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Entropy generation and thermal 
analysis of nanofluid flow 
inside the evacuated tube solar 
collector
S. Mojtaba Tabarhoseini & M. Sheikholeslami*

In the current investigation, the thermal and thermodynamic behavior of a buoyancy-driven 
evacuated tube solar collector (ETSC) has undergone precise evaluation, and the efficacy of 
nanoparticle dispersion in the testing fluid was scrutinized. The natural convection process was 
analyzed in different vertical sections of the absorber tube. The outputs for water and the utilized 
nanofluid were compared at various cutting planes along the tube during the simulation time. In this 
problem, CuO nanoparticles with optimum thermal properties were distributed in the base fluid. 
According to the surveyed results, the temperature distribution analysis illustrates that the mean 
wall temperature experiences more enhancement when the nanofluid is used. The comparison of the 
heat transfer coefficient between the two simulated cases show the competency of utilizing CuO-H

2
O 

nanofluid and highlight its crucial character in improving the thermal treatment of the operate fluid 
through the collector pipe. Based on irreversibility assessment, the irreversibility due to fluid friction 
rises when the nanofluid is applied during the flow time. In contrast, the entropy generation of pure 
water owing to heat transfer surpasses the case with nanofluid. More specifically, the heat transfer 
entropy generation experience a reduction of about 6.3% (0.143–0.134 W/K) by utilization of CuO 
with a volume fraction of 5% after 1 h of flow time, whereas the entropy generation by fluid viscosity 
enhances up to 23% when the nanofluid is applied in the system. The irreversibility originated from 
heating and fluid viscosity has significant difference in value, owing to the fluid’s low-velocity range in 
the natural convection process.

Abbreviations
AGETC	� All glass evacuated tube collector
BA	� Boussinesq approximation
FPC	� Flat plate collector
VPT	� Variable properties temperature
ETSC	� Evacuated tube solar collector

Symbols
b	� Manifold length (mm)
D	� Manifold diameter (mm)
d	� Absorber diameter (mm)
g	� Gravitational acceleration (m/s2)
Sgen	� Total entropy generation (W/K)
Tb	� Bulk temperature (K)
Tw	� Wall temperature (K)
Tave	� The average temperature (K)
t	� Time (s)
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Greek
ρ0	� Density of fluid at initial temperature (kg/m3)
μ	� Dynamic viscosity (Pa s)

Subscripts
l	� Local
nf	� Nanofluid
s	� Nanoparticle
f	� Fluid

The last decades have witnessed a burgeoning demand for energy consumption produced by fossil fuels, which 
in turn has led to growing concerns about environmental issues such as air pollution and other serious prob-
lems. Take the limited resources of fossil fuels and their high cost as an example. Based on this fact, to alleviate 
deleterious efficacies in connection with it, researchers have focused their attention and dedicated their study to 
renewable energy resources. More specifically, solar energy, as an auspicious type of clean energy, is applied in 
a wide range of applications owing to its accessibility and innocuous usage1,2. Solar water and air heaters, solar 
dryers, desalination systems, etc. are exemplar of solar energy applications in industrial and residential sectors3. 
Solar water heating systems are sweepingly utilized as one of the most prevalent solar energy technologies, 
which can supply approximately 70% of residential or commercial water heating demand4. FPSC and ETSC 
are including immovable solar collectors by which solar energy can be captured to produce hot water. From a 
comparative point of view, ETSCs play a more significant role than flat plate collectors because they provide 
higher thermal efficiency at operating temperatures below 100 ℃5. ETSCs are composed of an absorber tube sur-
rounded by two concentric glass tubes that are directly exposed to solar radiation. The vacuum envelope region 
between the absorber and external tube leads to minimization of the heat loss originating from radiation and 
convection heat transfer6. Moreover, the transmission of the absorbed energy toward the absorber tube occurs 
by the use of various heat extraction methods7. ETSCs are assorted into three types in terms of heat extraction 
techniques: heat-pipe ETSC, U-pipe ETSC, and water-in-glass ETSC8. Water-in-glass or thermosyphon models 
have been the center of attention of researchers by virtue of low maintenance cost, simplicity, and appropriate 
thermal performance9. Copious numerical and empirical studies were fixated on the treatment of ETSCs. The 
collector slope, type of working fluids, inlet fluid temperature, and geometrical parameters are the most effica-
cious factors affecting the collector efficiency10. Alfaro-Ayala et al.11 carried out optimization for WIGETCs with 
steady-state and laminar regime using the CFD model and the simulated annealing method. They concluded form 
optimization analysis that absorber area of the collector’s commercial geometry has been 19.4% lower than case 
of the optimal geometry with a minimum absorber area of approximately 2.5 m2 . Other optimum values, such 
as the number and length of vacuum tubes, were reduced by 40%, while the energy productivity of the whole 
collector augmented about 26.3%. To increase the performance of the AGETC, Yao et al.12 employed twisted 
tape inside a single-ended evacuated tube for various initial temperatures. The obtained results illustrated that 
using twist tape is an efficacious method for the system development at the high range of initial temperatures. 
The intensification of solar flux and its incident angle on the collector performance was performed by Essa and 
Mostafa13 in a numerical transient simulation considering a single-ended tube with a storage manifold. Based 
on the simulation results, alteration of solar flux intensity leads the flow array to change from the linear profile 
to the helical form, that originates from the movement of the sun rays. Alfaro-Ayala et al.14 performed an inves-
tigation changes of the features approaches to evaluate the outlet fluid temperature within the manifold of a 
WIGETC using CFD simulation. It was achieved that the collector efficiency and outlet fluid temperature were 
in closer concordance to the experimental data by utilization of the BA method compared to the VPT model. 
Mazarron et al.15 evaluated the fluid flow, design, and installation of a SWH system operating with ETSC at vari-
ous operational temperatures. Authors proved that the greatest productivity of the proposed unit was obtained 
for water with T = 50 ◦C , and the lowest thermal productivity was for the case with 80 ◦C inlet fluid tempera-
ture. Moreover, the profitability of the system decreases, while the operational temperature rises. Apart from 
all the contributing factors which can develop the performance of the system, using nanofluids is an efficacious 
technique, leading the solar collectors to have higher thermal efficiency. Owing to the significant capability of 
nano-fluids for carrying heat up in comparison with other typical fluids, the use of nanofluids has been prevalent 
in an extensive application, particularly in ETSCs. The thermal functionality of the ETSC has been analyzed in 
multifarious volume concentration (0.015%, 0.025% and 0.035%) of CeO2/water nanofluid by authors of Ref.16 
who found that, using CeO2/water nanofluid with 0.035% volume fraction has shown the greatest influence on 
the collector efficiency enhancement up to 34%. Ozsoy and Corumlu17 analyzed the productivity of a HPETC 
using silver-water nanofluid. They reported that the proposed system witnessed the efficiency increment about 
20–40%, while using nanofluid in place of pure water. Gan et al.18 found that employing TiO2-water nanofluid 
under optimum circumstances can lead the productivity of the ETSC to augment around 16.5% in comparison 
to the case with pure water. Dehaj and Mohiabadi19 conducted an experimental study to evaluate the efficiency 
of HPETC by using MgO nanofluid at different volume fractions. They found that MgO/water nanofluid can 
enhance the productivity of the collector more than case with water. According to the observations of Yan et al.20 
in their empirical experiment, SiO2/water nanofluid at 5% mass fraction has shown its merits in improving the 
collector performance compared to plain water. Sharafeldin and Grof21 demonstrated the significance and the 
efficacy of Cu/water nanofluid in ETSC, by examining the nanoparticles at various volume concentrations. The 
results have divulged that a 50% increment took place in Tout while employing the nanofluid at 0.03%, and 0.8 
L/min of volume concentration and volume flow rate, respectively.
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Regarding the 2nd law, the thermal efficiency of unit will experience a reduction over time, for the reason 
that the heat energy conversion process is irreversible. The assessment of entropy generation in engineering 
applications was proposed by Bejan22 as an efficacious way to justify the performance improvement in thermal 
systems, where there are limitations for energy analysis23. Employing nanofluids leads the entropy generation of 
the system to reduce24. There are few kinds of literature about ETSCs, which put their main focus on entropy gen-
eration and irreversibility. Leong et al.25 examined a comparison in terms of entropy generation has been drawn 
between TiO2 and Al2O3 nanofluid inside a circular tube. Their observation has shown that the total entropy 
generation was higher for Al2O3 nanofluid than that of TiO2 nanofluid. Ramirez-Minguela et al.26 appraised the 
rate of entropy generation for FPC and ETSC using CFD simulation. The obtained results revealed that ETSC 
has higher thermal entropy generation than FPC by virtue of more heat transmission, which takes place in a 
vacuum tube collector. In contrast, FPC has shown higher fluid friction entropy generation.

According to the lack of numerical researches concentrating on the appraisal of irreversibility in ETSCs, 
this study is fixated on analyzing the irreversibly inside an open thermosyphon solar collector aim to extract 
the efficacy of entropy generation on the productivity of suggested unit. Furthermore, a comparative evaluation 
between the two cases by utilization of pure water and nanofluid are presented over 1 h of the simulation process. 
CuO-H2O as one of the most efficacious nanofluids in thermal performance improvement of the solar thermal 
systems has been selected with optimum properties and volume concentration. In the thermodynamic assess-
ment by consideration of the 2nd law, irreversibility as a result of fluid viscosity and heat transfer are examined 
and compared for both simulated cases. Moreover, the components of Sgen are illustrated throughout the model. 
For thermal evaluation of the proposed system, temperature and velocity distributions and contours inside the 
three cutting sections of collector along with the heat transfer coefficient were analyzed for water and nanofluid, 
by which the merits of using the CuO nanofluid are demonstrated.

System description and mathematical modeling
The modeling technique has been employed for a close-ended thermosyphon ETSC along with the manifold 
investigating its thermal behavior and entropy generation. Figure 1 provides an overview of the geometry of the 
simulated model. As exhibited in this graph, the absorber tube was divided into 3 vertical sections that aim to 
analyze the flow array within the absorber, from the entrance section toward the close-end. The absorber tube 
has been considered with a slope of 45 ◦ through the z-direction. The fluid flow simulation process was analyzed 
using by utilization of the FVM method in ANSYS FLUENT. The terms of velocity and pressure in the governing 
equations were coupled using the SIMPLE algorithm. What’s more, the Boussinesq approximation method is 
used for density difference consideration as a result of the slope of the absorber tube. The main assumptions for 
the fluid flow structure are incompressible, laminar, and continuous. To diminish the computational time and 
regarding the solution process, which is time-dependent (transient), the modeling time was considered for 1 h.

Mesh structure, initial, and boundary conditions.  The mesh structure is effective elements in CFD 
simulations, on which the correctness of outcome is based. In this investigation, the average tank temperature 
in different cases with various numbers of nodes varying from 258,743 to approximately 500,000 was compared 
to reach the optimum number of nodes to reduce computational cost and time. When the number of nodes sur-
passes 380,000, the changes in the results are trivial and negligible. Hence, 380,675 nodes were specified as the 

Figure 1.   The geometry of the scrutinized solar unit.



4

Vol:.(1234567890)

Scientific Reports |         (2022) 12:1380  | https://doi.org/10.1038/s41598-022-05263-2

www.nature.com/scientificreports/

extra fine mesh for modeling. In addition, the value of skewness was 0.17, which shows the high quality of the 
mesh structure. The shape of the grid applied in current article was illustrated in Fig. 2.

The components of the described model are comprised of the manifold and the absorber tube. There is a 
heat exchange between reservoir tank and ambient with h = 8 W/m2 K. The tank is at direct exposure to the solar 
heat flux, which has been assumed as a constant value of 900 W/m2 during the simulation process. As shown 
in Fig. 1, part the upper wall of the absorber is specified as the surface on which the solar flux is defined, while 
other surfaces of the absorber are considered as adiabatic walls. Taking initial conditions into account, the initial 
velocity and the initial temperature of the fluid were presumed as zero and 30 ◦C , respectively. To decrease the 
computational cost and complexity of the solution, the outer glass tube along with the vacuum envelope between 
the absorber and the outer tube has been neglected. In order to reach the results with more accuracy compared 
to the real case, the effects of eliminated parts was involved in boundary conditions27,28.

Validation and time step independence.  Proving the accuracy of the results is an important part of 
a numerical simulation. Because of this, the proposed model of Jowzi et al.7 has been considered to verify the 
simulation in the present model. As it is depicted in Fig. 3, the obtained values for the tank’s mean temperature 
over 1 h of simulation are in good concordance with the numerical and empirical results, with an error of less 
than 3% in both studies, which shows the authenticity of the current results.

Choosing an appropriate size for the time step can be helpful to reduce the computational time and simul-
taneously give accurate results. Figure 4 illustrates the time step analysis considering the mean temperature of 
the absorber and tank during 1 h of the simulation process. As is obvious, at a 5 s time step size, the Ttube and 
Ttank witnesses a significant difference from the outcomes reported at two other time steps after 25 and 15 min 
of flow time, respectively. Thus, a time step size of 2 s is acceptable for use in the numerical simulation process.

Mathematical modeling.  Aiming to consider lifting efficacy in the modeling, the Boussinesq approxima-
tion model has been taken into account. In this approach, density is considered as the variable parameter, while 

Figure 2.   The style of the grid structure.

Figure 3.   Correctness of the present study based on the numerical and empirical data.
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all other thermophysical and transport characteristics are assumed constant. It is stated in terms of temperature 
(T) and thermal expansion coefficient ( β ), which was defined as follows29:

where β is the denotation of the volume expansion coefficient with a fixed quantity of 0.000344 K−1 , as shown 
in Table 1. Considering the buoyancy effect in the conservation equations leads to the equations given below. 
The continuity equation for the laminar flow regime is defined as follows7:

The momentum equations are categorized into x, y, and z components7:

Energy equation:

In our study, the suspension of nanoparticles inside pure water was assumed to be the single-phase approach. 
In this approach, it is assumed that nanoparticles are dispersed into the conventional fluid homogenously. The 
formulations related to the nanofluid modeling that are applied in this problem are described by the following 
equations30:
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Figure 4.   Time step size selection according to the average temperatures.

Table 1.   CuO nanoparticle and water’s thermophysical specifications used in the present study34.

Cp (J/kg k) k (W/m k) β(1/K) ρ (kg/m3) µ (kg/ms)

CuO 531.8 76.50 0.0000180 6320 –

H2O 4076.4 0.60475 0.0034112 997.78 0.0009772
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Density:

Viscosity and heat capacity:

Thermal conductivity:

Thermal expansion coefficient:

The thermophysical characteristics of CuO nanoparticles were calculated using the above equations, as shown 
in Table 1. The coefficient of "h" can be achieved as31:

Turning to the focus of this study, entropy generation analysis has been put forward to assess the treatment 
of the proposed system. Local entropy generation rate would be obtained from the V and T fields gained from 
the CFD analysis by utilization of the thermodynamics second law. The summation of irreversibility owing to 
fluid viscosity and heating provides the total value of irreversibility as follows32:

Regarding the equations germane to the nanofluid flow, the entropy generation correlations can be expressed 
as33:

Results and discussion
Thermal examination.  Current part delineates the impacts of nanomaterial migration and entropy gener-
ation inside a single-ended ETSC. The collector tube has been divided into three sections by vertical lines (lines 
1, 2, and 3), each of which was surrounded by cutting planes. To reduce the computational cost, the numerical 
simulation results have been considered for 1 h of flow time, which can be extended to a one-day duration. In 
the first step, the velocity distributions of fluid flow with plain water and nanofluid are compared in the entire 
tube and each cutting section after 30 and 60 min, respectively. In the second step, the same comparative analysis 
has been conducted for the temperature range within the unit for both fluid flows. Finally, entropy generation 
assessment is carried out for both cases.

To elaborate on the entire natural circulation procedure taking place inside the tube, at the beginning of the 
process, cold fluid flows from the storage tank toward the absorber’s close-ended region. Meanwhile, the top 
wall of the absorber, which is at the direct experience to solar radiation, is involved in absorbing and transferring 
the radiation to the fluid, which migrates inside the collector pipe. After the absorbed heat transmission to the 
base fluid, the change in density engenders the buoyancy effect, which eventually leads the fluid to experience 
a free circulation process. Figure 5a,b illustrate the distribution of V for water at 0.5 and 1 h after the flow time. 
To elaborate, the fluid flow inside the tube is divided into layers of fluid with high and low temperatures at the 
top half and bottom half, which is separated. Figure 6a,b demonstrate the velocity distribution inside the tube 
and tank for the nanofluid at 0.5 and 1 h after simulation. From a comparative viewpoint, the velocity range for 
water is marginally lower than the case with using nanofluid. Figure 7a,b comparatively analyze the V of different 
vertical planes of lines 1, 2, and 3 during the passage of flow time. At t = 0.5 h after the flow time, it is observable 
that a slight discrepancy in velocity values occurs between the two simulated cases in the regions of (15 mm, 
20 mm) and (− 0.02 m, − 0.015 m) along the vertical sections for all three lines. The negative velocity values 
denote the fluid motion toward the pipe’s close end, while positive values refer to the outflow which is moving 
toward the manifold in the form of natural convection. Among all the cutting sections, the least difference in 
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velocity magnitudes for both cases exists in line 3, which is near the stagnant region on the close-ended side of 
the absorber, which leads the fluid flow to experience the least velocity value compared to the first line nearby 
the entry region. On the contrary, the utmost velocity difference of water and nanofluid appertain to line 1, 
where the fluid flows with the maximum velocity. The last point which can be deduced from Fig. 7a is that line 
1 reached the highest peak point of velocity, and as the vertical planes approach the tube’s end, the peak point 
starts to decrease. This is due to the fact that when water enters the tube sliding layer, which has the lowest speed 
starts to form in the regions adjacent to the below and up walls of the collector owing to the reverse directions of 
migration in these regions, which causes in the peak velocity to decline. Figure 7b compares the velocity profiles 
of the nanofluid and plain water after 1 h. Despite the marginal velocity differences of nanofluid and water in 
different sections at t = 0.5 h, more differences were observed in the vertical planes of lines 1 and 2, although 
they remained roughly unchanged in line 3 as the flow time increased up to 1 h. Moreover, the velocity values 
of water and nanofluid were observed to have more differences between the highest and lowest peak points of 
velocity compared to other regions in all the sections. What stands out, the outflow velocity of the nanofluid in 
line 1 (starting at Y = − 0.019) was found to have a higher quantity. All things considered, the velocity values for 
the nanofluid stood at approximately 40 mm/s in line 1 at the peak point (Y = 0.018) for t = 1 h, which was the 

Figure 5.   Reporting of velocity for water.
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highest magnitude among all other sections. The procedure of fluid circulation is shown in temperature distribu-
tions for water and nanofluid over the simulation time in Figs. 8 and 9. To be more precise, the bottom region of 
the tank, which encompasses fluid with lower temperature, flows down to the tube, and the fluid turning back 
to the manifold flows faster due to the viscosity reduction as a result of temperature enhancement. Furthermore, 
the free circulation rate faces a reduction nearby the close-ended region of the absorber. Figure 10 depicts the 
distribution of temperature inside the specified parts of the tube for water and nanofluid after 0.5 and 1 h of flow 
time. It is deduced that the inflow which is flowing from the manifold toward the tube has a considerably lower 
temperature than the outflow that returns toward the reservoir. After a 30-min simulation period, the temperature 
difference between the water and nanofluid remained marginal in all the regions of the cutting planes, while 
this difference was augmented over the flow time passage. Hence, it can be concluded that using a nanofluid has 
a pivotal impact on the functionality of the system specifically when the simulation time is extended to 1 day. 
Among all three sections for the simulated cases, the utmost temperature magnitudes have been obtained for the 
nanofluid in the first plane at t = 60 min. It is noteworthy to mention that the temperature increment by utilizing 
nanofluid is observable in the regions from Y = − 0.013 to 0.013 at 1 h after simulation time. The last outstanding 
feature of this process, as illustrated in the figure, is the intensification of temperature augmentation starting 
from Y = 0.013 to the top wall of the absorber compared to other regions. This fact can be justifiable when the 

Figure 6.   Reporting of velocity for nanofluid.
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secondary flow, which originates from the inflow, joins the outflow and its temperature undergoes enhancement. 
To make a comparison between the two simulated cases and show the merit of employing nanoparticles on the 
productivity intensification, the "h" factor was measured as depicted in Fig. 11. Evidently, the "h" was discorved 
to be higher with the utilization of nanofluid than that of the conventional fluid over the simulation time.

Entropy generation assessment.  Besides the thermal assessment aimed at exploring the impact of 
nanofluid in the collector, an entropy generation analysis is provided for both cases over the simulated flow time 
to compare the irreversibility in the system under the simulated cases. Fluid friction ( Sgen,f  ) and heat transfer 
( Sgen,th ) were two factors of entropy generation, which has been considered in this study using the formulation 
of Eq.  (14). Figure  12a,c show the entropy generation distribution for pure water due to fluid viscosity, and 
Fig. 12b,d demonstrate the entropy generation distribution for pure water due to heat transfer throughout the 
collector tube and manifold at t = 0.5 h and t = 1 h of flow time. It can also be inferred that the tube’s top wall, 
which is exposed to the constant solar flux, experiences the utmost heat transfer entropy generation by virtue of 
the maximum temperature gradient among the base fluid and adjacent walls. Additionally, the maximum fluid 
friction entropy generation is observable nearby the upper wall of the tube and a part of the manifold, where 
the outflow possesses the maximum velocity magnitude. Figure 13a,c depict the distribution of fluid friction 
entropy generation for the nanofluid over the 1-h flow time inside the tube. Additionally, it is deduced that the 
utmost rate of fluid friction irreversibility in cutting plane 1 occurs in the regions next to the top and bottom 
surfaces of the absorber, in which the intensity of convective rate and the fluid flow velocity are higher than 
other regions. Since velocity of the fluid starts to decelerate while flowing toward the close-ended zone of the 
tube, the fluid viscosity irreversibility at the bottom region of the tube gradually fades out as it is described in 
Fig. 13a,c. Figure 13b,d depict distribution of thermal-driven entropy generation over the flow time for the case 
with nanofluid. Figure 14a,b illustrate the comparison of the fluid friction entropy generation and the thermal 

Figure 7.   Distribution of velocity at various sections.
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irreversibility for water and the nanofluid over the simulation time. It is observable that the use of nanofluid 
leads the fluid friction irreversibility to enhance by 23%, whereas the irreversibility originated from the heat 
transfer reduced by 6.3% (0.143–0.134 W/K) by utilization of CuO nano-powders with a volume fraction of 5% 
after 1 h of flow time. Heat transfer irreversibility reduction by utilization of the nanofluid belies in the fact that 
the ΔT is lower, while the connection improvement occurs in the system with the aid of nanofluid. Turning to the 
other side, pressure drop increases when the nanofluid is used in the system, which in turn leads to fluid friction 
augmentation. Notably, the irreversibility owing to heating is considerably bigger than the fluid-viscosity-driven 
entropy generation when the fluid possesses low velocity, which shows the irrelevancy of the fluid flow viscous 
stresses in light of the buoyancy-driven nature of the fluid structure within the absorber tube.

Conclusion
The lack of meticulous studies fixated on the thermodynamic scrutinization of evacuated tube collectors by the 
presence of nanofluids as an efficacious working fluid for improving the thermal treatment of the system was 
the main reason this study was carried out. Moreover, the proposed system has undergone thermal evaluation to 
analyze the fluid structure inside the system and the desirability of the nanofluid flow to enhance the functionality 
of the collector. The collector tube’s inclination angle tube was fixed at 45 ◦ as the optimum angle, which provides 
a ggreater temperature range inside the tank. To verify the outputs of present model, numerical and experimental 
studies were chosen to certify the authenticity of this research and its results. The inclusion of CuO nanomaterial 
at a 5% volume fraction in plain water was selected in this study according to its merit and had the utmost impact 
on the collector’s thermal performance improvement compared to all other types of nanoparticles, which led to 
several changes in productivity of unit. First, the inclusion of nano-sized powders caused the mean temperature 
of the tank to increase. More importantly, as the simulation time increases from 0 to 3600 s, ΔT among the case 
with nanofluid and the case with pure H2O starts to enhance. Second, the velocity magnitude for the nanofluid 
was found to be 40 mm/s in line 1 at the peak point in an hour, which was the highest value among all other cut-
ting sections. In addition, to authenticate the productivity improvement of unit by the employ of nanomaterial, 
a comparison was drawn in terms of "h" between the two simulated cases which denote the thermal competency 
of the provided nanomaterial in proposed system. The convective coefficient was obtained to have higher val-
ues over the simulation process with the utilization of CuO by virtue of the effectual thermal characteristics of 
the prepared fluid when coalesced with the nanoparticles, homogenously. Ultimately, the entropy generation 
examination as the main objective of this study has shown that adding CuO nanoparticles is a contributing 

Figure 8.   Illustration of temperature for H2O.
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Figure 9.   Illustration of temperature for nanofluid.

Figure 10.   Distribution of temperature at various sections.
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factor, affecting the heat transfer irreversibility to endure a reduction when compared to the conventional fluid. 
In detail, the irreversibility originated from the heat transfer reduces around 6% with the existence of CuO-H2O 
nanofluid after the 60-min simulation time. This follows from the fact that finite temperature discrepancy has a 
lower range when the collector witnesses the thermal performance improvement. On the contrary, the irrevers-
ibility originated from the fluid viscosity surges approximately 23% as an outcome of augmentation in the ΔP 
while suspending nano-sized powders within testing fluid. Sgen owing to the fluid viscosity was found to have 
minuscule values in both simulated cases, which shows the irrelevancy of the fluid flow viscous stresses in light 
of the buoyancy-driven nature of the fluid flow within the solar unit. All in all, a higher total entropy generation 
rate was obtained for the conventional type of collector with pure water.

Figure 11.   Comparison of performance of unit for nanofluid and water.

Figure 12.   Distribution of Sgen,f (a) t = 30 and (c) t = 60 min, Sgen,th (b) t = 30 and (d) t = 60 min for pure water.
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Figure 13.   Distribution of Sgen,f (a) t = 30 and (c) t = 60 min, Sgen,th (b) t = 30 and (d) t = 60 min for nanofluid.



14

Vol:.(1234567890)

Scientific Reports |         (2022) 12:1380  | https://doi.org/10.1038/s41598-022-05263-2

www.nature.com/scientificreports/

Received: 13 October 2021; Accepted: 10 January 2022

References
	 1.	 Martinopoulos, G., Tsilingiridis, G. & Kyriakis, N. Identification of the environmental impact from the use of different materials 

in domestic solar hot water systems. Appl. Energy 102, 545–555. https://​doi.​org/​10.​1016/J.​APENE​RGY.​2012.​08.​035 (2013).
	 2.	 Comodi, G. et al. LCA analysis of renewable domestic hot water systems with unglazed and glazed solar thermal panels. Energy 

Proced. 61, 234–237. https://​doi.​org/​10.​1016/J.​EGYPRO.​2014.​11.​1096 (2014).
	 3.	 Shah, T. R. & Ali, H. M. Applications of hybrid nanofluids in solar energy, practical limitations and challenges: A critical review. 

Sol. Energy 183, 173–203. https://​doi.​org/​10.​1016/J.​SOLEN​ER.​2019.​03.​012 (2019).
	 4.	 Coimbra, J. & Almeida, M. Challenges and benefits of building sustainable cooperative housing. Build Environ. 62, 9–17. https://​

doi.​org/​10.​1016/J.​BUILD​ENV.​2013.​01.​003 (2013).
	 5.	 Eidan, A. A., AlSahlani, A., Ahmed, A. Q., Al-fahham, M. & Jalil, J. M. Improving the performance of heat pipe-evacuated tube 

solar collector experimentally by using Al2O3 and CuO/acetone nanofluids. Sol. Energy 173, 780–788. https://​doi.​org/​10.​1016/J.​
SOLEN​ER.​2018.​08.​013 (2018).

	 6.	 Chopra, K. et al. Thermal performance of phase change material integrated heat pipe evacuated tube solar collector system: An 
experimental assessment. Energy Convers. Manage. 203, 112205. https://​doi.​org/​10.​1016/J.​ENCON​MAN.​2019.​112205 (2020).

	 7.	 Jowzi, M., Veysi, F. & Sadeghi, G. Experimental and numerical investigations on the thermal performance of a modified evacuated 
tube solar collector: Effect of the bypass tube. Sol. Energy 183, 725–737. https://​doi.​org/​10.​1016/J.​SOLEN​ER.​2019.​03.​063 (2019).

	 8.	 Yurddaş, A. Optimization and thermal performance of evacuated tube solar collector with various nanofluids. Int. J. Heat Mass 
Transf. 152, 119496. https://​doi.​org/​10.​1016/J.​IJHEA​TMASS​TRANS​FER.​2020.​119496 (2020).

	 9.	 Zhang, X. et al. Experimental investigation of the higher coefficient of thermal performance for water-in-glass evacuated tube 
solar water heaters in China. Energy Convers. Manage. 78, 386–392. https://​doi.​org/​10.​1016/J.​ENCON​MAN.​2013.​10.​070 (2014).

	10.	 Naik, B. K., Bhowmik, M. & Muthukumar, P. Experimental investigation and numerical modelling on the performance assess-
ments of evacuated U-tube solar collector systems. Renew. Energy 134, 1344–1361. https://​doi.​org/​10.​1016/J.​RENENE.​2018.​09.​
066 (2019).

Figure 14.   Comparison of (a) fluid friction irreversibility and (b) heat transfer irreversibility for water and 
nanofluid.

https://doi.org/10.1016/J.APENERGY.2012.08.035
https://doi.org/10.1016/J.EGYPRO.2014.11.1096
https://doi.org/10.1016/J.SOLENER.2019.03.012
https://doi.org/10.1016/J.BUILDENV.2013.01.003
https://doi.org/10.1016/J.BUILDENV.2013.01.003
https://doi.org/10.1016/J.SOLENER.2018.08.013
https://doi.org/10.1016/J.SOLENER.2018.08.013
https://doi.org/10.1016/J.ENCONMAN.2019.112205
https://doi.org/10.1016/J.SOLENER.2019.03.063
https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2020.119496
https://doi.org/10.1016/J.ENCONMAN.2013.10.070
https://doi.org/10.1016/J.RENENE.2018.09.066
https://doi.org/10.1016/J.RENENE.2018.09.066


15

Vol.:(0123456789)

Scientific Reports |         (2022) 12:1380  | https://doi.org/10.1038/s41598-022-05263-2

www.nature.com/scientificreports/

	11.	 Alfaro-Ayala, J. A. et al. Optimization of a solar collector with evacuated tubes using the simulated annealing and computational 
fluid dynamics. Energy Convers. Manage. 166, 343–355. https://​doi.​org/​10.​1016/j.​encon​man.​2018.​04.​039 (2018).

	12.	 Yao, K., Li, T., Tao, H., Wei, J. & Feng, K. Performance evaluation of all-glass evacuated tube solar water heater with twist tape 
inserts using CFD. Energy Proced. 70, 332–339. https://​doi.​org/​10.​1016/j.​egypro.​2015.​02.​131 (2015).

	13.	 Essa, M. A. & Mostafa, N. H. Theoretical and experimental study for temperature distribution and flow profile in all water evacu-
ated tube solar collector considering solar radiation boundary condition. Sol. Energy 142, 267–277. https://​doi.​org/​10.​1016/j.​solen​
er.​2016.​12.​035 (2017).

	14.	 Alfaro-ayala, J. A., Martínez-rodríguez, G., Picón-núñez, M., Uribe-ramírez, A. R. & Gallegos-muñoz, A. Numerical study of a 
low temperature water-in-glass evacuated tube solar collector. Energy Convers. Manage. 94, 472–481. https://​doi.​org/​10.​1016/j.​
encon​man.​2015.​01.​091 (2015).

	15.	 Mazarrón, F. R., Porras-Prieto, C. J., García, J. L. & Benavente, R. M. Feasibility of active solar water heating systems with evacuated 
tube collector at different operational water temperatures. Energy Convers. Manage. 113, 16–26. https://​doi.​org/​10.​1016/J.​ENCON​
MAN.​2016.​01.​046 (2016).

	16.	 Sharafeldin, M. A. Evacuated tube solar collector performance using CeO2/water nano fluid. J. Clean. Prod. 185, 2–11. https://​doi.​
org/​10.​1016/j.​jclep​ro.​2018.​03.​054 (2018).

	17.	 Ozsoy, A. & Corumlu, V. Thermal performance of a thermosyphon heat pipe evacuated tube solar collector using silver-water 
nanofluid for commercial applications. Renew. Energy 122, 26–34. https://​doi.​org/​10.​1016/J.​RENENE.​2018.​01.​031 (2018).

	18.	 Gan, Y. Y. et al. Thermal conductivity optimization and entropy generation analysis of titanium dioxide nanofluid in evacuated 
tube solar collector. Appl. Therm. Eng. 145, 155–164. https://​doi.​org/​10.​1016/J.​APPLT​HERMA​LENG.​2018.​09.​012 (2018).

	19.	 Dehaj, M. S. & Mohiabadi, M. Z. Experimental investigation of heat pipe solar collector using MgO nanofluids. Sol. Energy Mater. 
Sol. Cells 191, 91–99. https://​doi.​org/​10.​1016/J.​SOLMAT.​2018.​10.​025 (2019).

	20.	 Yan, S., Wang, F., Shi, Z. G. & Tian, R. Heat transfer property of SiO2/water nanofluid flow inside solar collector vacuum tubes. 
Appl. Therm. Eng. 118, 385–391. https://​doi.​org/​10.​1016/J.​APPLT​HERMA​LENG.​2017.​02.​108 (2017).

	21.	 Sharafeldin, M. A., Gróf, G., Abu-Nada, E. & Mahian, O. Evacuated tube solar collector performance using copper nanofluid: 
Energy and environmental analysis. Appl. Therm. Eng. 162, 114205. https://​doi.​org/​10.​1016/J.​APPLT​HERMA​LENG.​2019.​114205 
(2019).

	22.	 Bejan, A. A study of entropy generation in fundamental convective heat transfer. J. Heat Transfer. 101, 718–725. https://​doi.​org/​
10.​1115/1.​34510​63 (1979).

	23.	 Kaushik, S. C., Reddy, V. S. & Tyagi, S. K. Energy and exergy analyses of thermal power plants: A review. Renew. Sustain. Energy 
Rev. 15, 1857–1872. https://​doi.​org/​10.​1016/J.​RSER.​2010.​12.​007 (2011).

	24.	 López, A., Ibáñez, G., Pantoja, J., Moreira, J. & Lastres, O. Entropy generation analysis of MHD nanofluid flow in a porous vertical 
microchannel with nonlinear thermal radiation, slip flow and convective-radiative boundary conditions. Int. J. Heat Mass Transf. 
107, 982–994. https://​doi.​org/​10.​1016/J.​IJHEA​TMASS​TRANS​FER.​2016.​10.​126 (2017).

	25.	 Leong, K. Y., Saidur, R., Mahlia, T. M. I. & Yau, Y. H. Entropy generation analysis of nanofluid flow in a circular tube subjected to 
constant wall temperature. Int. Commun. Heat Mass Transf. 39, 1169–1175. https://​doi.​org/​10.​1016/J.​ICHEA​TMASS​TRANS​FER.​
2012.​06.​009 (2012).

	26.	 Ramírez-Minguela, J. J. et al. Comparison of the thermo-hydraulic performance and the entropy generation rate for two types of 
low temperature solar collectors using CFD. Sol. Energy 166, 123–137. https://​doi.​org/​10.​1016/J.​SOLEN​ER.​2018.​03.​050 (2018).

	27.	 Xu, L., Wang, Z., Yuan, G., Li, X. & Ruan, Y. A new dynamic test method for thermal performance of all-glass evacuated solar air 
collectors. Sol. Energy 86, 1222–1231. https://​doi.​org/​10.​1016/J.​SOLEN​ER.​2012.​01.​015 (2012).

	28.	 Sato, A. I., Scalon, V. L. & Padilha, A. Numerical analysis of a modified evacuated tubes solar collector. Renew. Energy Power Qual. 
J. 1, 384–389. https://​doi.​org/​10.​24084/​repqj​10.​322 (2012).

	29.	 Advanced Engineering Thermodynamics-Adrian Bejan-Google Books n.d. https://​books.​google.​com/​books?​hl=​en&​lr=​&​id=​j0zSD​
AAAQB​AJ&​oi=​fnd&​pg=​PR17&​dq=​Bejan+​A.+​Advan​ced+​engin​eering+​therm​odyna​mics:+​John+​Wiley+%​26+​Sons,+​2016.​&​ots=​
2wVXZ​eCtQp​&​sig=​iMwje​btnWK​5Q9IY​A6Au6​iDOEy​PA#v=​onepa​ge&​q&f=​false. Accessed 11 Nov 2021.

	30.	 Bellos, E., Tzivanidis, C. & Papadopoulos, A. Enhancing the performance of a linear Fresnel reflector using nanofluids and internal 
finned absorber. J. Therm. Anal. Calorim. 135, 237–255. https://​doi.​org/​10.​1007/​s10973-​018-​6989-1 (2019).

	31.	 Kim, D. et al. Convective heat transfer characteristics of nanofluids under laminar and turbulent flow conditions. Curr. Appl. Phys. 
9, e119–e123. https://​doi.​org/​10.​1016/J.​CAP.​2008.​12.​047 (2009).

	32.	 Bejan, A. & Kestin, J. Entropy generation through heat and fluid flow. J. Appl. Mech. 50, 475–475. https://​doi.​org/​10.​1115/1.​31670​
72 (1983).

	33.	 Zimparov, V. Extended performance evaluation criteria for enhanced heat transfer surfaces: Heat transfer through ducts with 
constant heat flux. Int. J. Heat Mass Transf. 44, 169–180. https://​doi.​org/​10.​1016/​S0017-​9310(00)​00074-0 (2001).

	34.	 Mercan, M. & Yurddaş, A. Numerical analysis of evacuated tube solar collectors using nanofluids. Sol. Energy 191, 167–179. https://​
doi.​org/​10.​1016/j.​solen​er.​2019.​08.​074 (2019).

Author contributions
S.M.T. simulate the problem and wrote the main manuscript text and M.S. edit the manuscript text and prepared 
figure for validation.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to M.S.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

https://doi.org/10.1016/j.enconman.2018.04.039
https://doi.org/10.1016/j.egypro.2015.02.131
https://doi.org/10.1016/j.solener.2016.12.035
https://doi.org/10.1016/j.solener.2016.12.035
https://doi.org/10.1016/j.enconman.2015.01.091
https://doi.org/10.1016/j.enconman.2015.01.091
https://doi.org/10.1016/J.ENCONMAN.2016.01.046
https://doi.org/10.1016/J.ENCONMAN.2016.01.046
https://doi.org/10.1016/j.jclepro.2018.03.054
https://doi.org/10.1016/j.jclepro.2018.03.054
https://doi.org/10.1016/J.RENENE.2018.01.031
https://doi.org/10.1016/J.APPLTHERMALENG.2018.09.012
https://doi.org/10.1016/J.SOLMAT.2018.10.025
https://doi.org/10.1016/J.APPLTHERMALENG.2017.02.108
https://doi.org/10.1016/J.APPLTHERMALENG.2019.114205
https://doi.org/10.1115/1.3451063
https://doi.org/10.1115/1.3451063
https://doi.org/10.1016/J.RSER.2010.12.007
https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2016.10.126
https://doi.org/10.1016/J.ICHEATMASSTRANSFER.2012.06.009
https://doi.org/10.1016/J.ICHEATMASSTRANSFER.2012.06.009
https://doi.org/10.1016/J.SOLENER.2018.03.050
https://doi.org/10.1016/J.SOLENER.2012.01.015
https://doi.org/10.24084/repqj10.322
https://books.google.com/books?hl=en&lr=&id=j0zSDAAAQBAJ&oi=fnd&pg=PR17&dq=Bejan+A.+Advanced+engineering+thermodynamics:+John+Wiley+%26+Sons,+2016.&ots=2wVXZeCtQp&sig=iMwjebtnWK5Q9IYA6Au6iDOEyPA#v=onepage&q&f=false
https://books.google.com/books?hl=en&lr=&id=j0zSDAAAQBAJ&oi=fnd&pg=PR17&dq=Bejan+A.+Advanced+engineering+thermodynamics:+John+Wiley+%26+Sons,+2016.&ots=2wVXZeCtQp&sig=iMwjebtnWK5Q9IYA6Au6iDOEyPA#v=onepage&q&f=false
https://books.google.com/books?hl=en&lr=&id=j0zSDAAAQBAJ&oi=fnd&pg=PR17&dq=Bejan+A.+Advanced+engineering+thermodynamics:+John+Wiley+%26+Sons,+2016.&ots=2wVXZeCtQp&sig=iMwjebtnWK5Q9IYA6Au6iDOEyPA#v=onepage&q&f=false
https://doi.org/10.1007/s10973-018-6989-1
https://doi.org/10.1016/J.CAP.2008.12.047
https://doi.org/10.1115/1.3167072
https://doi.org/10.1115/1.3167072
https://doi.org/10.1016/S0017-9310(00)00074-0
https://doi.org/10.1016/j.solener.2019.08.074
https://doi.org/10.1016/j.solener.2019.08.074
www.nature.com/reprints


16

Vol:.(1234567890)

Scientific Reports |         (2022) 12:1380  | https://doi.org/10.1038/s41598-022-05263-2

www.nature.com/scientificreports/

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2022

http://creativecommons.org/licenses/by/4.0/

	Entropy generation and thermal analysis of nanofluid flow inside the evacuated tube solar collector
	System description and mathematical modeling
	Mesh structure, initial, and boundary conditions. 
	Validation and time step independence. 
	Mathematical modeling. 

	Results and discussion
	Thermal examination. 
	Entropy generation assessment. 

	Conclusion
	References


