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Oriental freshwater mussels arose 
in East Gondwana and arrived 
to Asia on the Indian Plate 
and Burma Terrane
Ivan N. Bolotov1,2,3*, Rajeev Pasupuleti4, Nalluri V. Subba Rao5,13, 
Suresh Kumar Unnikrishnan6, Nyein Chan7, Zau Lunn7,8, Than Win9, Mikhail Y. Gofarov1, 
Alexander V. Kondakov1,2, Ekaterina S. Konopleva1,2, Artyom A. Lyubas1, 
Alena A. Tomilova1,2, Ilya V. Vikhrev1,2,3, Markus Pfenninger10, Sophie S. Düwel10, 
Barbara Feldmeyer10, Hasko F. Nesemann11 & Karl‑Otto Nagel12

Freshwater mussels cannot spread through oceanic barriers and represent a suitable model to test 
the continental drift patterns. Here, we reconstruct the diversification of Oriental freshwater mussels 
(Unionidae) and revise their taxonomy. We show that the Indian Subcontinent harbors a rather 
taxonomically poor fauna, containing 25 freshwater mussel species from one subfamily (Parreysiinae). 
This subfamily most likely originated in East Gondwana in the Jurassic and its representatives arrived 
to Asia on two Gondwanan fragments (Indian Plate and Burma Terrane). We propose that the Burma 
Terrane was connected with the Indian Plate through the Greater India up to the terminal Cretaceous. 
Later on, during the entire Paleogene epoch, these blocks have served as isolated evolutionary 
hotspots for freshwater mussels. The Burma Terrane collided with mainland Asia in the Late Eocene, 
leading to the origin of the Mekong’s Indochinellini radiation. Our findings indicate that the Burma 
Terrane had played a major role as a Gondwanan “biotic ferry” alongside with the Indian Plate.

Freshwater mussels (order Unionida) are a diverse and widespread group of large aquatic  invertebrates1,2, provid-
ing a variety of ecosystem  services3,4. These animals are highly sensitive to human impacts and climate  changes5–9, 
revealing dramatically high rates of global decline and regional  extinctions10,11. Natural dispersal of freshwater 
mussels mostly occurs at the larval stage together with their fish hosts, and usually requires direct connections 
between freshwater basins, because they are unable to cross oceanic  barriers2,12–15. Hence, freshwater mussels are 
considered to be among the best model organisms for biogeographic and paleogeographic  reconstructions16–21. 
Most freshwater mussel species are endemic to a certain faunal region, and multiple single-basin and intra-basin 
endemics do occur, especially in species-rich faunas such as those of Southeast  Asia22–28, North America and 
 Mesoamerica17,29,30, and tropical  Africa31. Furthermore, even widespread species share some kind of phylogeo-
graphic structure throughout their continuous ranges, e.g. Anodonta anatina (Linnaeus, 1758) in  Eurasia32,33 
and Megalonaias nervosa (Rafinesque, 1820) in North  America34.
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Recently, freshwater mussels were used as a model group to perform an updated freshwater biogeographic 
division of South and Southeast  Asia19,23,35. Based on the Unionidae phylogeny and endemism patterns, this 
area could be delineated to the Oriental, Sundaland, and East Asian freshwater biogeographic  regions23. The 
Oriental Region contains two subregions, i.e. the Indian (Indian Subcontinent from the Indus Basin in Pakistan 
through Bangladesh, Bhutan, India, Nepal, and Sri Lanka to the coastal basins of the Rakhine State of Myanmar) 
and Western Indochina (Myanmar from the Irrawaddy [Ayeyarwady] Basin to the Salween [Thanlwin], Tavoy 
[Dawei], and the Great Tenasserim [Tanintharyi] rivers)  subregions23. A significant geographic barrier associ-
ated with the Indo-Burma Ranges in Western Myanmar and Northeastern India (Naga Hills, Chin Hills, and 
Rakhine Mountains) separates these  entities23. The Sundaland Region covers the Mekong, Chao Phraya, and 
Mae Klong rivers, the drainages of the Thai-Malay Peninsula, and the Greater Sunda  Islands23,28,35,36. Finally, the 
massive East Asian Region expands from coastal basins of Vietnam through eastern China, Korea, and Japan to 
the Russian Far  East20,35,37.

At first glance, the freshwater biogeographic division, outlined above, corresponds well to the boundaries 
of tectonic blocks such as the Indian Plate (Indian Subregion), Burma Terrane or West Burma Block (Western 
Indochina Subregion), and the Sunda Plate, containing the Indochina Block and Sibumasu Terrane (Sundaland 
Region)38–41 (Fig. 1). Dramatic tectonic movements during the Mesozoic and Cenozoic shaped the modern con-
figuration of these  blocks42,43. The Indian Plate was a part of East Gondwana and drifted northward as an insular 
landmass carrying Gondwanan  biota39,44,45. Furthermore, the body of modern geological, tectonic, paleomagnetic, 
and paleontological research indicates that the Burma Terrane most likely represents a Gondwanan fragment that 
rafted to Asia together with the Indian Plate or as a part of a Trans-Tethyan island  arc38,40,41,46–50. However, it is 
still unclear whether the continental drift could explain the biogeographic patterns in freshwater mussel distribu-
tion throughout the Oriental and Afrotropical regions and whether the disjunctive range of several Unionidae 
clades could reflect Mesozoic tectonic  events19,31,51,52. While our knowledge on the taxonomy and evolutionary 
biogeography of freshwater mussels from tropical Africa, Western Indochina, and Sundaland has largely been 
improved during the last  decade2,19,22–28,31,35,51,53–56, the Unionidae fauna of the Indian  Subcontinent57,58 is still 
waiting for an integrative taxonomic research and thorough biogeographic modeling.

This study (1) presents a taxonomic review of freshwater mussels from the Indian Subcontinent based on 
the most comprehensive morphological and DNA sequence datasets sampled to date; (2) reconstructs the ori-
gins, macroevolution patterns, and diversification of the Parreysiinae based on a multi-locus time-calibrated 
phylogeny; and (3) postulates a novel hypothesis on a possible role of the Burma Terrane as a separate “biotic 
ferry” carrying a derivative of the Gondwanan biota to Asia through continental drift processes. Furthermore, 
we present a complete reappraisal of Mesozoic freshwater mussel species that were described from the Deccan 
Intertrappean Beds (Upper Cretaceous) on the Indian Subcontinent and an overview of a few doubtful and 
uncertain recent taxa that were linked to India.

Results
Freshwater mussel fauna of the Indian Subcontinent. Here, we present the most comprehensive 
phylogenetic and distribution datasets on freshwater mussels (Unionidae) from the Indian Subcontinent sam-
pled to date with supplement of related taxa from Indochina and Africa (Fig. 2 and Supplementary Fig. 1). The 
phylogeny was reconstructed using partial sequences of the mitochondrial cytochrome c oxidase subunit I (COI), 
small ribosomal RNA (16S rRNA), and the nuclear large ribosomal RNA (28S rRNA) genes (Dataset 1). Based on 
the multi-locus phylogeny, DNA-based species delimitation procedures (Supplementary Fig. 2), and morpho-
logical data, we show that the Unionidae fauna of the Indian Subcontinent contains members of one subfamily, 
the Parreysiinae (Table 1). The total species richness of freshwater mussels on the Indian Subcontinent is rather 
uncertain due to the lack of DNA sequence data for multiple nominal taxa (Table 1). In summary, we propose a 
list of 25 valid species, almost all of which seem to be endemic to the subcontinent, though only 17 (68.0%) of 
those taxa were checked by means of a DNA-based approach. The 25 species recorded from the Indian Subcon-
tinent belong to three tribes: Indochinellini (genus Indonaia Prashad, 1918: 8 species), Lamellidentini (genera 
Lamellidens Simpson, 1900 and Arcidopsis Simpson, 1900: 9 and 1 species, respectively), and Parreysiini (genus 
Parreysia Conrad, 1853: 6 species) (Figs. 3, 4 and 5)). One more genus, the monotypic Balwantia Prashad, 1919 
(Fig. 5h), is considered here as Parreysiinae incertae sedis. The genera Arcidopsis, Balwantia, and Parreysia are 
endemic to the Indian Subcontinent, while each of the Indonaia and Lamellidens also contains three species from 
Western Indochina. Furthermore, there is one cementing bivalve species, Pseudomulleria dalyi (Smith, 1898) 
(Etheriidae), known to occur in India whose systematic assignment is still unclear (see “Discussion”).

Macroevolution and evolutionary biogeography of the Parreysiinae. Our combined supercon-
tinent-based biogeographic modeling (S-DIVA + DIVALIKE) reveals that this subfamily most likely originated 
and diversified on Gondwana and its fragments (probability = 1.00), with a secondary radiation of the so-called 
Mekong’s Indochinellini (sensu Pfeiffer et  al., 2018)51, a compact but diverse monophyletic subclade, in the 
Sundaland Subregion (probability = 1.00) (Fig. 2). The earliest split within the subfamily was associated with 
the separation of the Lamellidentini from other taxa by a dispersal event (probability = 1.00) and did occur in 
the Early Cretaceous (mean age = 135 Myr, 95% HPD = 125–144 Myr) (Fig. 2: Event I). Our combined tectonic 
plate-based ancestral area reconstruction (S-DIVA + DIVALIKE) suggests that this split occurred on the Burma 
Terrane, Indian Plate or on both of these blocks with equal probability (Fig. 2). The Parreysiini + Leoparreysiini 
clade most likely separated from the Coelaturini + Indochinellini clade by a dispersal event (probability = 1.00) in 
the mid-Cretaceous (mean age = 111 Myr, 95% HPD = 103–119 Myr) (Fig. 2: Event II). The Burma Terrane and 
Indian Plate are returned as the most probable ancestral areas during this event by our combined model (Fig. 2).
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A series of vicariance events occurred in the Late Cretaceous: Coelaturini vs. Indochinellini (mean age = 98 
Myr, 95% HPD = 90–105 Myr) (Fig. 2: Event III); Parreysiini vs. Leoparreysiini (mean age = 96 Myr, 95% 
HPD = 87–104 Myr) (Fig. 2: Event IV); Indonaia vs. the rest of the Indochinellini (mean age = 81 Myr, 95% 
HPD = 74–89 Myr) (Fig. 2: Event V); and Lamellidens vs. Trapezidens (mean age = 74 Myr, 95% HPD = 65–83 
Myr) (Fig. 2: Event VI). The first vicariance event was preceded by a dispersal event and most likely corresponded 
to a split between Africa and Burma Terrane (probability = 0.60) or between Africa and Indian Plate (probabil-
ity = 0.40). The other events in this series could be linked to repeated splits and reconnections between the Indian 
Plate and Burma Terrane (probability = 1.00).

The Mekong’s Indochinellini did separate from the Radiatula clade near the terminal Eocene (mean age = 38 
Myr, 95% HPD = 34–42 Myr) (Fig. 2: Event VII). Our ancestral area reconstruction suggests that this vicariance 
event could be linked to a direct connection between Burma Terrane and mainland Asia (probability = 1.00). 
Exchanges between freshwater mussel faunas of the Indian Plate and Burma Terrane, which traced well in 

Figure 1.  Global distribution of the subfamily Parreysiinae and tectonic plate boundaries. The subfamily range 
based on available published  sources23,239 and our own data. The red lines indicate tectonic plate  boundaries240. 
The red abbreviations indicate the names of larger tectonic plates: AF African; AM Amurian; AN Antarctic; AR 
Arabian; AT Anatolian; AU Australian; CL Caroline; IN Indian; NA North American; OK Okinawa; PS Philippine 
Sea Plate; SO Somalia; SU Sunda (with Indochina Block and Sibumasu Terrane); YA Yangtze. The boundaries 
of the Burma Terrane (BT), Sibumasu Terrane (ST), Indochina Block (IB), and the Andaman Platelet (AP) 
are given based on a series of modern tectonic  works38–40. The Mogok–Mandalay–Mergui  Belt40 is placed here 
within the boundary of the Burma Terrane. The map was created using ESRI ArcGIS 10 software (https:// www. 
esri. com/ arcgis). The topographic base of the map was created with Natural Earth Free Vector and Raster Map 
Data (https:// www. natur alear thdata. com) and Global Self-consistent Hierarchical High-resolution Geography 
(https:// www. soest. hawaii. edu/ wessel/ gshhg). (Map: Mikhail Yu. Gofarov).

https://www.esri.com/arcgis
https://www.esri.com/arcgis
https://www.naturalearthdata.com
https://www.soest.hawaii.edu/wessel/gshhg
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Indonaia and Lamellidens radiations, started in the Late Oligocene (mean age = 24–26 Myr, 95% HPD = 18–30 
Myr) and continued in the Late Miocene (mean age = 8 Myr, 95% HPD = 6–11 Myr) (Fig. 2). These vicariance 
events reflect direct connections (river captures) between freshwater systems of these terranes based on our 
combined biogeographic reconstruction (probability = 1.00 in almost all cases).

Taxonomy of freshwater mussels from the Indian Subcontinent
This taxonomic section is largely based on our novel phylogenetic and morphological research (Fig. 2 and Sup-
plementary Note 1). A brief overview of the fauna is presented in Table 1, while the taxonomic account and 
explanatory comments for each species are given in the Supplementary Note 1. Additionally, one new species of 
the genus Parreysia from Southwestern India is described herein.

Family Unionidae Rafinesque, 1820.
Subfamily Parreysiinae Henderson, 1935.
Tribe Indochinellini Bolotov, Pfeiffer, Vikhrev & Konopleva, 2018.
Genus Indonaia Prashad, 1918.
Type species: Unio caeruleus Lea, 1831 (by original designation)59.
Distribution: Indian and Western Indochina subregions: from Indus River in  Pakistan60 through  India57,61, 

Bangladesh,  Nepal61,62, and  Bhutan63 to the Salween River in  Myanmar56.
Comments: This genus contains not less than 11 recent species, eight of which occur on the Indian Subcon-

tinent and three in the Western Indochina (Table 1 and Fig. 4b–h). Here, we tentatively delineate these taxa to 
three informal species groups (Fig. 2 and Table 1). The caerulea-group contains eight Radiatula-like species 
having an ovate or elongated shell of moderate thickness. The cylindrica-group joins two Parreysia-like species 
with a thicker, ovate shell. Finally, the involuta-group combines two peculiar species, sharing a thin, fragile 

Figure 2.  Time-calibrated phylogeny of the Parreysiinae based on the complete data set of mitochondrial 
and nuclear sequences (five partitions: three codons of COI + 16S rRNA + 28S rRNA). Events I-VII indicate a 
series of key biogeographic events, shaping the recent distribution of the subfamily (see “Results”). Nodal circle 
charts indicate the probabilities of certain ancestral areas based on the combined “tectonic plates” scenario 
(S-DIVA + DIVALIKE). The Sunda Plate contains the Indochina Block and Sibumasu  Terrane39. Black color 
indicates an unexplained origin. Color symbols GW (Gondwana) and LR (Laurasia) indicate the results of the 
combined “supercontinents” scenario (S-DIVA + DIVALIKE) with the probabilities (P) of each ancestral area 
being given in square brackets. Stars at branches indicate reliable fossil record of the Mesozoic Parreysiinae in 
Africa (red) and India (yellow) with available fossil taxa being listed in the corresponding callouts. Taxonomic 
information on the Mesozoic fossil species from the Indian Subcontinent is given in Table 2. Red numbers 
near nodes are Bayesian posterior probability (BPP) values of BEAST v. 2.6.3. Black numbers near nodes are 
the mean node ages. Node bars are 95% HPD of divergence time. Time and biogeographic reconstructions for 
weakly supported nodes (BPP < 0.70) are not shown. Outgroup taxa are omitted. Stratigraphic chart according to 
the International Commission on Stratigraphy, 2021 (https:// strat igrap hy. org/ chart).

https://stratigraphy.org/chart
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Taxa with new synonyms Type locality Distribution Tectonic block

Tribe Indochinellini Bolotov, Pfeiffer, Vikhrev & Konopleva, 2018

Genus Indonaia Prashad, 1918

The caerulea-group

**Indonaia andersoniana (Nevill, 1877) Myadoung, Burma [Irrawaddy River near Mya 
Taung village, 23.7310° N, 96.1486° E,  Myanmar]210 Irrawaddy to Salween Basin,  Myanmar211 Burma Terrane

Indonaia bonneaudii (Eydoux, 1838) comb. rev. 
[= Unio leioma Benson, 1862 syn. nov.]

Les rivières de la presqu’ile de l’Inde [rivers of the 
Indian  Peninsula]212 Karli River, Western Ghats, India Indian Plate

Indonaia caerulea (Lea, 1831) [= Lampsilis argyra-
tus Rafinesque, 1831 syn. nov.; = Unio nuttallianus 
Lea, 1856 syn. nov.; = U. pachysoma Benson, 1862 
syn. nov.; = Trapezoideus dhanushori Annandale & 
Prashad, 1921 syn. nov.]

Bengal,  India213
Ganges Basin in India, Nepal, and Bhutan, Brahma-
putra and Krishna basins in India; Surma River in 
Bangladesh; Indus Basin in  Pakistan57,61,63,214

Indian Plate

Indonaia rugosa (Gmelin, 1791) comb. nov. 
[= Diplasma striata Rafinesque, 1831 syn. 
nov.; = Unio scobina Hanley, 1856 syn. nov.; = Nod-
ularia (Radiatula) lima Simpson, 1900 syn. nov.]

Coromandel fluviis [rivers of the Coromandel 
Coast of  India]215 Ganges, Brahmaputra, and Krishna basins, India Indian Plate

Indonaia shurtleffiana (Lea, 1856) [= I. khadakva-
slaensis Ray, 1966 syn. nov.]

Sina River, < … > Ahmednugger, India [upper 
reaches of the Sina River near Ahmednager, approx. 
19.0835° N, 74.7281° E, Krishna Basin, Maharash-
tra,  India]216

Krishna and Godavari basins, India Indian Plate

**Indonaia subclathrata (Martens, 1899)

Chindwinfluss bei Kalewa und bei Matu < … > ; 
einige Stücke auch im Irawaddi selbst bei Yenangy-
oung [Chindwin River near Kalewa and Matu, 
approx. 23.1991° N, 94.3071° E, several specimens 
also from Irrawaddy River near Yenangyaung, 
approx. 20.4347° N, 94.8720° E,  Myanmar]217

Lower Manipur River and a corresponding section 
of the Chindwin River,  Myanmar53,211 Burma Terrane

*, **Indonaia theobaldi (Preston, 1912) Manipur,  Assam218 Upper Manipur Valley (including Logtak Lake), 
 India219 Burma Terrane

The cylindrica-group

Indonaia cylindrica (Annandale & Prashad, 1919) 
comb. nov.

Yenna River, Upper Kistna watershed, at Medha 
[Venna River at Medha (now Kanher Reservoir), 
17.7887° N, 73.8254° E, Krishna Basin, Maharash-
tra,  India]220

Endemic to the Upper Krishna Basin,  India220 Indian Plate

Indonaia gratiosa (Philippi, 1843) comb. nov. 
[= Unio corbis Hanley, 1856 syn. nov.; = U. occatus 
Lea, 1860 syn. nov.; = U. siliguriensis Preston, 1908 
syn. nov.]

Nova Hollandia [erroneous; it was collected some-
where in  India]221 Ganges and Brahmaputra basins, India and Nepal Indian Plate

The involuta-group

*Indonaia involuta (Hanley, 1856) Assam222 Upper Brahmaputra Basin in India and Surma 
River in Bangladesh Indian Plate

*Indonaia olivaria (Lea, 1831) Bengal213 Ganges Basin,  India61 Indian Plate

Tribe Lamellidentini Modell, 1942

Genus Arcidopsis Simpson, 1900

*Arcidopsis footei (Theobald, 1876)
Kistna flumine prope ‘Gutparba Falls’ [Gokak 
Falls, Ghataprabha River, 16.1929° N, 74.7827° E, 
Krishna Basin, southwestern  India]223

Upper part of the Krishna Basin in Western Ghats, 
 India71,72,124 Indian Plate

Genus Lamellidens Simpson, 1900 [= Velunio Haas, 1919 syn. nov.]

The corrianus-group

Lamellidens corrianus (Lea, 1834) [= Unio theca 
Benson, 1862 syn. nov.] Calcutta,  India224 Ganges and Krishna basins, India Indian Plate

Lamellidens nongyangensis Preston, 1912 stat. rev. 
[= L. narainporensis Preston, 1912 syn. nov.; our 
first reviser action on the precedence of simultane-
ous synonyms]

Nongyang Lake, South of Patkai [Lake of No 
Return, 27.2192° N, 96.1439° E, Irrawaddy Basin, 
 Myanmar]218

Ganges Basin in India, with an isolated population 
in Lake of No Return, Irrawaddy Basin, Myanmar

Indian Plate, with one isolated population on 
Burma Terrane

**Lamellidens savadiensis (Nevill, 1877)

At Sawady in the Thengleng Stream [Sawadi 
village, 24.1510° N, 97.1502° E, Myanmar], also at 
Bhamo [Irrawaddy River near Bhamo city, 24.2594° 
N, 97.2202° E, Myanmar] and at Shuaygoomyo 
[Irrawaddy River near Shwegu town, 24.2291° 
N, 96.7910° E, Myanmar]; four young specimens 
found at Myadoung [Irrawaddy River near Mya 
Taung village, 23.7310° N, 96.1486° E, Myanmar] 
probably also belong to this  form210

Middle Irrawaddy (including Lake Indawgyi) and 
Sittaung basins,  Myanmar56 Burma Terrane

*Lamellidens unioides Nesemann & Sharma in 
Nesemann et al., 2007

Mamu Bhanja Pokhra at Hajipur, Muzaffarpur Dis-
trict, Bihar, India [pond, 25.6758° N, 85.2250° E, 
Mamu Bhanja, Hajipur, Ganges Basin, Muzaffarpur 
District, Bihar,  India]61

Ganges Basin in  India61 Indian Plate

The marginalis-group

*Lamellidens candaharicus (Hutton, 1849) [= L. 
rhadinaeus Annandale & Prashad, 1919 syn. nov.]

Canals at Candahar [Kandahar, 31.6148° N, 
65.7198° E, Sistan/Helmand Basin,  Afghanistan]225

Endorheic Sistan/Helmand Basin, eastern Iran and 
 Afghanistan78,225 Indian Plate

**Lamellidens ferrugineus (Annandale, 1918) stat. 
rev. [= Physunio micropteroides Annandale, 1918 
syn. nov.; our first reviser action on the precedence 
of simultaneous synonyms]

The semi-liquid mud at the bottom of the central 
region of the Inle Lake in water from 7 to 12 
feet deep [central part of Lake Inle, 20.5903° N, 
96.9025° E, Salween Basin,  Myanmar]226

Lake Inle and streams around, Salween Basin, 
Myanmar Connection of Burma Terrane with Sunda Plate

*Lamellidens friersoni (Simpson, 1914) comb. nov. Assam,  India74,79 Upper Brahmaputra Basin, Assam,  India74,79 Indian Plate

**Lamellidens generosus (Gould, 1847) [= Unio con-
sobrinus Lea, 1860 syn. nov.; = L. brandti Bolotov, 
Konopleva & Vikhrev, 2017 syn. nov.]

Newville, Tavoy, British Burmah [Hlaingbwe River 
near the former Newville village, 16.9834° N, 
97.9043° E,  Myanmar]227

Irrawaddy to Lower Salween Basin (including 
Haungthayaw, Hlaingbwe, and Ataran) in Myan-
mar; southwestern Yunnan in China

Burma Terrane but reaches the western margin of 
the Sunda Plate

Continued
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shell. The pseudocardinal teeth in the latter group are lamellar, quite similar to those in Lamellidens taxa. The 
caerulea- and cylindrica-groups are largely supported by our phylogeny. The involuta-group was separated by 
means of a morphological approach alone, because the DNA sequences of both Indonaia involuta (Hanley, 1856) 
and I. olivaria (Lea, 1831) are not available. Based on the phylogenetic data, we transfer the nominal species 
Parreysia cylindrica Annandale & Prashad, 1919 to the genus Indonaia and propose I. cylindrica comb. nov. 
(Fig. 2, Fig. 4f–g, and Supplementary Figs. 1–2). Additionally, we revise the synonymy for nominal taxa in this 
genus (Table 1 and Supplementary Note 1). We chose not to discuss the nominal taxon Indonaia substriata (Lea, 
1856) [= Nodularia (s. str.) pecten Preston,  1912]2 from Thailand here, because its generic placement and range 
are unclear and require future research efforts.

Two Late Cretaceous fossil species from the Intertrappean Beds of the Deccan Plateau in India are con-
sidered here as the earliest members of the Indonaia crown group, i.e. †I. hunteri (Hislop, 1860) comb. nov. 
and †I. pascoei Prashad, 1928 (Table 2 and Supplementary Note 2). Several younger fossil species in this genus 
were described from Miocene to Pliocene deposits (mostly the Siwalik  Group64) in India, Pakistan, Nepal, and 
 Myanmar65–69.

Tribe Lamellidentini Modell, 1942.
Genus Arcidopsis Simpson, 1900.
Type species: Unio footei Theobald, 1876 (by original designation)70.

Table 1.  Taxonomic review of the recent Unionidae (Parreysiinae) from the Indian Subcontinent with 
supplement of congeneric species from Western Indochina (see Supplementary Note 1 for detail and complete 
synonymies). *Species whose DNA sequences are not available. All of the other species were studied by means 
of a molecular approach. **Taxa endemic to the Western Indochina Subregion (Burma Terrane) that are 
lacking in the fauna of Indian Subcontinent.

Taxa with new synonyms Type locality Distribution Tectonic block

Lamellidens jenkinsianus (Benson, 1862) Fluvio Assamensi Berhampooter dicto [Brahmapu-
tra River, Assam,  India]228

Ganges, Meghna, Brahmaputra, Godavari, Krishna, 
and Ambā basins, India and Bangladesh; a few 
occurrences from  Bhutan63

Indian Plate

Lamellidens lamellatus (Lea, 1838) Ganges River,  India229 Ganges, Krishna, and Mahanadi basins, India Indian Plate

Lamellidens mainwaringi Preston, 1912 [= L. 
phenchooganjensis Preston, 1912 syn. nov.; our first 
reviser action on the precedence of simultaneous 
synonyms]

Siliguri [Siliguri, Ganges Basin, West Bengal, 
 India]218

Ganges, Karli, Kalni, and Kaladan rivers, India, 
Bangladesh, and western Myanmar Indian Plate

Lamellidens marginalis (Lamarck, 1819) Bengale, dans les rizières [rice fields, Bengal, 
 India]230

Ganges and Krishna basins, India and Nepal; Sri 
Lanka; Indus Basin in  Pakistan57,61 Indian Plate

Tribe Parreysiini Henderson, 1935

Genus Parreysia Conrad, 1853

The keralaensis-group

Parreysia keralaensis Bolotov, Pasupuleti & Subba 
Rao sp. nov.

Periyar River, 10.11° N, 76.37° E, Aluva, Kerala, 
India Endemic to Periyar and Pampa basins, India Indian Plate

The corrugata-group

Parreysia corrugata (Müller, 1774) [= Unio sik-
kimensis Lea, 1859 syn. nov.; = U. favidens Benson, 
1862 syn. nov.; = U. favidens var. chrysis Benson, 
1862 syn. nov.; = U. favidens var. deltae Benson, 
1862 syn. nov.; = U. favidens var. densa Benson, 
1862 syn. nov.; = U. favidens var. trigona Benson, 
1862 syn. nov.; = U. favidens var. marcens Benson, 
1862 syn. nov.; = U. favidens var. viridula Benson, 
1862 syn. nov.; = U. laevirostris Benson, 1862 syn. 
nov.; = U. smaragdites Benson, 1862 syn. nov.; = U. 
tripartitus Lea, 1863 syn. nov.; = U. gowhattensis 
Theobald, 1873 syn. nov.; = U. feddeni Theobald, 
1873 syn. nov.; = Parreysia (P.) annandalei Preston, 
1912 syn. nov.; = P. favidens var. assamensis Preston, 
1912 syn. nov.]

In fluviis littoris Coromandel [rivers of the Coro-
mandel Coast of  India]231

Ganges Basin in India and Nepal; Brahmaputra, 
Krishna, and Godavari basins in India; Surma River 
in Bangladesh; Sri Lanka; Indus Basin in Pakistan

Indian Plate

Parreysia plagiosoma (Benson, 1862) stat. rev. 
[= Unio tennentii Hanley & Theobald, 1872 syn. 
nov.]

Bengal228 Ganges and Vaghotan basins, India Indian Plate

Parreysia rakhinensis Bolotov et al., 2020 Kyeintali Stream upstream of Ohtein village, 
17.9193° N, 94.5946° E, Rakhine State,  Myanmar23 Rakhine Coast, western  Myanmar23 Indian Plate

Parreysia nagpoorensis (Lea, 1860) stat. rev. [= Unio 
merodabensis Küster, 1861 syn. nov.; = U. triembolus 
Benson, 1862 syn. nov.; = U. trirostris Musgrave, 
1863 syn. nov.; = U. pinax Benson, 1862 syn. nov.]

Ambijiri Tanks, Nagpoor, Bengal, India [Ambazari 
Pond in Nagpur, 21.1278° N, 79.0439° E, Godavari 
Basin, Maharashtra,  India]232

Ganges, Krishna, Godavari, and Karli (Pithdhaval) 
basins, India Indian Plate

The rajahensis-group

*Parreysia rajahensis (Lea, 1841)
Rajah’s Tank, Calcutta, India [most likely inac-
curate; the type shell was probably collected 
somewhere in the Narmada River basin, e.g. from 
Maharaja’s Tank in  Jabalpur]97,233

Upstream section of the Narmada River,  India97 Indian Plate

Parreysiinae incertae sedis

Genus Balwantia Prashad, 1919

*Balwantia soleniformis (Benson, 1836)
The hills on the N.E. Frontier of Bengal (Silhet) 
[Sylhet Division, Upper Meghna Basin, northeast-
ern  Bangladesh]234

Upper Brahmaputra, Upper Barak (Dhaleswari), 
and Upper Meghna basins, India and 
 Bangladesh89–91

Indian Plate
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Distribution: Endemic to the upper section of the Krishna Basin in Western Ghats,  India53,71. At first glance, 
historical records from “Mysore”72,73 could be linked to the Upper Kaveri Basin near the city of  Mysuru53 but are 
more likely to be attributed to the former State of Mysore, which also covered part of the Upper Krishna Basin.

Comments: This monotypic genus with its single species, A. footei (Table 1 and and Fig. 4a), was placed within 
the Unionidae incertae sedis1,53 but later it was transferred to the  Lamellidentini2. The DNA sequences of this 
taxon are yet to be generated, and its fossil records are unknown.

Genus Lamellidens Simpson, 1900 [= Velunio Haas, 1919 syn. nov.; type species: Unio velaris Sowerby, 1868 
(by monotypy)74,75].

Type species: Unio marginalis Lamarck, 1819 (by original designation)70.

Figure 3.  Shell examples of Lamellidens species from the Indian Subcontinent. (a) L. corrianus (Lea, 1834), 
Gokak, Gatprabha River, Krishna River basin, Western Ghats, Karnataka, India. (b) L. unioides Nesemann & 
Sharma in Nesemann et al., 2007, Bihar, Muzaffarpur District, Mamu Bhanja Pokhra at Hajipur, India (holotype 
NHMW 104161). (c) L. jenkinsianus (Benson, 1862), Dacca, Bangladesh (= Parreysia (s. str.) daccaensis Preston, 
1912; holotype ZSI M6105/1). (d) L. lamellatus (Lea, 1838), Ganges River, India (holotype NMNH 85173). (e) 
L. mainwaringi Preston, 1912, Kaladan River, Myanmar (specimen RMBH biv153). (f) L. marginalis (Lamarck, 
1819), brook at fish ponds, Hetauda, Ganges Basin, Narayani Zone, Central Region, Nepal (specimen SMF 
348831/16.01). (g) L. marginalis (Lamarck, 1819), Krishna River, Nagarjuna Sagar, Telangana, India (museum 
lot FBRC ZSI 1227; specimen RLm3). (h) L. nongyangensis Preston, 1912 stat. rev., Lake of No Return 
[= Nongyang Lake], Irrawaddy Basin, Myanmar (topotype RMBH biv893/1). Scale bar = 20 mm. Photos: H. 
Singh, College of Fisheries, Ratnagiri, BOLD Systems BFB021-12, under a CC BY 3.0 license [a], N. V. Subba 
Rao and R. Pasupuleti [c, f, g], NMNH collection database under a CC0 1.0 license [d], A. Eschner [b], S. Hof 
[f], and E. S. Konopleva [e, h].



8

Vol:.(1234567890)

Scientific Reports |         (2022) 12:1518  | https://doi.org/10.1038/s41598-022-05257-0

www.nature.com/scientificreports/

Distribution: Indian and Western Indochina subregions: widespread from Indus River in  Pakistan60 through 
India, Sri  Lanka57,61,76,  Nepal61,62,  Bhutan77, and  Bangladesh57 to Salween River in  Myanmar56 and southwestern 
Yunnan in China. Lamellidens candaharicus (Hutton, 1849) [= L. rhadinaeus Annandale & Prashad, 1919 syn. 
nov.], the westernmost species of this genus, was discovered from the endorheic Sistan/Helmand River drainage 
in eastern Iran and  Afghanistan78.

Comments: This genus contains 12 recent species, nine of which occur on the Indian Subcontinent and three 
in the Western Indochina (Table 1 and Fig. 3a–h). In this study, we provisionally delineate these species to two 

Figure 4.  Shell examples of Arcidopsis and Indonaia species from the Indian Subcontinent. (a) A. footei 
(Theobald, 1876), Kistna flumine prope ‘Gutparba falls’ [Gokak Falls, Ghataprabna River, Krishna Basin, India] 
(= Trapezoideus prashadi Haas, 1922; holotype SMF 3614). (b) I. caerulea (Lea, 1831), fish pond, Krishna River 
basin, Uppalapadu, Andhra Pradesh, India (museum lot FBRC ZSI 1229; specimen RRc1). (c) I. caerulea (Lea, 
1831), Jhajh nadi, Ganges basin, Narayani Zone, Central Region, Nepal (specimen SMF 348835/17.05). (d) I. 
gratiosa (Philippi, 1843) comb. nov., Jhajh nadi, Ganges Basin, Narayani Zone, Central Region, Nepal (specimen 
SMF 348834/17.15). (e) I. shurtleffiana (Lea, 1856), Godavari River, Nashik, Maharashtra, India (museum 
lot FBRC ZSI 1230; specimen RR3). (f) I. cylindrica (Annandale & Prashad, 1919) comb. nov., Yenna River, 
Upper Kistna watershed, at Medha, Krishna Basin, Maharashtra, India (syntype ZSI 11398/2). (g) I. cylindrica 
(Annandale & Prashad, 1919) comb. nov., Yenna River, Upper Kistna watershed, at Medha, Krishna Basin, 
Maharashtra, India (syntype ZSI 11398/2). (h) I. rugosa (Gmelin, 1791) comb. nov., Krishna River, Nagarjuna 
Sagar, Telangana, India (FBRC ZSI 1222; specimen RRl1). Scale bar = 20 mm. Photos: S. Hof [a, c-d], and N. V. 
Subba Rao and R. Pasupuleti [b, e, f, g, h].
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informal groups, which are largely supported by our phylogenies (Supplementary Figs. 1–2, Fig. 2 and Table 1). 
The corrianus-group contains four species usually having a more or less elongated shell, while the marginalis-
group joins species with somewhat ovate or rounded shell. Conversely, the shell outline itself cannot be used for 
diagnostic purposes even between the two species groups, as the shell shape of taxa in this genus is extremely 
variable, and multiple intermediate forms do occur, e.g. those in Lamellidens marginalis (Fig. 3f–g).

Figure 5.  Shells of Parreysia and Balwantia species from the Indian Subcontinent. (a) P. keralaensis sp. nov., 
Periyar River, Aluva, Kerala, India (holotype FBRC ZSI 1007-a/RCB2). (b) P. keralaensis sp. nov., the type 
locality (museum lot FBRC ZSI 1007; paratype RCB3). (c) P. corrugata (Müller, 1774), brook at fish ponds, 
Hetauda, Ganges Basin, Narayani Zone, Central Region, Nepal (specimen SMF 348829/16.02). (d) P. corrugata 
(Müller, 1774). Krishna River, Nagarjuna Sagar, Telangana, India (museum lot FBRC ZSI 1224; specimen RPf1). 
(e) P. nagpoorensis (Lea, 1860), Ramganga River near Moradabad, Ganges Basin, Uttar Pradesh, India (= Unio 
pinax Benson, 1862: syntype UMZC I.105035.B241). (f) P. nagpoorensis (Lea, 1860), Krishna River, Nagarjuna 
Sagar, Telangana, India (museum lot FBRC ZSI 1224; specimen RPf2). (g) P. rajahensis (Lea, 1841). Rajah’s 
Tank, India (holotype NMNH 84638). (h) B. soleniformis (Benson, 1836). Brahmaputra River, India (specimen 
NMNH 127246). Scale bar = 20 mm [a-e, g]; scale bar = 25 mm [f]; scale bar = 30 mm [h]. Photos: N. V. Subba 
Rao and R. Pasupuleti [a, b, d, f], S. Hof [c], K. Webb [e], and NMNH collection database under a CC0 1.0 
license [g, h].
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A new formal synonymy is proposed here for several nominal taxa (Table 1). Based on morphological and 
biogeographic data, we transfer the nominal taxon Physunio friersoni Simpson, 1914 [new name for Unio velaris 
Sowerby,  1868]79 to Lamellidens and propose L. friersoni (Simpson, 1914) comb. nov. Hence, Velunio Haas, 1919 
syn. nov., a monotypic subgenus (section)75 of the genus Physunio Simpson, 1900, established for this taxon, 
should be considered a synonym of Lamellidens.

The nominal species Unio groenlandicus Mörch, 1868 was introduced based on a description and figure of 
Schröter80,81. This taxon cannot be attributed to Schröter81, because this author named it as “die breite Mahler-
Muschel aus Grönland”, which is not a binomial name. Mörch stated that it “is Unio testudinarius, Spgl. (U. mar-
ginalis, Lam.), a common shell from Tranquebar and other places in British East Indies”80. However, we cannot 
link Schröter’s figure (pl. 9, Fig. 1)81 to a Lamellidens species due to the lack of pseudocardinal teeth. Hence, Unio 
groenlandicus is here considered a nomen dubium.

There are two older available names belonging to Lamellidens, i.e. Unio testudinarius Spengler, 1793 and U. 
truncatus Spengler, 1793 that were described from Tranquebar [Tharangambadi, 11.0292° N, 79.8494° E, Kaveri 
Basin, Tamil Nadu,  India]82. Later, Haas redescribed these nominal taxa and illustrated the  holotypes83. Based 
upon morphological examination, Haas considered Lamellidens testudinarius as the oldest available name for L. 
marginalis, and placed L. truncatus as a synonym of this  species83,84. Furthermore, Haas synonymized the major-
ity of nominal Lamellidens taxa under the name L. testudinarius84. However, this concept was largely ignored 
by subsequent  researchers1,2,57. The assigment of these nominal taxa to certain species is not straghtforward. 
Morphologically, the holotype of Lamellidens testudinarius is an ovate  shell83 that could be something from the 
marginalis-group, e.g. L. marginalis, L. mainwaringi or L. jenkinsianus. In its turn, the holotype of Lamellidens 
truncatus represents a narrower, elongated  shell83 that looks either like L. corrianus or even the recently described 

Table 2.  Taxonomic review of the fossil Unionidae (Parreysiinae) from the Maastrichtian Intertrappean 
Beds of the Deccan Plateau, Indian Plate (see Supplementary Note 2 for detail). *Approximate age of the 
deposits = 67  Myr145,146. **PIMB—Palaeo Invertebrate Mesozoic Bivalve  numbers145 of the Natural History 
Museum, London, United Kingdom.

Taxon Original combination and synonyms Type locality Type specimen**

Tribe Indochinellini Bolotov, Pfeiffer, Vikhrev & Konopleva, 2018

Genus Indonaia Prashad, 1918

†Indonaia hunteri (Hislop, 1860) comb. 
nov.

†Unio hunteri Hislop (1860)235: p. 174, pl. 6, 
Fig. 25; †Parreysia hunteri (Hislop, 1860): 
Modell (1969)67: p. 11

Karuni, 100 miles S.S.W. of Nagpur city, 
Hyderabad Territory, British India [near 
Karanji Village, 19.8567° N, 78.3141° E, 
Deccan Plateau, Telangana,  India]235

Lectotype PIMB 948 [designated by Hart-
man et al.,  2008]145

†Indonaia pascoei Prashad, 1928
†Indonaia pascoei Prashad (1928)66: p. 
311, pl. 25, Figs. 4–5; †Palindonaia pascoei 
(Prashad, 1928): Modell (1969)67: p. 9

“…at a point situated 2 furlongs S. 10° 
W. of Nawapet (17°43′30" 78°23′45"), 
Hyderabad State (Deccan)” [ca. 400 m SSW 
of Nawabpet Village, 17.7177° N, 78.3933° 
E, Telangana,  India]66

Holotype [based on original designation; 
not traced but it is probably in the collec-
tion of Geological Survey of  India]66

Tribe Lamellidentini Modell, 1942

Genus Lamellidens Simpson, 1900

†Lamellidens carteri (Hislop, 1860)
†Unio carteri Hislop (1860)235: p. 175, pl. 7, 
Fig. 28; †Lamellidens carteri (Hislop, 1860): 
Modell (1969)67: p. 11

Karuni, 100 miles S.S.W. of Nagpur city, 
Hyderabad Territory, British India [near 
Karanji Village, 19.8567° N, 78.3141° E, 
Deccan Plateau, Telangana,  India]235

Lectotype PIMB 949 [designated by Hart-
man et al.,  2008]145

†Lamellidens deccanensis (J. Sowerby in 
Malcolmson, 1840) comb. nov.

†Unio deccanensis J. Sowerby in Malcolm-
son (1840)236: pl. 47, Figs. 4–10; †Hyriopsis 
deccanensis (J. Sowerby, 1827) [erroneous 
publication year]: Modell (1969)67: p. 12

Munnoor236 [near Muthnur Village, 
19.5192° N, 78.4657° E, Nirmal Hills, 
Telangana,  India]237

Lectotype PIMB 947 (of rather poor qual-
ity) [designated by Hartman et al.,  2008]145

†Lamellidens vredenburgi Prashad, 1921 †Lamellidens vredenburgi Prashad (1921)238: 
p. 368, pl. 12, Figs. 1–2

Goraha, Narbada [probably Gora Village, 
1.8608° N, 73.6830° E, Narmada District, 
Gujarat,  India]238

Holotype [based on original designation; 
not traced but it is probably in the collec-
tion of Geological Survey of  India]238

Tribe Parreysiini Henderson, 1935

Genus Parreysia Conrad, 1853

†Parreysia imbricatus (Hislop, 1860) comb. 
nov.

†Unio imbricatus Hislop (1860)235: p. 175, 
pl. 7, Fig. 27a-c; †Schistodesmus imbricatus 
(Hislop, 1860): Modell (1969)67: p. 10

Mekalgandi Ghat, 150 miles S.S.W. of 
Nagpur city, Hyderabad Territory, British 
 India235,236 [near Muthnur Village, 19.5192° 
N, 78.4657° E, Nirmal Hills, Telangana, 
 India]237

Lectotype PIMB 950 [designated by Hart-
man et al.,  2008]145

†Parreysia malcolmsoni (Hislop, 1860)

†Unio tumida J. Sowerby in Malcolmson 
(1840): pl. 47, Figs. 11–12 [unavailable as 
a primary  homonym]236; †U. malcolmsoni 
Hislop (1860): p. 174 [new name for †U. 
tumida Sowerby in Malcolmson,  1840]235; 
†Parreysia malcolmensis Modell (1969): 
p. 11 [error for †U. malcolmsoni Hislop, 
 1860]67

Mekalgandi Ghat, 150 miles S.S.W. of 
Nagpur city, Hyderabad Territory, British 
 India235,236 [near Muthnur Village, 19.5192° 
N, 78.4657° E, Nirmal Hills, Telangana, 
 India]237

Lectotype PIMB 953 (complete shell) [des-
ignated by Hartman et al.,  2008]145

†Parreysia mamillatus (Hislop, 1860) comb. 
nov.

†Unio mamillatus Hislop (1860)235: p. 175, 
pl. 7, Fig. 26; †Schistodesmus mamillatus 
(Hislop, 1860): Modell (1969)67: p. 10

Karuni, 100 miles S.S.W. of Nagpur city, 
Hyderabad Territory, British India [near 
Karanji Village, 19.8567° N, 78.3141° E, 
Deccan Plateau, Telangana,  India]235

Lectotype PIMB 946 [designated by Hart-
man et al.,  2008]145
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L. unioides. Here, we prefer to consider these nominal species as taxa inquirenda but their identity will be clari-
fied in the future based on molecular analyses of topotype samples from Tamil Nadu.

The three earliest fossil members of this genus were described from the Late Cretaceous Intertrappean Beds of 
the Deccan Plateau in India, i.e. †Lamellidens carteri (Hislop, 1860), †L. deccanensis (J. Sowerby in Malcolmson, 
1840) comb. nov., and †L. vredenburgi Prashad, 1921 (Table 2 and Supplementary Note 2). There are several 
fossil species of Lamellidens from Miocene to Pliocene deposits (mostly the Siwalik  Group64) in India, Pakistan, 
Nepal, and  Myanmar66–68,85.

Tribe Parreysiini Henderson, 1935.
Genus Parreysia Conrad, 1853.
Type species: Unio multidentatus Philippi, 1847 (by original designation)86.
Distribution: Indian Subregion: from Indus River in  Pakistan60 through India, Sri  Lanka57,61,76,  Nepal61,62, and 

 Bangladesh57 to coastal drainages of the Rakhine State of  Myanmar23.
Comments: This genus contains six recent species endemic to the Indian Subcontinent (Table 1 and Fig. 5a–g). 

Here, we delineate these species to three informal groups (Fig. 2 and Table 1). The keralaensis-group contains 
Parreysia keralaensis sp. nov. only (Fig. 5a,b). This new species represents the most distant phylogenetic lineage 
within the genus (Fig. 2). The corrugata-group comprises four species that are phylogenetically and morphologi-
cally close to each other, representing a species complex (Table 1 and Fig. 5c–f). Our time-calibrated phylogeny 
indicates that the radiation within this group occurred during the Miocene (Fig. 2). Finally, the rajahensis-group 
contains a single species, Parreysia rajahensis (Lea, 1841). Although the DNA sequences of this species are not 
available, it probably represents a distant phylogenetic lineage due to a number of specific conchological features 
such as very thick, triangular shell and massive hinge plate (Fig. 5g).

The synonymy of Parreysia taxa is revised here (Table 1 and Supplementary Note 1). The nominal taxon Par-
reysia robsoni Frierson, 1927 [holotype NHMUK 1965150; type locality: Black River, North  Carolina]87,88 can-
not be linked to the Indian fauna, and it is considered here as a junior subjective synonym of Fusconaia masoni 
(Conrad, 1834) (Ambleminae) based on morphological features.

The three earliest fossil species belonging to this genus were discovered from the Late Cretaceous Intertrap-
pean Beds of the Deccan Plateau in India, i.e. †Parreysia imbricatus (Hislop, 1860) comb. nov., †P. malcolmsoni 
(Hislop, 1860), and †P. mamillatus (Hislop, 1860) comb. nov. (Table 2 and Supplementary Note 2). There are 
several fossil species in this genus that were described from Miocene to Pliocene deposits (mostly the Siwalik 
 Group64) in India, Pakistan, Nepal, and  Myanmar65–69.

Parreysia keralaensis Bolotov, Pasupuleti & Subba Rao sp. nov.
Figure 5a,b, Supplementary Figs. 3–6, Supplementary Table 2.
LSID: http:// zooba nk. org/ urn: lsid: zooba nk. org: act: 627CB 4BE- CD22- 495A- 8FDD- 55F45 D971C CD.
Type material: Holotype No. FBRC ZSI 1007-a (RCB2) [shell length 50.0 mm, shell height 33.5 mm, shell 

width 23.8 mm; reference COI sequence acc. no. KJ872811], Periyar River (downstream), 10.11° N, 76.37° E, 
Aluva, Kerala, India, 17.01.2014, R. Pasupuleti leg. Paratypes: Six specimens [museum lot No. FBRC ZSI 1007; 
specimen codes RCB3, RCB4, RCB5, RCB8, RCB9, and RCB12] from the type locality, 17.01.2014, R. Pasupuleti 
leg.; two specimens [museum lot No. FBRC ZSI 1006; specimen codes RNB1 and RNB2] from Periyar River 
(upstream), 10.06° N, 76.78° E, Neriamangalam, Kerala, India, 01.12.2014, R. Pasupuleti leg.; one specimen 
[museum lot No. FBRC ZSI 1223; specimen code RPC10] from Achankovil River, 9.25° N, 76.83° E, Pampa River 
basin, Kizhavalloor, Kerala, India, 03.09.2014, R. Pasupuleti leg. Reference COI sequences and shell measure-
ments of the type series are given in Supplementary Table 2. The type series is deposited in FBRC ZSI (Hyderabad, 
Telangana, India).

Etymology: The new species name is dedicated to the Kerala State of India, in which it was collected.
Diagnosis: The new species can be distinguished from other Parreysia taxa by having a prominent, massive, 

rounded umbo and a specific wave-like sculpture over the umbo or through the entire shell surface (Fig. 5a,b and 
Supplementary Fig. 3). Additionally, it represents the most distant phylogenetic lineage within the genus (Fig. 2).

Description: Medium-sized mussel: shell length 34.8–59.1 mm, shell height 23.7–38.2 mm, shell width 
15.1–28.8 mm (N = 10; Supplementary Table 2). Shell thick, of triangular or rounded shape, slightly inequilat-
eral; ventral margin slightly convex; dorsal, anterior, and posterior margins rounded. Umbo massive, prominent, 
elevated. Shell sculpture well developed, with specific wave-like ridges, covering the umbonal region or the entire 
shell. Most specimens share weak corrugate plications posteriorly. Periostracum brown to dark orange with green 
tinge. Nacre white, with yellowish or pinkish tinge, shining. Hinge plate rather narrow. Left valve with two curved 
lateral teeth and two strongly indented pseudocardinal teeth. Right valve with one curved lateral tooth and one 
massive, indented pseudocardinal tooth with a small auxiliary tooth. Anterior adductor scar rounded and deep, 
posterior adductor scar rounded and very shallow. Umbonal cavity very deep.

Distribution: Periyar and Pampa basins, Kerala, Southwestern India.
Parreysiinae incertae sedis.
Genus Balwantia Prashad, 1919.
Type species: Anodonta soleniformis Benson, 1836 (by original designation)89.
Distribution: Upper Brahmaputra and Upper Barak (Dhaleswari) basins,  India89–91.
Comments: This monotypic genus (Table 1 and Fig. 5h) was long thought to be a synonym of Solenaia Conrad, 

1869 based on a similar ultra-elongated shell  shape1,57. The latter genus was recently revised with separation of 
several genera such as Solenaia s. str.27,92, Parvasolenaia Huang & Wu,  201993, Koreosolenaia Lee et al.,  202037, 
and Sinosolenaia Bolotov et al.,  202194. The first genus is a member of the tribe  Contradentini27,92, while the 
others belong to the  Gonideini37,93,94. Bolotov et al. restored Balwantia and placed B. soleniformis within the 
Contradentini together with two recently described species from Myanmar, having an ultra-elongated shell 
 shape23. However, B. soleniformis shares unhooked glochidia and carries larvae in all the four gills (tetragenous 
brooding)89, and, hence, cannot be placed in the  Contradentini27,95. Pfeiffer et al. considered it a monotypic genus, 

http://zoobank.org/urn:lsid:zoobank.org:act:627CB4BE-CD22-495A-8FDD-55F45D971CCD
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which may belong to the  Parreysiinae27. Here, we place Balwantia as Parreysiinae incertae sedis because of the 
lack of available DNA sequences. Fossil records of this genus are not available.

Doubtful and uncertain freshwater mussel taxa linked to India
In this section, we present a morphology-based overview of several nominal taxa, which were described by 
Constantine S.  Rafinesque96. Subsequent researchers largely ignored these taxa as “indeterminate Unionidae” 
and even as “the worthless fabrications of Rafinesque” because of very poor and incomplete  descriptions97,98. In 
the body of available literature on the types of Unionidae described by  Rafinesque99–103, any mention of the type 
series for his Indian taxa is absent. Furthermore, we were unable to locate the current whereabouts of these types 
neither in European museums nor in those in the USA (including the ANSP Malacology Collection database; 
http:// clade. ansp. org/ malac ology/ colle ctions). Perhaps, the type lots have been sold to a private collector(s), 
because in the introduction of that paper Rafinesque offered for sale all the type shells described  there96. Hence, 
the types are probably lost. Therefore, our decisions and comments are based exclusively on the original descrip-
tions. Taxa, the protologues of which lack diagnostic features for reliable taxonomic identification, are considered 
here as nomina dubia.

A complete reappraisal of Rafinesque’s nominal taxa linked to  India96 is given in Supplementary Note 3, while 
a brief summary of our taxonomic decisions is presented here. Diplasma marginata Rafinesque, 1831 is consid-
ered a nomen dubium, because its type locality is uncertain (River Tennessee or Hindostan) and the identity is 
unclear. Three more nominal species cannot be identified with certainty based on the original descriptions and 
are also considered nomina dubia: Diplasma similis Rafinesque, 1831 (type locality: River Ganges); Diplasma 
(Hemisolasma) vitrea Rafinesque, 1831 (type locality: River Jellinghy in Bengal [approx. 23.4356° N, 88.4905° 
E, Jalangi River, West Bengal, India]); and Lampsilis fulgens Rafinesque, 1831 (type locality: River Ganges)96. 
Hence, the associated genus- and family-group names such as Diplasma Rafinesque, 1831 (type species: Diplasma 
marginata98), Hemisolasma Rafinesque, 1831 (type species: Diplasma (Hemisolasma) vitrea101,104), Diplasminae 
Modell,  1942105, and Hemisolasminae Starobogatov,  1970106 also become nomina dubia.

Based on the original  descriptions96, Lampsilis argyratus Rafinesque, 1831 (type locality: River Ganges) and 
Diplasma (Hemisolasma) striata Rafinesque, 1831 (type locality: River Jellinghy in Bengal [approx. 23.4356° N, 
88.4905° E, Jalangi River, West Bengal, India]) are considered here as junior synonyms of Indonaia caerulea (Lea, 
1831) and I. rugosa (Gmelin, 1791) comb. nov., respectively (Table 1). Furthermore, the diagnostic features, 
mentioned in the  protologue96, clearly indicate that the monotypic genus Loncosilla Rafinesque, 1831 with its 
type species Loncosilla solenoides Rafinesque, 1831 is not a unionid mussel but a freshwater clam of the family 
Pharidae. A more in-depth comparative analysis using available taxonomic works on freshwater  Pharidae107,108 
allowed us to propose the formal synonymy as follows: Novaculina Benson, 1830 [= Loncosilla Rafinesque, 1831 
syn. nov.] and Novaculina gangetica Benson, 1830 [= Loncosilla solenoides Rafinesque, 1831 syn. nov.] (Pharidae: 
Pharellinae).

Additionally, we would note on the enigmatic nominal taxon Unio digitiformis Sowerby, 1868 [holotype 
NHMUK 1965199; type locality: India] that shares an ultra-elongated shell with pointed posterior margin. Dif-
ferent authors placed it within different genera such as Nodularia Conrad, 1853, Lanceolaria Conrad, 1853, and 
Indochinella Bolotov et al.,  201835,84,109,110. Haas stated that this species is certainly not a member of the Indian 
 fauna84. Based upon a morphological examination of the holotype, we found that it conchologically corresponds 
to Diplodon parallelopipedon (Lea, 1834) (Hyriidae: Hyriinae), a South American species, which is known to 
occur in the Paraná Basin and coastal drainages of  Uruguay1,2. Hence, its type locality was given in error. The 
formal synonymy is proposed here as follows: Diplodon parallelopipedon [= Unio digitiformis Sowerby, 1868 
syn. nov.].

Discussion
Taxonomic richness and endemism of Oriental freshwater mussels. The Indian Subcontinent 
houses a rather taxonomically poor fauna of the Unionidae, which contains 25 species belonging to three Gond-
wanan tribes (Indochinellini, Lamellidentini, and Parreysiini) and one subfamily, the Parreysiinae. All these spe-
cies are endemic to the region, except for Lamellidens nongyangensis Preston, 1912, a local population of which 
was recorded in Lake of No Return (Nongyang Lake) near the boundary between India and Myanmar. Our novel 
results confirm the conclusion of Bolotov et al.19 that the Unionidae faunas of the Indian and Western Indochina 
subregions share almost 100% level of endemism at the species level and that multiple records of Indian species 
in  Myanmar57,110–113 were based on erroneous identifications. Furthermore, the tribe Parreysiini and the genera 
Arcidopsis, Balwantia, and Parreysia are unknown beyond the Indian Subregion.

The taxonomic richness of the Unionidae fauna in Western Indochina is 2.5 times higher compared with that 
on the Indian Subcontinent, with more than 60 species, but it represents an amalgam of the original Gondwanan 
taxa (Indochinellini, Lamellidentini, and Leoparreysiini), and the Paleogene immigrants from the Sundaland 
(Contradentini and Pseudodontini)19,22,23,35,56. The genera Indochinella Bolotov et al., 2018, Pseudodon Gould, 
1844, Radiatula Simpson, 1900, Trapezidens Bolotov, Vikhrev & Konopleva, 2017, and Yaukthwa Konopleva et al., 
2019 are endemic to the Western Indochina  Subregion22,23,35,53,56,114. Though Leoparreysia Vikhrev, Bolotov & 
Kondakov, 2017 was also considered among these endemic  clades23,35,56, morphology-based surveys indicate that 
it may contain at least two species east of the Salween – Mekong drainage divide. First, Leoparreysia subcircularis 
(Brandt, 1974) [type locality: Mekong River between Takek and Nakon Panom,  Laos]115 was recently transferred 
from Contradentini to  Leoparreysiini27. Second, Leoparreysia superstes (Neumayr, 1899) comb. nov. [type local-
ity: Erhai Lake, Upper Mekong Basin, Yunnan,  China]116 conchologically corresponds to the Leoparreysiini and 
is moved from Rhombuniopsis Haas, 1920 (Unioninae: Unionini) to Leoparreysia here. However, the generic 
placement of both species, mentioned above, is yet to be confirmed by means of the DNA-based approach.

http://clade.ansp.org/malacology/collections
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The Indian cementing bivalve Pseudomulleria dalyi (Smith, 1898) was considered a possible Gondwanan 
 relict117. Traditionally, this enigmatic “freshwater oyster” was placed in the Etheriidae based on morphological 
 criteria57,84,110,118,119 but phylogenetic reconstructions using a single available COI sequence of this taxon (acc. 
No. AF231750) repeatedly indicated that it is a unionid species belonging to the  Parreysiinae120–122. Its close 
affinities with the Unionidae were previously assumed based on anatomical  surveys118,123. Conversely, Graf & 
Cummings considered this COI sequence as potentially problematic due to the discordance of its phylogenetic 
position with morphological  data104 and returned Pseudomulleria dalyi to the  Etheriidae1. The latter concept 
of Pseudomulleria is accepted in the most recent global checklist of freshwater mussel  taxa2. Although the COI 
sequence under discussion seems to be correct, we did not include this taxon to the current list of the Indian 
Parreysiinae, because a final solution on its family-level placement requires an expanded set of DNA sequences 
and needs further research  efforts2.

We show that several highland areas of the Indian Subcontinent harbor endemic taxa of freshwater mussels 
with restricted ranges (Table 1). As it was  expected117, rivers flowing from the Western Ghats share the highest 
proportion of regional endemic species such as Arcidopsis footei (Tunga, Ghataprabha, and Koyna rivers, Upper 
Krishna  Basin71,124), Indonaia bonneaudii (Karli River), I. cylindrica comb. nov. (Upper Krishna Basin), Parrey-
sia keralaensis sp. nov. (Periyar and Pampa basins), and Pseudomulleria dalyi (Tunga and Bhadra rivers, Upper 
Krishna  Basin124,125). Further, rivers in Assam and northeastern Bangladesh house at least three narrowly endemic 
taxa, i.e. Balwantia soleniformis (Upper Brahmaputra and Upper Barak basins), Indonaia involuta (Upper Brah-
maputra and Surma basins), and Lamellidens friersoni comb. nov. (Upper Brahmaputra Basin). Finally, Parreysia 
rajahensis seems to be endemic to the Narmada  River97. Hence, these freshwater systems should be considered 
of highest priority areas for freshwater mussel conservation at the national and global levels.

It was assumed that the Western Ghats could have served as a refugium for the autochthonous Gondwanan 
fauna during the Deccan  eruptions126. At first glance, our data on the taxonomic diversity and endemism of 
freshwater mussels agree with this hypothesis. This mountain range represents a major evolutionary hotspot for 
a plethora of taxa with possible Gondwanan affinities such as  scorpions126, freshwater  gastropods127, freshwater 
 fish128,129,  frogs130–133, and evergreen  trees134.

The Andaman and Nicobar archipelagoes, being a union territory of India, are located on a separate tectonic 
platelet, which is confined to the western margin of the Sunda  Plate38. These islands may therefore harbor a spe-
cific freshwater mussel assemblage that should be different from those on the Indian Subcontinent and Burma 
Terrane. A single nominal taxon, Alasmodonta nicobarica Mörch, 1872, was described on the basis of one shell 
from the Nicobar  Islands135. Based upon the original  description135, this shell is irregularly oval, convex, with 
irregular growth lines; dorsal margin slightly arched, anterior margin narrowed and rounded, ventral margin 
slightly concave, posterior margin narrowed and slightly prominent; shell color is olive, with darker bandages 
and numerous dark green rays; umbo is not prominent, eroded; pseudocardinal teeth are almost completely 
absent, lateral teeth are lamellar. Simpson placed this nominal taxon in the genus Pseudodon sensu  lato70 based on 
Mörch’s comments in the  protologue135 but later transferred it to Pletholophus Simpson, 1900 with respect to the 
expert opinion of Haas, who has examined the holotype of Alasmodonta nicobarica79. Currently, it is considered 
a synonym of Pletholophus tenuis (Griffith & Pidgeon, 1833) (Unioninae: Cristariini), an East Asian  species2. 
However, if its type locality is stated correctly, it cannot be assigned to Pletholophus tenuis from a biogeographi-
cal point of  view35. At first glance, it may be a member of the genus Monodontina Conrad, 1853 (Gonideinae: 
Pseudodontini). This genus can be distinguished from other taxa by having an ovate or rounded shell and weakly 
developed pseudocardinal  teeth36, which aligns with the original description of Alasmodonta nicobarica. The 
Monodontina taxa sometimes share green rays through the periostracum. The genus Monodontina is known to 
occur in southern Myanmar (Lenya River), southern Thailand, Chao Phraya and Mekong basins, and through-
out Malaysia and the Greater Sunda  Islands23, and, hence, could theoretically be found on the Nicobar Islands. 
Here, we propose Monodontina nicobarica (Mörch, 1872) comb. nov. as a preliminary taxonomic hypothesis 
that needs to be checked by means of a DNA-based approach. The Great Nicobar Island with its numerous rivers 
and streams flowing through primary tropical forests could indeed house some interesting freshwater mussel 
taxa and must be a focus of future collecting efforts.

Gondwanaland origin and diversification of the Parreysiinae. Our earlier biogeographic scenario 
on the origin and diversification of the  Unionidae19 suggested that the MRCA of Parreysiinae has originated in 
Western Indochina in the Late Jurassic (ca. 150 Myr), with subsequent dispersal of descendants into Africa in 
the mid-Cretaceous (ca. 95 Myr) and into India in the Paleocene (ca. 60 Myr). At that time, we did not consider 
the Burma Terrane as a Gondwanan fragment and used a very restricted set of Indian taxa. Hence, our scenario 
predicted a Laurasian origin of the Parreysiinae and their westward expansion to East Gondwana starting more 
than 100 Myr ago that, as Pfeiffer et al.  noted51, weakly corresponds to modern paleogeographic reconstruc-
tions. The latter authors proposed an alternative hypothesis on the origin of the  Parreysiinae51. Their scenario 
predicted that this subfamily clade originated in Western Eurasia, with subsequent expansions south to Africa, 
and east to India, Myanmar, and mainland Southeast Asia. Pfeiffer et al. placed these events in the  Cenozoic51, 
after final contact of the Indian Subcontinent with the Eurasian Plate (i.e. since the mid-Eocene42,45), based on 
multiple Miocene fossils of three Parreysiinae lineages (Coelaturini, Parreysia, and Lamellidens) on Gondwanan 
fragments. Using these fossils as time calibrations, Ortiz-Sepulveda et al. proposed an additional scenario on 
African taxa that predicted the Early Miocene origin of the Coelaturini in Eurasia followed by their Early to 
Middle Miocene expansion into Africa, roughly coinciding with the closure of the Tethys  Sea31. Anyway, all the 
scenarios, outlined above, do not consider modern plate tectonic reconstructions and, though substantially dif-
fer by timeframe, support the so-called “Out-of-Asia”  model136.
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Here, we present an updated reconstruction of the origin and diversification of the Parreysiinae based on our 
novel biogeographic modeling, expanded paleontological data set, and the newest tectonic and paleomagnetic 
 reconstructions39–42,48,50,137. Our new “Out-of-India-&-Burma” scenario indicates that this subfamily originated 
in East Gondwana in the Late Jurassic. While Late Triassic or Early Jurassic African Unionidae are unknown, 
the Mid- to Late Jurassic deposits (age from 170 to 145 Myr) house a species-rich freshwater mussel assemblage, 
which contains a number of Unionidae and Margaritiferidae  taxa138. The ancestors of these groups most likely 
arrived to East Gondwana from Laurasia through the joined African Plate and Arabia. Several fossil freshwater 
mussel taxa from the Irhazer Group deposits (Mid- to Late Jurassic) of Niger resemble modern Unionidae in the 
hinge structure, e.g. the monotypic genera †Coactunio Van Damme & Bogan, 2015, †Rostrunio Van Damme & 
Bogan, 2015, and †Tuaregunio Van Damme & Bogan,  2015138. These taxa were considered the earliest members 
of the modern crown-group of the Unionidae in Jurassic  Africa138. In our opinion, these rare fossils could be 
linked to the MRCA or a steam group of the Parreysiinae based on the hinge structure. The initial breakup of 
East Gondwana from West Gondwana started approximately 160 Myr, separating the Indian Plate together with 
its proposed satellites from continental  Africa45,139. Hence, the Parreysiinae MRCA most likely colonized India 
earlier (Fig. 6).

Our scenario further suggests that the earliest diversification in the subfamily occurred on an ancient land-
mass, containing the Indian Plate and Burma Terrane, which were joined through the Greater India, in the Early 
 Cretaceous47,139 (Fig. 7a). During that period, two large clades, i.e. Lamellidentini (Fig. 2: Event I) and Parrey-
siini + Leoparreysiini (Fig. 2: Event II) were separated. The splits, outlined above, coincided with a complete 
disappearance of unionids and margaritiferids in the Early Cretaceous deposits of continental Africa, probably 
reflecting a major extinction  event138. Though it roughly coincides with the global Tithonian extinction  event138, 
the post-Jurassic disappearance of naiads in Africa could also be linked to active development of a large system of 
rifts, leading to intercontinental marine  transgressions140–142. Thereby we could assume that an ancient landmass, 
which consisted of the modern Indian Plate, Greater India, and Burma  Terrane39,40,42,48,137, played a significant 
role as a refugium for freshwater mussels in the Early Cretaceous. Perhaps some geographic barriers on this 
landmass such as mountain ranges drove the early macroevolution of the Parreysiinae, as it was suggested for 
the diversification patterns in the  Hyriidae18.

Our modeling reveals that a re-colonization event of the Parreysiinae from the Indo-Burma refugium into 
Africa most likely occurred in the mid-Cretaceous (Fig. 7b). This dispersal was followed by a vicariance event 
(mean age = 98 Myr) that lead to the origin of the African tribe Coelaturini (Fig. 2: Event III). A similar mean 
age was obtained for the split between the African Parachanna and Oriental Channa clades of snakehead fishes 
(Channidae) using a set of crown fossil  calibrations129. The sister family Aenigmachannidae, a unique subter-
ranean lineage from Western Ghats, separated from the Channidae approximately 110 Myr  ago129. The pattern, 
outlined above, predicts a hypothetical land bridge between the Indian Plate and Africa nearly 100–110 Myr ago, 
probably through  Madagascar45,143. Conversely, India could have reestablished biotic connections with Africa 
during its collision with the Kohistan–Ladakh Arc along the Indus Suture in the Late Cretaceous (ca. 85 Ma)45, 
although this geological event postdates our divergence age for the Coelaturini. Briggs assumed that India always 
remained close to Africa and Madagascar during its northward  motion144. Our results, however, suggest that 
the Indian Plate was linked to Africa sometime in the mid-Cretaceous but this connection was lost afterwards.

Three subsequent splits in the subfamily Parreysiinae reflect the segregation of the Indian Plate and Burma 
Terrane during the Late Cretaceous (mean age interval 96 to 74 Myr; Fig. 2: Events IV, V, VI). There is no 
evidence of any connection between these landmasses during a nearly 50-Myr period (74 to 26 Myr), starting 
near the Campanian—Maastrichtian boundary and covering the entire Paleogene epoch (Fig. 7c). Our review 
of available fossils from the Deccan Intertrappean Beds reveals that members of Indonaia, Lamellidens, and 
Parreysia were presented on the Indian  Plate145 right before the Cretaceous – Paleogene (K-Pg)  boundary146 
(Table 2 and Supplementary Note 2). These paleontological findings support our ancestral area reconstruction 
indicating the Indian origin of these genera. Van Damme et al. noted that Deccan fossils could also belong to 
the Hyriidae because they often share a crenate or wavy ventral  margin138. However, such “plicate” forms could 
independently evolve in different unionoid families, e.g. the Margaritiferidae (Margaritifera marrianae Johnson, 
 1983147 and Pseudunio flabellatus (Goldfuss, 1837)148) and Unionidae (genera Amblema Rafinesque,  1820149, 
Tritogonia Agassiz,  1852150, and others).

The Burma Terrane collided with the Sunda Plate in the Late Eocene (mean age = 38 Myr) that is reflected 
by the dispersal event of the Mekong’s Indochinellini from the terrane to mainland Asia (Figs. 7d, 2: Event VII). 
During the same period, members of the tribes Contradentini and Pseudodontini, belonging to the subfamily 
Gonideinae, colonized the Burma Terrane from Asia (Sunda Plate) that leads to the endemic Pseudodon and 
Yaukthwa radiations in Western  Indochina23. The Sundaland itself most likely represents an ancient evolutionary 
hotspot for the Gonideinae, because two endemic, deeply divergent tribes were recently discovered from Borneo, 
i.e. the Ctenodesmini Pfeiffer, Zieritz, Rahim & Lopes-Lima, 2021 and Schepmaniini Lopes-Lima, Pfeiffer & 
Zieritz,  202128. Though these Bornean clades are yet to be involved into any time-calibrated phylogeny, their 
phylogenetic position (sister to the Contradentini + Rectidentini and to Pseudodontini, respectively) undoubt-
edly indicates a Late Mesozoic  separation28.

A few species-level splits discovered in the genera Indonaia and Lamellidens indicate that the first re-connec-
tion of the Indian Plate and Burma Terrane did occur at the Oligocene – Miocene boundary (mean ages 26 to 
24 Myr). Several additional faunal exchanges between these landmasses during the Miocene (mean ages 12 to 
8 Myr), most likely reflecting river (stream) capture events, were also uncovered by our phylogeny. These range 
expansions could be traced in multiple fossil records of Indonaia, Lamellidens, and Parreysia species from Mio-
cene deposits throughout Pakistan, India, Nepal, and  Myanmar65–69. Perhaps, the exchanges between freshwater 
mussel faunas of the Indian Subcontinent and surrounding landmasses during the Miocene were triggered by 
humid and warm climatic episodes, as it was shown for freshwater  gastropods127,151 and  amphibians152.
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Interestingly, none of the unionid mussels seems to follow the so-called “Into India” scenario, though this 
pattern frequently occurs in Indian freshwater  gastropods127,153,154,  frogs155,156, and other animals. In contrast, 
our biogeographic models trace multiple “Into Burma” expansion events from India and Sundaland, starting 
since the Burma Terrane – Asia collision in the Late Eocene.

Burma Terrane as a second “biotic ferry” from Gondwana to Asia. There are multiple evidences 
that the Indian Plate has served as a “biotic ferry”, transferring a derivative of the aboriginal Gondwanan biota 
to  Asia44,157–159. The iconic examples of taxa that are thought to have arrived to Asia by this way were discov-
ered among  caecilians160,161,  frogs132, freshwater  fishes129,162, freshwater  crabs163,  centipedes164,  scorpions126, 
 tarantulas165, and various  plants166,167. Our study reveals that unionid mussels, a primarily freshwater group, the 
dispersal of which requires direct links between landmasses, should surely be added to the list of “passengers” 
that have travelled through the Tethys Ocean on this tectonic block. Furthermore, we show that the Burma 
Terrane could be considered a separate “biotic ferry” that also carried members of Gondwanan biota to Asia 

Figure 6.  Proposed scenario of the trans-Gondwanan expansion of the Parreysiinae MRCA (red arrow) in 
the Middle Jurassic (170–165 Myr). We assume that the MRCA of this subfamily migrated through freshwater 
systems of the African Plate and/or Arabia to an ancient landmass, containing the Indian Plate (with Greater 
India) and Burma Terrane. Red star indicates fossil records of the earliest African crown-group unionid 
mussels from Mid- to Late Jurassic deposits in Niger, i.e. †Coactunio iguallalensis, †Rostrunio lapparenti, and 
†Tuaregunio agadesensis138. IP Indian Plate, BT Burma Terrane, GI Greater India, SP Sunda Plate (with the 
Indochina Block and Sibumasu Terrane), SL Sri Lanka, MG Madagascar. Color filling is as follows: Burma 
Terrane (pink), Greater India (light orange), modern land (light yellow), proposed ancient land (light green), 
and ocean surface (light blue). The paleo-map was reconstructed using GPlates v. 2.3 (https:// www. gplat es. 
org)205 and corresponding data  sets206–209. Reconstruction of the Greater India in Gondwana follows published 
 works47,139 with additional modifications according to our biogeographic reconstructions. (Maps: Mikhail Yu. 
Gofarov and Ivan N. Bolotov).

https://www.gplates.org
https://www.gplates.org
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Figure 7.  Proposed scenarios of tectonic evolution of the Indian Plate and Burma Terrane with respect 
to our time-calibrated phylogenetic reconstruction and statistical biogeographic models for the freshwater 
mussel subfamily Parreysiinae (see Fig. 2 for detail). The paleo-maps are as follows: (a) Early Cretaceous 
(135 Myr): unionid mussels have gone extinct in continental Africa but survived on an East Gondwanan 
fragment containing the Indian Plate (with Greater India) and Burma Terrane, where the first split in the 
Parreysiinae did occur, i.e. the separation of the Lamellidentini; (b) mid-Cretaceous (100 Myr): colonization 
event of the Coelaturini MRCA (red arrow) to continental Africa, suggesting direct contact between the Indian 
Subcontinent and African Plate, probably through Madagascar; the Indian Plate and Burma Terrane are still 
connected through the Greater India; (c) Late Cretaceous (75 Myr): final separation of the Burma Terrane 
from the Indian Plate, probably by a partial submergence of the Greater India; both the landmasses served as 
insular “biotic ferries”, carrying Gondwanan biota to Asia; and (d) Late Eocene (40 Myr): Burma Terrane—Asia 
collision, leading to the expansion of the Mekong’s Indochinellini MRCA to the Sundaland Subregion and a 
colonization event of the Pseudodon and Yaukthwa MRCAs (Gonideinae: Pseudodontini and Contradentini)23 
to the Burma Terrane (purple arrows). IP Indian Plate, BT Burma Terrane, GI Greater India, SP Sunda Plate 
(with the Indochina Block and Sibumasu Terrane), SL Sri Lanka, MG Madagascar. Color filling is as follows: 
Burma Terrane (pink), Greater India (light orange), modern land (light yellow), proposed ancient land (light 
green), and ocean surface (light blue). The paleo-maps were created using GPlates v. 2.3 (https:// www. gplat es. 
org)205 and corresponding data  sets206–209, with additional modifications according to a set of novel tectonic and 
paleomagnetic  models39–42,48,137,139 and our biogeographic reconstructions. (Maps: Mikhail Yu. Gofarov and Ivan 
N. Bolotov).

https://www.gplates.org
https://www.gplates.org
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(Fig. 7a–d). The high degree of endemism discovered in freshwater mussels on the Burma Terrane (and on the 
Indian Subcontinent as well) reveals that the Gondwanan “biotic ferries” have served as insular evolutionary 
hotspots, at least during the entire Paleogene (Fig. 7c). Our results support the hypothesis on insular endemism 
patterns (the so-called “endemic insularity syndrome”) discovered in the paleo-biota from the mid-Cretaceous 
Burmese  amber168–170.

Earlier, it was suggested that several non-Indian Gondwanaland fragments such as the Burma and Lhasa ter-
ranes might have transferred Gondwanan lineages into Asia but any direct biogeographic evidence supporting 
this idea was not  available127. The body of literature on this issue is still very limited, and a few available reports 
are based exclusively on paleontological data. First, a review of biogeographic affinities of numerous plant and 
animal taxa discovered in the mid-Cretaceous Burmese amber (ca. 100 Myr; near the Albian—Cenomanian 
boundary) reveals that this biota represents a selection of Gondwanan organisms and that the Burma Terrane 
could not have separated from East Gondwana before the Early  Cretaceous49. From this perspective, ancestors of 
several secondary freshwater/estuarine and terrestrial groups of Mollusca discovered in Burmese amber such as 
†Palaeolignopholas piddocks (Pholadidae)171 and some land snail taxa (Diplommatinidae and Pupinidae)172,173 
may have also arrived to Asia with the Burma Terrane. The discovery of a freshwater pond snail (Lymnaeidae) 
in this amber, however, could be linked to a long‐distance dispersal  event174. Perhaps it was not a transoceanic 
dispersal as such but an expansion from the nearby Indian Subcontinent, because the Deccan Trap sedimentary 
sequence harbors a diverse and species-rich assemblage of fossil freshwater snails, containing the Lymnaeidae, 
Planorbidae, Pomatiopsidae, Succinidae, Thiaridae, Valvatidae, and Viviparidae  taxa175. Second, on the basis 
of a comprehensive survey on the Eocene flora of Myanmar, the Burma Terrane was considered a Gondwanan 
fragment that collided with Asia in the Late Eocene (ca. 41 Myr) and facilitated floristic exchange between the 
terrane, Indian Plate, and Asian  mainland176. The dating of the Burma Terrane—Asia collision recovered in this 
research aligns with our estimate of 38 Myr inferred from the time-calibrated phylogeny of the Parreysiinae.

Conclusion
Our research presents the first DNA-based evidence that the Burma Terrane transferred an ancient derivative 
of Gondwanan biota to Asia, as India did. These results agree with a growing body of modern paleontological, 
tectonic, paleomagnetic, and geological research, supporting a Gondwanan origin of the Burma Terrane and its 
northward rafting through the Tethys  Ocean39–41,48,49,176. Based on biogeographic patterns that were discovered 
in freshwater mussels (Unionidae: Parreysiinae), we propose that this terrane was a part of an ancient landmass, 
also containing the Indian Plate and Greater India, from the Middle Jurassic (ca. 160 Myr) to the terminal Cre-
taceous (ca. 75 Myr). Later on, during the Paleogene, the Burma Terrane was an isolated island that has collided 
with mainland Asia (Sunda Plate) in the Late Eocene (ca. 40 Myr). The biogeographic reconstruction presented 
here could be used as supplement to modern plate tectonic models, repeatedly indicating northward drifting of 
the Burma Terrane alongside the Indian  Plate40,177. In general, our scenario of tectonic evolution of the region 
differs from other available  scenarios40 by the position of the Burma Terrane in relation to that of the Indian 
Plate and Greater India.

From this perspective, mainland Southeast Asia represents a Late Eocene collision zone of two tectonic blocks 
(Burma Terrane and Sunda Plate), initially housing completely different  biotas176. These blocks could roughly 
be delineated via the Sagaing Fault and along the northern part of the Tenasserim Range through the Three 
Pagodas and Ranong  faults178. This unique pattern was largely overlooked until recently which sometimes lead 
to incorrect conclusions on the origin and diversification of certain taxa, e.g.  onychophorans179. To avoid possible 
reconstruction failures, Western Indochina should be coded as a separate, Gondwana-derived ancestral area in 
statistical biogeographic and paleontological models. Furthermore, the origin and role of several geographic 
barriers linked to the collision zone such as the Isthmus of  Kra23 and the Salween – Mekong drainage  divide35 
must be re-considered based on these new findings.

Methods
Data collection. Freshwater mussel samples were collected from various localities in India, Nepal, and 
Myanmar from 2012 to 2020. A small foot or mantle tissue snip from each specimen from Myanmar and Nepal 
was fixed with 96% ethanol immediately after  collection19,22,23. For the Indian samples, hemolymph was pre-
ferred as the source of genomic DNA. The hemolymph samples (0.2 ml per one specimen) were collected using 
a standard  approach180, and genomic DNA was isolated from 0.1 ml of fresh hemolymph using the NucleoSpin® 
Tissue Kit (Macherey–Nagel GmbH & Co. KG, Germany), following the manufacturer protocol. The partial 
sequences of the mitochondrial COI, 16S rRNA, and the nuclear 28S rRNA genes were generated using stand-
ard protocols described in our earlier  works19,53,56. The COI sequences of samples from Nepal were generated 
using the LCO1490 and COIschneck primers  pair181, while those from Indian samples were obtained with the 
standard Folmer’s  primers182. Additional DNA sequences of Indian and African taxa were obtained from NCBI’s 
GenBank (Datasets 1 and 2).

The dry shell vouchers and ethanol-preserved complete specimens collected by us were deposited in the 
following collections: FBRC ZSI—Freshwater Biology Regional Centre, Zoological Survey of India, Hyderabad, 
India (samples from India); SMF—Senckenberg Museum, Frankfurt, Germany (samples from Nepal); and 
RMBH—Russian Museum of Biodiversity Hotspots, Federal Center for Integrated Arctic Research of the Ural 
Branch of the Russian Academy of Sciences, Arkhangelsk, Russia (samples from Myanmar). Additionally, we 
examined historical shell lots in NMNH—National Museum of Natural History, Smithsonian Institution, Wash-
ington, DC, United States of America; MCZ—Museum of Comparative Zoology, Cambridge, USA; NHMUK—
British Museum of Natural History, London, United Kingdom; MNHN—Muséum National d’Histoire Naturelle, 
Paris, France; MSNG—Museo Civico di Storia Naturale di Genova, Genoa, Italy. Furthermore, the MUSSEL 



18

Vol:.(1234567890)

Scientific Reports |         (2022) 12:1518  | https://doi.org/10.1038/s41598-022-05257-0

www.nature.com/scientificreports/

Project (MUSSELp) Database (http:// mussel- proje ct. uwsp. edu) was used as a reliable source of taxonomic, bib-
liographic, and morphological information on nominal taxa of freshwater  mussels1,2,183.

Phylogenetic analyses. To reconstruct multi-locus phylogeny of the Parreysiinae (3 codons of COI + 16S 
rRNA + 28S rRNA), we compiled an alignment with 61 unique species-level haplotypes, including four out-
group taxa, that were selected from 203 sequenced specimens (Datasets 1 and 2). The maximum likelihood 
and Bayesian phylogenies were calculated using IQ-TREE v. 1.6.12184 and MrBayes v. 3.2.7a185, respectively. 
The IQ-TREE184 analysis was run using an automatic identification of the best evolutionary models for each 
 partition186 and an ultrafast bootstrap  algorithm187 via an online server (http:// iqtree. cibiv. univie. ac. at)188. The 
Bayesian analysis was performed through the CIPRES Science  Gateway189. We assigned the best-fit evolution-
ary models to each partition based on the second-order Akaike information criterion (AICc) of  MEGA7190 as 
follows: GTR + G (1st codon of COI); TN93 + G + I (2nd codon of COI); HKY (3rd codon of COI); GTR + G + I 
(16S rRNA); and GTR + G (28S rRNA). The MrBayes settings were as follows: two runs (each with 50,000,000 
generations), four MCMC chains (three cold and one heated; temp = 0.1), sampling every 1000th generation, 
and a 15% burn-in.

Species delimitation. Two species delimitation approaches were applied through available web-services, 
that is, the Poisson Tree Process (PTP) modeling (http:// mptp.h- its. org)191 and ASAP (assemble species by auto-
matic partitioning; https:// bioin fo. mnhn. fr/ abi/ public/ asap)192. As an input tree, we used the maximum likeli-
hood COI phylogeny of the Parreysiinae inferred from IQ-TREE v. 1.6.12184. An initial alignment with 196 in-
group COI sequences was compiled (Dataset 1). This alignment was converted to 173 unique haplotypes using 
an online sequence toolbox, FaBox v. 1.5 (https:// birc. au. dk/ ~palle/ php/ fabox)193. Four Pseudodontini haplo-
types were used as outgroup (Dataset 1). The IQ-TREE analysis was run through an online server (http:// iqtree. 
cibiv. univie. ac. at)184 with settings as described above. Each species-level Molecular Operational Taxonomic Unit 
(MOTU), probably corresponding to a biological species, was checked with morphological criteria such as the 
shell shape, shell sculpture, umbo position, structure of pseudocardinal and lateral teeth, and shape of muscle 
attachment  scars56. To link each MOTU to certain nominal species, the conchological features of available speci-
mens were compared with the original taxonomic  descriptions23.

Divergence time estimation. Divergence ages were estimated using BEAST v. 2.6.3194,195. The time-cal-
ibrated phylogeny was reconstructed based on an external COI evolutionary rate (1.5E-9 substitutions per site 
per year)196. This rate was obtained using a comprehensive set of mitochondrial genome sequences and several 
reliable fossil calibrations for Unionidae  taxa196 and largely agrees with earlier estimates of the COI molecular 
clock rate in freshwater  mussels147,197. For BEAST runs, we used the same multi-locus dataset as for the IQ-
TREE and MrBayes phylogenetic analyses (3 codons of COI + 16S rRNA + 28S rRNA). The molecular clock rate 
was assigned to the COI partition only. The HKY + G model was applied for each gene partition based on our 
earlier  considerations19. We applied a strict clock algorithm with the Yule speciation process as the tree  prior198. 
The BEAST runs were performed through the CIPRES Science  Gateway189. Three independent BEAST runs 
were performed, each with 150,000,000 generations and tree sampling every 1000th cycle. The resulting log files 
were checked visually with Tracer v. 1.7.2199. The Effective Sample Size (ESS) values of all the parameters in the 
combined runs were found to be > 300 after a 50% burn-in. The final tree set was generated using LogCombiner 
v. 2.6.6194,194 with an additional re-sampling every 5,000th generation and an appropriate burn-in. The consensus 
tree was found with TreeAnnotator v. 2.6.6194,194.

Ancestral area reconstruction. First, we reconstructed possible ancestral areas using data on the distri-
bution of Parreysiinae species throughout tectonic plates as follows: African Plate (A); Burma Terrane [= West 
Burma Block]: a separate tectonic block between the Naga Hills, Chin Hills, and Rakhine Hills mountain ranges 
and the Sagaing, Three Pagodas, and Ranong  faults38–40,178; the Mogok–Mandalay–Mergui  Belt40 is placed here as 
a marginal part of the Burma Terrane (B); Indian Plate (C); and Sunda Plate with the Indochina Block and Sibu-
masu Terrane (D). Second, we tested the role of former supercontinents in the origin of the Parreysiinae clades 
as follows: Gondwana and its fragments [African Plate + Indian Plate + Burma  Terrane]40,177 (A); and Laurasia 
[Sunda  Plate]39 (B).

Ancestral areas were reconstructed with BioGeoBEARS  packages200,201 implemented in RASP v. 4.2202. As 
input files, we used the set of trees and the consensus phylogeny obtained from BEAST runs (see above). The 
branch length of the trees was converted from years to Myr using a “Scaling Branch Length” option of RASP v. 
4.2202 with an appropriate scaling coefficient (1.0E-6). The four outgroup taxa were removed from the trees using 
a “Remove Selected Groups” option of RASP v. 4.2202. The biogeographic analyses were run with default settings 
(max areas = 2) but without a set of + J models checking for founder-event  speciation200, because these models 
appear to be rather doubtful from a statistical and conceptual point of  view203.

To find the most appropriate biogeographic models, we conducted a comparative analysis of the relative 
probability of BioGeoBEARS models (DEC, DIVALIKE, and BAYAREALIKE) using the log-likelihood (LnL), 
AICc, and model weight according to ΔAICc (AICc wt)200–202. For the “supercontinents” reconstruction, the 
DIVALIKE model shared higher relative probability compared with others with respect to the AICc wt value 
(Supplementary Table 1). In its turn, the DEC model could be chosen according to that criterion among those 
reconstructing ancestral areas on the basis of tectonic plates (Supplementary Table 1). However, we selected the 
DIVALIKE model, sharing similar LnL and AICc values to the DEC model, as the preferred model, because 
the DEC model did not return well-resolved reconstructions on several nodes. In both (supercontinents and 
tectonic plates) cases, we additionally calculated S-DIVA model with RASP v. 4.2202 and combined DIVALIKE 

http://mussel-project.uwsp.edu
http://iqtree.cibiv.univie.ac.at
http://mptp.h-its.org
https://bioinfo.mnhn.fr/abi/public/asap
https://birc.au.dk/~palle/php/fabox
http://iqtree.cibiv.univie.ac.at
http://iqtree.cibiv.univie.ac.at
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and S-DIVA204 models using the “Combine Results” option of the  software202. These combined models were used 
in subsequent biogeographic analyses and reconstructions.

Tectonic plate modeling. The tectonic plate reconstructions for selected time intervals were calculated 
using GPlates 2.3 software (https:// www. gplat es. org)205 and a corresponding set of digital layers on topo-
logical plate  model206–209. Additional settings were obtained from a set of novel tectonic and paleomagnetic 
 reconstructions39–42,48,137,139. The paleogeographic positions of the Burma Terrane and Greater India at 165–170, 
135, 100, 75, and 40 Myr were modified manually on the basis of our time-calibrated phylogenetic reconstruc-
tion and statistical biogeographic models (see above).

Nomenclatural acts. The electronic edition of this article conforms to the requirements of the amended 
International Code of Zoological Nomenclature (ICZN), and hence the new name and combinations contained 
herein are available under that Code from the electronic edition of this article. This published work and the 
nomenclatural acts it contains have been registered in ZooBank (http:// zooba nk. org), the online registration 
system for the ICZN. The LSID for this publication is: http:// zooba nk. org/ urn: lsid: zooba nk. org: pub: FABE4 C0F- 
313E- 4AB8- 803F- 35235 95D9A 39. The electronic edition of this paper was published in a journal with an ISSN, 
and has been archived and is available from PubMed Central.

Data availability
The voucher specimens of freshwater mussels from the Oriental Region are available in SMF— Senckenberg 
Museum, Frankfurt, Germany; RMBH—Russian Museum of Biodiversity Hotspots, Federal Center for Integrated 
Arctic Research of the Ural Branch of the Russian Academy of Sciences, Arkhangelsk, Russia; ZSI—Zoological 
Survey of India, Kolkata, India; and FBRC ZSI—Freshwater Biology Regional Centre, Zoological Survey of India, 
Hyderabad, India. The DNA sequences generated in this study could be downloaded from NCBI’s GenBank 
(https:// www. ncbi. nlm. nih. gov/ genba nk). The DNA sequence accession numbers and collecting locality data 
for every sample are presented in Datasets 1 and 2.
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