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Influence of state reopening 
policies in COVID‑19 mortality
Ka‑Ming Tam1,2,3*, Nicholas Walker2,3 & Juana Moreno1,2,3

By the end of May 2020, all states in the US have eased their COVID‑19 mitigation measures. Different 
states adopted markedly different policies and timing for reopening. An important question remains 
in how the relaxation of mitigation measures is related to the number of casualties. To address this 
question, we compare the actual data to a hypothetical case in which the mitigation measures are 
left intact using a projection of the data from before mitigation measures were eased. We find that 
different states have shown significant differences between the actual number of deaths and the 
projected figures within the present model. We relate these differences to the states different policies 
and reopening schedules. Our study provides a gauge for the effectiveness of the approaches by 
different state governments and can serve as a guide for implementing best policies in the future. 
According to the Pearson correlation coefficients we obtained, the face mask mandate has the 
strongest correlation with the death count than any other policies we considered.

At of the beginning of November, there are close to 10 million confirmed cases and more than 237,000 casualties 
attributed to COVID-19 in the United States. Although the first case was confirmed on January 20, the number 
of reported cases was rather low until early March. The number of reported cases then dramatically increased 
in early March.

Since the growth rate of infections was alarmingly high in most areas by mid-March, the majority of states 
implemented mitigation efforts by the end of March. These measures included closing restaurants and bars, 
shutting down schools, and implementing stay-at-home orders. By early April, nearly all states were under some 
form of lock-down. The infections tapered down appreciably due to these mitigation efforts. The daily number 
of new cases seemed to peak in early April and both the number of new cases and deaths steadily decreased 
from April to late  May1.

While the total number of infections never dropped below 16,000 per day, many states decided to reduce 
their mitigation efforts after this first  wave1. By the end of May, all states had rolled back their restrictions in 
some capacity. Certain states were more aggressive in reopening than others. While the number of infections 
was not particularly large at the beginning of reopening since the observed effect of the spread is delayed due to 
the incubation time and waiting time to receive testing results, many states saw a sharp increase in the number 
of cases between late May and early  June1–5. This concerning situation forced several states to scale back plans 
for reopening in order to stabilize the exponentially increasing number of  cases6.

There are several factors which are expected to reduce COVID-19 mortality rate. Adequate testing was rather 
limited before May. Testing has since expanded appreciably and stabilized at about 800,000 per  day1. One would 
expect an increase in testing rate to reduce the number of fatalities, as people who tested positive as well as their 
close contacts should be quarantined. Moreover, the death rate was particularly high at the beginning of the 
pandemic due to the large number of infections in high risk groups, such as residents of assisted living facilities. 
Finally, improvement in treatments should also help to reduce the mortality rate. Together with the awareness 
of preventative measures, such as wearing masks in public areas, all of these factors should help to reduce the 
mortality rate and the number of casualties per day providing that the mitigation efforts remain intact.

Since all of these factors point to a decrease in the number of fatalities, the marked increase in the number 
of deaths since late May clearly indicates that relaxation of the mitigation efforts is the prominent reason for the 
increase. As we find in the present study, states which were more aggressive in reopening, in terms of both the 
timing and the restrictions lifting, have experienced a higher percentage increase in death counts. Therefore we 
believe understanding the relation between reopening policies and death count is a timely topic.

This paper provides an estimate of the change in the number of fatalities with respect to easing mitigation 
efforts. We not only quantify the additional number of deaths, but more importantly, by comparing between 
different states, this study provides clues to the reopening strategy which could minimize loss of life. We find 
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significant differences between different states, as while most states display an increase in the number of fatali-
ties, a handful of states actually show a decrease. This should be important and timely information as another 
infection wave may occur in the winter season. Some recent articles which study the effects of the reopening 
can be found in Refs.7–9.

Model
The standard Susceptible-Infected-Recovered (SIR)  model10,11 is modified to consider the number of quaran-
tined people. Related models have been considered for the simulation of the spreading of the COVID-1912–74. 
This model is essentially a mean field approach that coarse-grains the entire population into different categories 
according to their viral infection status. The interactions between different categories are governed by the dif-
ferential equations we describe below.

The coarse-grained mean field approach allows the simulation to proceed without adjusting many of the tun-
able parameters. This is often not the case for a generic fitting of a time series. While the flexibility of the present 
model may not be able to predict details at the local level (a city or a county) over short durations (a few days) 
which obviously requires more parameters for modelling, the present scheme can provide a trend for large areas 
(a state or a country) over longer durations (a few weeks or months). The main goal of the present study is to 
investigate the effects of state-wise reopening in the summer months, which the present model should properly 
address. We refer the readers to recent  publications75,76 for more detailed discussion of the limitations of the 
present model for simulating the COVID-19 pandemic.

The dynamics of the model are governed by the following equations:12,13,75,76

where N is the total population under consideration, S is the population susceptible to infection, I is the popula-
tion that is not identified as able to transmit the virus to others, Q is the population of identified positive cases 
which are quarantined, R is the population of recovered patients (including both previously identified and 
unidentified cases), and C is the number of casualties.

The following parameters characterize the model: β is the infection rate, η is the detection rate of infected 
patients, α is the recovery rate of asymptomatic infected people, ξ is the recovery rate of the quarantined patients, 
and δ is the casualty rate of the quarantined. All of the parameters are in units of (1/day). The quarantined 
population Q is composed of the identified positive cases regardless of whether they are hospitalized or at home. 
Presymptomatic case is not considered separately.

We further assume that all casualties had been in quarantine prior to death and we consider that only ξ and δ 
are time dependent out of the coefficients. All of these assumptions are approximations made to allow for infer-
ence of the model parameters from the currently available data.

The total death count at time t, D(t), can be estimated as:

The confirmed positive count is P(t) = Q(t)+ RQ(t)+ C(t) , where RQ(t) are the recovered patients previously 
in quarantine. P(t) can be estimated as:

(1)
dS(t)

dt
= −β

S(t)I(t)

N
,

(2)
dI(t)

dt
= β

S(t)I(t)

N
− (α + η)I(t),

(3)
dQ(t)

dt
= ηI(t)− δ(t)Q(t)− ξ(t)Q(t),

(4)
dR(t)

dt
= ξ(t)Q(t)+ αI(t),

(5)
dC(t)

dt
= δ(t)Q(t),

(6)D(t) =

∫ t

0

C(τ )

dτ
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=
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Method
The method for modeling the effect of the mitigation efforts is done by considering two sets of parameters, 
one before the stay-at-home order is in place and the other after the social distancing measures are in place, as 
discussed in our previous  work75.

The median time between infection and the onset of symptoms, and the median time between the onset of 
symptoms and death are five and eight days,  respectively2–5. We only use the mean value, however the distribu-
tion is not self-averaging2–5. This also leads to a major difficulty on calculating the “confidence level”. For a very 
limited amount of data following an unknown distribution, it is rather difficult to provide a realistic estimate of 
the confidence  interval77. A more sophisticated model is needed to take such effects into consideration. Within 
the current approach we estimate the mortality rate to be δ0 ≈ 0.023/(5+ 8) ≈ 0.0018/day, where the accu-
mulated mortality rate is about 2.3%78. The recovery rate of asymptomatic people, α , is estimated based on the 
average time to recovery or death from infection, which are both thirteen days, and that approximate half of 
the infected people are  asymptomatic79. Then, we estimate α = 0.5/13 ≈ 0.0385/day. Prior to the availability of 
fourteen days of data the mortality rate, δ0 , is estimated by combining the accumulated mortality rate data and 
the median time between infection and death. After fourteen days of data are available, we estimate both the 
death rate, δ(t) , and the recovery rate of the quarantined, ξ(t) , from the raw data, using the assumption that the 
average time from the onset of symptoms to death or recovery is eight days. The percentage of asymptomatic 
people remains fixed to 50%79.

Instead of extrapolating the data from other areas or countries, we choose to determine it from the casualty 
and confirmed case counts in each state separately. We estimate the first set of parameters by fitting the data at the 
beginning of the epidemic to an exponential growth curve. We consider the effects of social distancing measures 
to be reflected in two parameters, the reduction of the infection rate and the first day when the measurements 
are effective since there is a time delay in the influence the stay-at-home orders have on the number of cases and 
deaths. We determine both parameters by minimizing the χ2 of the values and daily changes of the deaths and 
the confirmed infected counts based on data from before April  30th76. The data for the daily casualties and new 
cases are obtained from the database of the New York  Times80.

The major difficulty on modelling the spreading of COVID-19 is the influence of state or country  policies81. 
Policies such as reopening of different categories of venues or mask mandate cannot be factored into the model 
prior to the state government announcement. On the other hand, modelling without the external perturbations 
from the changes in policies can be used as a posterior gauge to investigate the effects due to the changes in 
policies.

The focus of the present study is to employ the data before May 2020 to model the spreading of COVID-19. 
Before May 2020, most of the mitigation efforts were not relaxed. The data from the model should present the 
dynamics of COVID-19 without the relaxation of the mitigation efforts. We then compared the projected death 
counts from modeling without policies changes factored in to the actual number of death counts. This ratio of 
the actual death counts to the projected death counts should then represent a measure of the effects from the 
changes in policy. We then find the correlation between this ratio and the reopening dates of different categories 
of venues, and also the mask mandate to find out the policy with the large correlation to the ratio between actual 
and projected death counts.

Results
Change in the mortality from reopening. Within the present model, there are two major routes for 
slowing the initial exponential growth of the epidemic, which is characterized by the parameter β − (α + η) . 
The first route is to decrease the infection rate β and the second route is to increase the testing rate η . Mitigation 
efforts in the spring sharply reduced the infection  rate76. Testing rate also grew during the spring and  summer1. 
Increasing the recovery rate of unidentified infected people, α , can also reduce the spread, but this is more dif-
ficult to achieve. Overall, we can expect that the recovery rate should improve slightly over time. The average age 
of an infected person has trended towards decreasing since  March1. This fact should lower the death rate among 
infected cases, since our model does not differentiate between different age groups.

All of these factors point out that the major, if not the only, reason for drastic increases on the number of 
infections and deaths is the relaxation of the mitigation efforts and by consequence an increase in the infection 
rate. If the mitigation efforts were to have remained intact, one would naively expect that both the number of 
infections and fatalities would decrease over time.

We attempt to quantify how many additional people died due to the relaxation of mitigation efforts. We 
project the number of casualties under the assumption that the mitigation efforts remain intact from the end of 
April to the end of August, and compare this projection with the actual death counts by the end of August. We 
choose this date for the reason that the summer peak seems to be passed by the end of August.

We investigate the twelve states with the largest number of casualties by the end of August They are New York, 
New Jersey, California, Texas, Florida, Massachusetts, Illinois, Pennsylvania, Michigan, Georgia, Arizona, and 
Louisiana. Figures 1 and 2 display the projected number of deaths, assuming that the mitigation efforts and all 
of the parameters in the model remain unchanged since the end of April, alongside the actual number of deaths. 
Table 1 displays the confirmed actual and the projected number of deaths by August 31st, as well as the ratio 
between both counts ( Rdeath ). Figure 3 shows the ratio between the actual and the projected death count by the 
end of August as a bar chart.

From the data presented in Figs. 1, 2 and Table 1, one can conclude that there are marked differences in the 
increase of the death count among various states. As we discussed above, the major factor in this difference should 
be due to the distinct policies in relaxing the mitigation efforts. An interesting and important topic is to find any 
possible correlation between these policies and the increase or decrease of fatalities.
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Figure 1.  Total death count (dots)80 and projected death count without easing the mitigation (solid line) as 
functions of time for the states of New York, New Jersey, California, Texas, Florida, and Massachusetts using 
estimate by the data before the end of April.
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Figure 2.  Total death count (dots)80 and projected fatalities count without easing the mitigation efforts (solid 
line) as functions of time for the states of Illinois, Pennsylvania, Michigan, Georgia, Arizona, and Louisiana 
using estimate by the data before the end of April.
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Reopening schedules of different states. In this section, we break down the details of the reopening 
policies of various states by considering the status of five categories of activities. These include the reopening of 
outdoor restaurants, indoor restaurants, bars, gyms, and stores. We emphasize that the reopening dates of differ-
ent categories of venues are not a reflection for the dates for which the effects become measurable.

The timings for reopening these businesses vary significantly between states. For example, indoor restaurants 
were allowed to open on April 27th in Georgia, but not until September 1st in New Jersey. Besides the schedule 
of reopening of different businesses, the face mask mandate can also be an important policy which affects the 
spreading of the  virus82, therefore we also considered the dates face mask mandates were enacted. The schedule 
for reopening and the date for the state mask mandate, if applicable, are displayed in Table 2.

For a quicker visual understanding of the reopening policies, we also plot the reopening dates of different 
categories as a radar chart for all the twelve states we consider (Fig. 4). The size of the pentagon is related to the 
speed of the reopening. The larger the pentagon, the slower the approach to reopening. By contrast, the smaller 
the pentagon, the more aggressive the reopening policies.

Previously, we investigated the effects of reopening by considering both the timing of reopening as well as 
the extent of the prevention measures implemented to lower the risk of infection after reopening. We found that 

Table 1.  The actual confirmed and the projected number of deaths by August 31st. The projected count is 
obtained by assuming the mitigation efforts in place at the end of April were maintained by the end of August. 
The last column is the factor of increase (if larger than 1) or decrease (if smaller than 1) of the actual death 
count when compared with the projection.

State Actual Projected Actual/projected

New York 32,541 24,788 1.31

New Jersey 15,945 12,333 1.29

California 13,020 10,214 1.27

Texas 12,857 2,015 6.38

Florida 11,186 2,133 5.24

Massachusetts 9,060 18,184 0.50

Illinois 8,258 11,296 0.73

Pennsylvania 7743 5304 1.46

Michigan 6756 6348 1.06

Georgia 5506 2365 2.33

Arizona 5031 955 5.27

Louisiana 4950 4011 1.23
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Figure 3.  Bar chart with the ratio between the actual and the projected death count by the end of August for 
the twelve states with the largest counts. The projected count is calculated assuming that the mitigation efforts 
have been maintained since the end of April. This projection represents the ideal upper bound for the number of 
casualties as other factors which should lower the death count are not taken into account in the present model. 
See the text for details. Most states are within 50% of the projection. Two states, Massachusetts and Illinois, 
demonstrate a lower death number relative to the projections. Three states, Texas, Florida, and Arizona, show 
a substantial increase relative to the projections. Another state which shows an increase greater than a factor of 
two is Georgia. Notes: The data can be found in Table 1.
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Table 2.  The reopening policies of different states. These include the dates of reopening of outdoor 
restaurants, indoor restaurants, bars, gyms, and stores. The date of the state mask mandate is also listed in the 
last column. An entry of “NA” indicates that a statewide reopening of the particular category or mask mandate 
has not been implemented by the September  1st6.

State Outdoor restaurants Indoor restaurants Bars Gyms Stores Mask mandate

New York Jun 22 Aug 24 Jun 22 May 29 May 29 May 28

New Jersey Jun 15 Sep 1 NA Jul 8 Jun 15 Jun 8

Texas May 1 May 1 May 22 May 6 May 1 NA

California May 26 May 26 Jun 12 Jun 12 May 26 Jun 18

Florida May 11 May 11 Jun 5 May 18 May 11 NA

Massachusetts Jun 22 Jun 22 NA Jul 6 Jun 8 May 18

Illinois Jun 26 Jun 26 Jun 26 Jul 20 May 29 May 29

Pennsylvania May 29 May 29 May 29 May 29 May 1 Jul 1

Michigan May 18 May 18 May 22 Jun 10 May 26 Jul 14

Georgia Apr 27 Apr 27 Jun 1 Apr 24 Apr 24 NA

Arizona May 11 May 11 May 15 May 13 May 4 NA

Louisiana May 15 May 15 Jun 15 May 15 May 15 Jul 11
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Figure 4.  Radar charts for the reopening policies in different states. Five different categories are included: 
indoor restaurants, outdoor restaurants, gyms, bars, and stores. The earlier the reopening, the closer to the 
origin of the radar chart the vertex is. The zeroth day (origin of the radar chart) is April 1st, and the last day (the 
edge of the radar chart) is August 31st. A smaller pentagon implies a more aggressive approach in the reopening. 
The area does not necessarily imply a quantitative measure of the effect of reopening. It merely represents the 
dates of reopening of different categories of venues. Notes: The data can be found in Table 2.
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lowering the infection rate is more important than the timing of reopening in the long  term76. A probable way 
to lower the infection rate is by wearing personal protective gear, in particular a face  mask82.

A simple indicator of the effect of different policies is the correlation between the given policy and the ratio 
between actual and projected death count, Rdeath . On this study, we focus on the reopening of five different 
venues and the mask mandate. A naive check of the validity of the correlation is that the reopening dates and 
mask mandate should have negative and positive correlation with Rdeath , respectively. An earlier reopening 
should cause higher death counts; conversely, enacting the mass mandate earlier should lower the death count. 
In addition, the magnitude of the correlation should represent the strength of the effect of each policy. If one 
particular category dominates, it indicates that particular category is the most important factor affecting the 
change in the death counts.

We list the Pearson correlation coefficients of each category in Table 3. The results are consistent with the 
expectation that the reopening dates have a negative correlation with Rdeath , and the date of enacting a mask 
mandate has a positive correlation with Rdeath . The Person coefficients show that the date of enacting the mask 
mandate has the strongest correlation with Rdeath . The measurement of the effect of different policies is based 
on the correlation between the change in the death counts and the reopening dates for different categories. The 
discussion below is based on this correlation.

According to the data presented above, the four states (Texas, Florida, Arizona, Georgia) which have the 
largest increase of deaths due to reopening all have a common feature – a mask mandate has never been imple-
mented. While the reopening date is markedly difference among different states, these four states tend to reopen 
early, but not by much compared to other states such as Michigan and Louisiana. The reopening dates do not 
seem to have as strong a correlation as the implementation of a mask mandate to the death count. This observa-
tion is supported by the largest magnitude (0.85) of the Pearson correlation coefficient for the mask mandate 
enacting date. For comparison, the Pearson correlation coefficients for the reopening dates of different venues 
fall between 0.49 and 0.66.

This observation seems to be consistent with the idea that the lowering of infection rate after reopening is 
more critical than the timing of  reopening75,76. The reopening dates primarily affect the initial conditions of the 
epidemic, but the mask mandate affects the dynamics, in particular the infection rate, of the epidemic. There are 
five parameters in the model, β , η,α, ξ , and δ . β is the infection rate, η is the detection rate of infected patients, 
α is the recovery rate of asymptomatic infected people, ξ is the recovery rate of the quarantined patients, and δ 
is the mortality rate of the quarantined. Among these five parameters, the mask mandate should only be able to 
explicitly affect the infection rate.

By the end of August, California and Louisiana did not show as substantial an increase in casualties as the 
above four states, although it is clear that the number of deaths per day is increasing starting around mid-July.

The two states with a lower death count than projected, Illinois and Massachusetts, both started mask man-
dates at earlier dates. Together with being comparatively late in reopening, they both show a clear decrease in 
death counts as one would predict from the trend in April.

While one can legitimately argue that correlation does not imply causation, it does seem that lack of a face 
mask mandate demonstrates the strongest correlation with the increase in the death count after reopening. 
Moreover, since different categories of policies were implemented in a convoluted timeline, it is difficult, if not 
practically impossible, to disentangle the contribution from each category without ambiguity.

While delaying the reopening should naively lower or at least delay the increase in the number of fatalities, 
it seems to be a secondary factor when comparing to the influence of the mask mandates. This observation is 
supported by the Pearson correlation coefficients presented in Table 3. One cannot directly identify the lack of 
a mask mandate as the cause of the increase in the number of casualties, as the states which do not have a mask 
mandate may also not have other policies which could help in lowering the infection rate. It is beyond the scope 
of the present study to uncover those possible causes.

Discussion
The various mitigation efforts in the spring of 2020, in particular the stay-at-home orders, helped to stabilize the 
number of infections and casualties. All states passed or very nearly passed the phase of exponential growth in 
the number of infections by the end of  April1.

Many other factors should have reduced the spread of the virus and the fatality rate. Awareness of the COVID-
19 among the public and the general increasing trend of wearing face masks in public areas should contribute 
to the lowering of the infection count, and thus the death count. Together with substantial improvement in the 
number of tests administered as compared to last March and the reduction of the share of infections between 
senior citizens, all these factors should reduce the infection and the death counts. Thus, if the mitigation efforts 
had remained intact, the infection rate should have decreased over time. Therefore, the hypothetical projection 

Table 3.  The Pearson correlation coefficients of six different categories of policies and the ratio between 
actual and projected death counts. The six categories are reopening of bars, gyms, outdoor restaurants, indoor 
restaurants, stores, and mask mandate.

Bars Gyms Restaurants outdoor Restaurants indoor Stores Mask mandate

− 0.51 − 0.62 − 0.66 − 0.49 − 0.61 0.85
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presented in this paper represents an upper bound estimation, since it assumes these factors which potentially 
reduced the infection rate to be unchanged since the end of April.

The pressure to reopen starting in April led many state governors to relax their states’ mitigation efforts. The 
extent of the relaxation is different between states, as is the change in  mortality6. Our analysis provides a quan-
titative assessment of the increase in the number of deaths due to the relaxation of the mitigation efforts and as 
consequence does or does not corroborate the states’ policies. This study should provide insight on what is a a 
good strategy for controlling the infection rate in the process of reopening. While various strategies do incur 
different impacts on human interactions and consequently the economy and many others, how to balance the 
effectiveness of lowering the infection rate against the negative effects of reducing human interactions is a broad 
topic which is beyond the scope of this study.

From the analysis presented in this paper, we found that three states show the largest increase in casualties 
due to their reopening policies: Texas, Florida, and Arizona. Georgia also shows substantial increase, though 
not to as great of an extent. On the other hand, Illinois and Massachusetts both show appreciable lowering of 
the death rate after April.

A common policy of the four states with the largest increase of deaths due to reopening is the absence of a 
mask mandate in the state. These four states tended to have reopened early, but not excessively so relative to other 
states. Therefore, we conclude that reopening dates do not seem to have correlate as strongly as the implementa-
tion of a mask mandate with an increasing number of infections and deaths.

It is an important issue to explore alternative hypotheses to explain the mismatch between the projected and 
the observed death counts. In the present study we attribute that to the reopening. An obvious alternative is 
the limitations of the model. As with most other SIR based models, there are many implicit assumptions. Our 
model is a coarse-grained mean field model which assumes the population is well mixed, and the interactions 
among the dynamical variables have no explicit time delay. The movement of population among different states 
and even countries is ignored in the present study. In the present study we treat each state as a closed system, no 
interaction outside the system of any kind is explicitly taken into consideration. For states which have frequent 
traffic flows, for example New York and New Jersey, an analysis of such interaction may be beneficial. It is also 
clear that the dynamics is different among different age  groups83. There is also evidence which shows the racial 
and social economic disparities in the population infected by and dying from COVID-1984.

These are some of the examples for which their effects are not explicitly considered in the present model. A 
more sophisticated modelling should include all these effects into consideration, but given the limited data before 
the mitigation efforts were being relaxed, it would have been a rather challenging call to distillate those effects 
from all the others. Moreover fitting of the parameters is also a source of uncertainty. With the very limited set 
of data points before the relaxation of the mitigation efforts (about one month of data), it can be very mislead-
ing to provide “confidence interval” to our model with the usual meaning of say 95% accuracy. Especially, there 
are evidences that at least some of the parameters are not self-averaging2–5. A more sophisticated model usually 
implies more parameters, and this problem would have been exacerbated. Undoubtedly, these are all possible 
sources of uncertainty which, at present, we do not have a good method to quantify them precisely.

A thorough survey of the differences between policies for states that show a marked increase in the death rate 
compared to those that show a reduction should provide guidance for a strategy which achieves the best results 
for lowering the number of infections and deaths.

In reality, relaxing the mitigation efforts is perhaps not purely a scientific problem, as it involves economic, 
political, and other social considerations. A delicate balance between all of those factors may need to be found.

Given that the winter season may present another wave of infections, a thorough study is particularly time 
sensitive. Our analysis seems to suggest that the face mask mandate is the most important policy for lowering 
the death count. Finally, we note that seasonal effects are not considered in the present  study85–87.

The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.

Appendix
We discuss the method of obtaining the initial condition and the parameters of the model in this appendix. At 
the beginning, very small fraction of the population is infected, assume the susceptible population count is the 
same as the total population, S ∼ N . With this assumption, we obtain

Solving the equation for I(t):12,14

At the very early stage, Q ≪ I , we can solve for Q(t),

With the above solution for Q(t), we obtain

(9)
dI(t)

dt
= β

S(t)I(t)

N
− (α + η)I(t) ≈ [β − (α + η)]I(t).

(10)I(t) ≈ I(0) exp[(β − (α + η))t],

(11)
dQ(t)

dt
= ηI(t)− δ(t)Q(t)− ξ(t)Q(t) ≈ ηI(t).

(12)Q(t) =
η

β − (α + η)
I(t).
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We can then relate the rate of increase in the number of casualties with the number of infected people in the 
early stage of the epidemic:

Finally, the casualty count can be found,

In the early stage of the epidemic, we assume exponential growth in the number of fatalities before the mitigation 
efforts are implemented. We can find the initial exponent, β − (α + η) , and its coefficient, the number of deaths 
per day are fit to Eq. (14) and its derivative dC(t)

dt
 , with the first date with one death taken as t = 0.

Data is smoothed by preforming a three day moving average before using for fitting.. We discard data with 
less than ten deaths. To identify the initial number of infected people, I(0), we need to estimate δ0.

We assume the accumulated mortality rate is estimated to be 2.3%78. Notably, the mortality rate does indeed 
vary by region. Notwithstanding these uncertainties, the median time between infection and the onset of symp-
toms is about five  days2–5. The median time between the onset of symptoms and death is about eight  days2–5. 
With these information, we can estimate δ0 ≈

0.023

5+ 8
≈ 0.0018/day.

The average time to recovery or death from infection are both 13 days and that half of the infected never show 
any  symptoms79. We estimate α = 0.5/13 ≈ 0.0385/day.

We estimate η by minimizing the χ2 of the total number of deaths and confirmed cases as well as their deriva-
tives. With η , we can deduce the infection rate β and the reproduction number R0 ≈ β/(η + α)14.

We also estimate both the death rate, δ(t) , and the recovery rate of the quarantined, ξ(t) , from the raw data 
of confirmed cases and deaths as a function of time. With the assumption that the average time from the onset 
of symptoms to death or recovery is eight days, we obtain δ(t)+ ξ(t) = 1/8 = 0.125/day. We can find δ(t)

With δ(r) , ξ(t) can be found using the relation δ(t)+ ξ(t) = 1/8 = 0.125/day75.
We list the parameters of the model obtained after the stay-at-home order was enacted and became effective 

in the Table 4.
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