). These effects can be seen in the larger 
difference between the dashed lines in the California incident y-axis (top of Fig. 5) compared to the smaller gaps 
between the dashed lines of the two types of New York axes (bottom two rows of Fig. 5). To determine if New 
York cumulative y-axis produced greater risk estimates than New York incident y-axis, we ran the prior omnibus 
model with New York cumulative y-axis as the referent. This analysis did not reveal meaningful evidence for an 
interaction between time point and New York cumulative vs. incident y-axis, suggesting that New York cumula-
tive and incident y-axis evoked similar risk estimates.

The analyses in Experiment 2 suggest that the steeper upward trend of the California axes (incident and 
cumulative) produced larger increases in risk estimates than the flatter trend of the New York data. In sum, the 
results of Experiment 1—where the cumulative y-axes affected risk perceptions whereas the incidence y-axes did 
not—were likely driven by the trends in the y-axis. To test if our assumptions about the relative slopes of the data 
in the stimuli were correct, we measured the angles of the lines in the stimuli two weeks before the forecast. We 
confirmed that the California incident y-axis had the steepest line angle (67◦ ), followed by California cumulative 
(44◦ ), New York incident (34◦ ), and New York cumulative (21◦ ). In line with Experiment 1, this analysis sug-
gested that the 6 Models visualization produced the largest increases in risk estimates, which were significantly 
larger than the No Forecast visualization.

The goal of the second analysis was to examine the impact of the three new visualization techniques (see 
Fig. 4) that participants in California viewed. We specified 6 Models as the referent because they showed the 
largest increase in risk ratings in the last analysis. This analysis revealed interactions between time point and 6 
Models vs. all the other visualizations (see Table 2 for interaction coefficients) (model conditional R2

= 0.50 ). 
To break down these interactions, we ran separate models for each visualization type. The models other than 
the 6 Models and No Forecast failed to converge, and we removed time point as a random slope from the model 
to support convergence. Table 2 shows the fixed effect of time point for each visualization type along with mean 
pre- and post-visualization exposure risk ratings. This analysis revealed that although each of the visualizations 
showed a meaningful increase in risk estimates, the 6 Models visualization produced significantly larger increases 
in risk estimates (mean change of 0.43) than each of the other visualization techniques (mean change of 0.23 
on average). Figure 6 shows the larger increase in risk estimates for 6 Models, and the techniques are ordered 
by their average change.

Taken together, the results of Experiment 1 and 2 provide evidence that cumulative y-axes that more likely 
show an upward trend and COVID-19 visualizations that show six or more models relatively consistently evoke 
the largest increases in risk estimates compared to the other COVID-19 visualization techniques tested in this 
work.

Discussion
Scholars have suggested that the COVID-19 pandemic created a “breakthrough moment” in data  visualization45, 
where millions around the world turned to visualizations to understand their health  risks2. The results from our 
studies suggest that viewing visualizations, like those used by the CDC in 2020 to convey COVID-19 data, funda-
mentally changes people’s pandemic risk perceptions. Importantly, this work provides evidence that visualizations 
can influence risk perceptions over and beyond the impacts of gender, age, education, prior experiences with 
COVID-19, knowledge about COVID-19, and health risks for COVID-19. Further, we found that visualizing 
the same data in different ways had differential effects on the changes we observed in risk perceptions. Our work 
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suggests that using a cumulative y-axis will most reliably lead to people perceiving greater pandemic risk because 
cumulative y-axis can show only an upward or flat trend. In contrast, incident y-axis can be highly variable and 
even reduce viewers’ perceived pandemic risk, if the charts exhibit a downward trend. An incident y-axis is the 
default on the CDC’s  website14 at the time of publication. We found that significant increases and decreases in 
perceived risk can be achieved simply by changing the y-axis without any modifications to the underlying data 
or forecast predictions. This finding emphasizes the importance of informing risk communicators of the implica-
tions of visualization choices. Without evidence-based guidance, risk communicators could create visualizations 
that inadvertently contribute to a public misinterpretation of pandemic risks.

Additionally, we found that uncertainty pandemic forecasts that showed distributional information in the 
form of multiple forecast models (i.e., ensembles of six or more models) tended to produce the largest increases 
in risk estimates. The impact of the 6 Models and All models visualizations is consistent with research demon-
strating the efficacy of  ensembles13, 37, 39, 46 and distributional uncertainty visualizations (e.g.,21, 24, 35, 36, 38). The 
results also suggested that 50% confidence intervals were the least likely to change risk perceptions and sometimes 
decreased risk perceptions. The majority of active COVID-19 visualizations use confidence intervals (70%1), 
including the default visualization on the CDC’s  website14 at the time of publication. Extensive use of confidence 
intervals should be reevaluated because they tend to produce variable changes in risk perceptions, which may not 
be desirable when conveying health risks to the public. Together, these findings provide evidence that visualiza-
tions that depict forecasts with uncertainty can meaningfully change people’s beliefs about health risks, as well 
as illustrate the utility of data visualizations in risk communication during pandemic events.

This work also has several limitations. For one, there was no clear correct answer for the risk estimates. We 
opted to use Likert scales to evaluate relative risk estimates rather than asking people to estimate probability 
because reasoning with probability is challenging for most of the  public47. However, we cannot report if visualiza-
tion techniques make the participants’ risk judgments more accurate without a correct answer. Also, we cannot 
assert that the changes we observed in risk estimates lead to changes in behavior. Instead, our work focuses on 
the relative change in risk judgments as a critical component in determining the impact of visualizations on 
people’s understanding of risk. Additionally, although we tested many data visualization types (34 visualizations 
total), this work did not comprehensively study every modern uncertainty visualization approach (for reviews, 
 see31, 48). Further, while we included eight individual differences measures, which we selected based on prior 
COVID-19 research, we did not exhaustively test every individual differences measure that may have influenced 
participants’ risk judgments. Our conclusions, therefore, are limited to the visualizations and individual differ-
ences measures examined in our studies. It is also important to note that we included one-sentence descriptions 
of the visualizations on each trial, which could have influenced the observed effects and are available in the Sup-
plementary Information (page 10). Examples include “The right of the figure shows a COVID-19 projection with 
a 95% confidence interval” and “The right of the figure shows 6 COVID-19 projections.” Additional research is 
needed to determine the optimal descriptions for uncertainty visualizations.

In closing, this work provides evidence that visualizations of pandemic data can fundamentally change 
COVID-19 risk perceptions. We recommend that risk outreach organizations consider the impacts of y-axes 
scales that produce variable risk perceptions based on the recent pandemic trends. Further, risk communicators 
should select a method for visualizing time series forecast data tailored to their desired public response. Risk 
communicators must decide how these influential instruments should be used and calibrated.

Materials and methods
The experiments were conducted online with populations of participants from  Prolific49, which was census 
matched to reflect population characteristic distributions of the United States. The experiments took roughly 15 
mins to complete, and the participants were paid $3. The prescreening criteria dictated that participants were 
over 18 years old, lived in either California or New York, and were not allowed to participate in both experiments.

Approval for human experiments. The Institutional Review Board of the University of California 
Merced reviewed the protocol of these experiments and approved them for human subjects research. Both 
experiments were performed in accordance with the University of California Merced guidelines. Informed con-
sent was obtained from all participants prior to completing the study.

Table 2.  Interactions between each visualization type and 6 Models, along with the effects of time point when 
models were computed for each visualization type (ordered by the size of the time-point main effect).

Interactions Effect of time point

Mean risk ratings

Pre Post Change

6 Models b = 0.428, t(879) = 9.41, p = 0.000, CIs [0.34,0.52] 3.857 4.27 0.413

Gradient with mean b = − 0.199, t(879) = − 3.34, p = 0.001, CIs [− 0.32, − 0.08] b = 0.306, t(133) = 5.61, p = 0.000, CIs [0.20, 0.41] 3.768 4.00 0.232

CI 50 b = − 0.175, t(879) = − 2.92, p = 0.004, CIs [− 0.29, − 0.06] b = 0.267, t(133) = 4.86, p = 0.000, CIs [0.16, 0.37] 3.95 4.21 0.26

Gradient b = − 0.180, t(879)= − 3.02, p = 0.003,CIs [− 0.30, − 0.06] b = 0.226, t(133) = 4.16, p = 0.000, CIs [0.12, 0.33] 3.87 4.11 0.24

CI 95 No mean b = − 0.222, t(879) = − 3.71, p = 0.000, CIs [− 0.34, − 0.11] b = 0.201, t(133) = 3.65, p = 0.000, CIs [0.09, 0.31] 3.786 3.98 0.194

No forecast b = − 0.216, t(879) = − 3.60, p = 0.000, CIs [− 0.33, − 0.10] b = 0.190, t(133) = 3.23, p = 0.001, CIs [0.08, 0.31] 3.83 4.04 0.21
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Procedure. Before beginning the studies, participants consented via an IRB consent protocol and were 
instructed not to participate in the experiment with a screen smaller than 9.4 × 6.6 inches. Participants then read 
the following instructions:

“In the first section, you will be asked to make judgments about COVID-19 risk. Some questions will ask you 
to make judgments about yourself, and some questions will ask you to make judgments about other people. For 
example, one question might be: How impactful is COVID-19 to the daily lives of the following people? Click on the 
option below that best describes your beliefs for each person.” Below the instructions, a Likert scale was included 
that ranged from 1 (definitely not impactful) to 7 (definitely impactful).

Following the instructions, participants answered four questions (referred to as question types) on a 1–7 
Likert scale that included number and word anchors based on recommendations  from50. Participants answered 
the four questions below about (1) themselves, (2) an average 22-year-old in their state who is generally in good 
health, and (3) an average 78-year-old in their state who is generally in good health (referred to as target type). 

1. How often do you think each of the following people will come in contact with someone currently infected 
with COVID-19 in the next 2 weeks? Scale: Never (1), Very seldom (2), Rather infrequently (3), Some of the 
time (4), Fairly often (5), Very frequently (6), Constantly (7)

2. What is the risk that the following people will contract COVID-19 within the next 2 weeks? Scale: No risk 
(1) A small degree of risk (2), A limited amount of risk (3), Some risk (4), A good bit of risk (5), A great deal 
of risk (6), Complete risk (7).

3. Imagine the following people contracted COVID-19, how many of their symptoms do you think will be 
severe? Scale: No severe symptoms (1), A small degree of severe symptoms, (2), A limited amount of severe 
symptoms (3), Some severe symptoms (4), A good bit of severe symptoms (5), A great deal of severe symp-
toms (6), All severe symptoms (7).

4. Imagine the following people contracted COVID-19. What is their risk of experiencing adverse effects that 
would require hospitalization? Scale: No risk (1), A small degree of risk (2), A limited amount of risk (3), 
Some risk (4), A good bit of risk (5), A great deal of risk (6), Complete risk (7).

The participants were then given brief instructions about the components of the visualizations that corresponded 
to the axis they were randomly assigned to view. These instructions were comprised of an example figure that 
was not one of the stimuli used in the study. The example figure highlighted the historical COVID-19 data and 
included the annotation “cumulative number of deaths in your state since the pandemic started” or “number 
of deaths per week in your state since the pandemic started”. On the next screen, a figure highlighted the gap 
between the historical data and predictions reading, “delay between data reporting and prediction.” On the 
last instruction screen, the location where the COVID-19 forecast would be placed was highlighted, and an 

1 2 3 4 5 6 7

No Forecast

CI 95 No Mean

Gradient

CI 50

Gradient + Mean

6 Models

No Forecast

CI 95 No Mean

Gradient

CI 50

Gradient + Mean

6 Models

Risk Rating

Incident Y−Axis, California

Cumulative Y−Axis, California Pre-visualization Exposure Post-visualization Exposure

Figure 6.  Results of the visualization comparison in Experiment 2 (ordered by size of the time point main 
effect), where pre-visualization risk judgments are colored gray and post-visualization judgments blue, for 
cumulative y-axis (top) and incident y-axis (bottom). Dashed lines show the mean pre- and post-visualization 
risk judgments for each y-axis group as a whole. Black bars show 95% confidence intervals around the mean 
(black dot) for each condition using the Cousineau–Morey  method44 and the density plots were generated from 
this data.



11

Vol.:(0123456789)

Scientific Reports |         (2022) 12:2014  | https://doi.org/10.1038/s41598-022-05353-1

www.nature.com/scientificreports/

annotation was included reading, “You may see a 2-week COVID-19 prediction here.” No additional instruc-
tions were given based on the uncertainty visualizations to ensure that differences between instructions did not 
drive the results in the study.

The participants then viewed the visualization that they were randomly assigned to for 1.5 min before 
being allowed to progress to the next screen. After viewing the visualization, the participants repeated the risk 
judgments. They then completed a series of follow-up questions, which included a four-item graph literacy 
 questionnaire42, 13 true and false COVID-19 knowledge  questions41, 20 COVID-19 health risk factors identified 
by the  CDC51, if they had been tested for COVID-19, if they were diagnosed with COVID-19, if they thought 
they had COVID-19 but did not get diagnosed, and their age, gender, and education level.

Experiment 1 sample and stimuli. Participants were 1200 California residents (45.37% Women,  M age 
= 32.74 years,  SD = 11.90 years). Experiment 1 used a mixed design: between − 2 (cumulative vs. incident 
y-axis) × 8 (visualization techniques, see Fig. 1) and within-subjects 2 (pre- and post-visualization exposure) × 
3 (judgment target) × 4 (question type). The 75 participants were randomly assigned to each of the 16 groups. 
Using prior research on decision making with visualizations as pilot data, we calculated an anticipated effect size 
(pseudo r2 = 0.02) and used the program G*Power52 to determine we would need 75 participants per visualiza-
tion group. One participant in the group that viewed the CI 95 visualization experienced browser issues and 
was removed from the analyses, resulting in  N = 1199. There were no meaningful differences for the individual 
differences measures between the groups.

The full stimuli set, instructions, procedure, and question text are available in the Supplemental Materi-
als. Figure 1 (H) shows 35 forecast models that different research groups produced with varied input data and 
assumptions concerning COVID-19 mitigation  measures53. These models were used to create the mean forecast 
(Fig. 1B) and the 50% (Fig. 1C) and 95% confidence interval visualizations (Fig. 1E). The mean forecast was a 
secondary control that showed a forecast but no uncertainty. D and F in Fig. 1 each show three models selected 
to match the range of the 50% or 95% confidence intervals. Our goal in using the three-model approach was to 
understand if the effects of the confidence intervals were driven by the differences in visual salience of the filled-
in intervals or by the physical span of the intervals. Figure 1G shows six models with minimal model assump-
tions that the modeling specialist in our group selected. The experiment showed participants the stimuli with 
a label indicating the state and y-axes, along with a one-sentence caption describing the forecast visualization. 
The descriptions ranged from 6 to 14 words and are available in the supplementary materials along with the 
instructions. The descriptions were intentionally minimal to simulate how forecasters commonly present model 
results. For example, our prior work found that of the 20 most viewed TV forecasts of hurricane Irma in 2017, the 
average length of the forecast was 1:52 mins and no forecasters described how they created the  visualizations19.

Experiment 2 sample and stimuli. Participants were 675 California residents (50.11% Women,  M age 
= 30.93 years, SD = 11.83 years) and 675 New York residents (45.75% Women,  M age = 32.26 years, SD = 11.69 
years). A mixed design was used for the first comparison in Experiment 2: between − 2 (cumulative vs. incident 
y-axis) × 2 (Californian vs. New York) × 3 (visualization techniques, see Fig. 3) and within-subjects 2 (pre- and 
post-visualization exposure) × 3 (judgment target) × 4 (question type). This design created 12 groups with 75 
participants randomly assigned from California to each group (N = 900). Additional between-subjects groups 
were added to Experiment 2 to examine the effect of three new visualizations (see Fig. 4). There were no mean-
ingful differences for the individual differences measures between the groups.

Statistical analysis. We computed the results presented in this paper using the programming language  R54 
and the following R packages for the analysis: tidyverse v. 1.3.155 (data processing), ggdist v. 3.0.156 (visualiza-
tion), lme4 v. 1.1-27.157 (mixed-effects modeling), and MuMIn v. 1.43.1758 (effects size estimation). As described 
in the Results section, we selected linear mixed models to examine our hypotheses, and the lme4 package fits 
linear mixed models using maximum likelihood. P-values were estimated using the Wald method. We based 
the models on the empirical questions in this work and prior research indicating the impact of the included 
individual differences measures on uncertainty judgments. We specified risk estimates as the outcome variable, 
which are ordinal but were treated as continuous because they contained more than five response  categories59.

As shown in the lmer model syntax below, for the primary Model 1 in Experiment 1, we included the follow-
ing fixed effects: Time Point (pre- vs. post-visualization exposure, with pre as the referent), Y-axes (cumulative 
vs. incident California death data, with cumulative as the referent), Visualization (eight visualization techniques, 
with the No Forecast visualization as the referent) and the two-way interactions between each of these factors as 
predictors. We also included the variants of the risk judgments and individual differences measures as covariates, 
which were fixed effects: Question Type (four risk questions), Question Target (self, younger and older adult). Each 
of the following individual differences were either dummy coded (for categorical variables) or mean centered (for 
continuous variables): Graph Literacy (centered), COVID-19 Knowledge (centered), COVID-19 Health Risk (cen-
tered), previously Contracted COVID-19 (dummy coded), previously Tested for COVID-19 (dummy coded), Age 
(centered), gender (dummy coded), and Education (centered). The results of the visualization manipulations 
that we report in the Results section are over and beyond the effects of these covariates (see Fig. 2 for results). 
We also included random intercepts for each participant and random slopes for Time Point, Question Type, 
and Judgment Target.

Experiment 1, lmer model syntax:
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We used the same modeling procedure for the first analysis in Experiment 2 as in Experiment 1. The only 
differences were that we replaced the y-axis variable with a variable indicating the state and y-axis combination 
(California incident y-axis as the referent compared to California cumulative y-axis, New York incident y-axis, 
and New York cumulative y-axis), and we analyzed three visualization types (No forecast as the referent com-
pared to 6 Models and CI 50) (see Fig. 5 for results). For the second analysis in Experiment 2, we focused on 
the data from participants in California and used the same model as in Experiment 1 but with six visualization 
types (6 Models as the referent compared to No Forecast, CI 50, Gradient, Gradient With Mean, and CI 95 No 
Mean) (see Fig. 6 for results).

Data availability
The data and complete analysis R markdown script are available on the Open Science Framework (https:// osf. 
io/ hfvqc/).
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