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Predicting clinical outcomes 
of cancer patients with a p53 
deficiency gene signature
Evelien Schaafsma1, Eric M. Takacs2, Sandeep Kaur2, Chao Cheng 1,3* & 
Manabu Kurokawa 2*

The tumor suppressor p53, encoded by the TP53 gene, is mutated or nullified in nearly 50% of human 
cancers. It has long been debated whether TP53 mutations can be utilized as a biomarker to predict 
clinical outcomes of cancer patients. In this study, we applied computational methods to calculate p53 
deficiency scores (PDSs) that reflect the inactivation of the p53 pathway, instead of TP53 mutation 
status. Compared to TP53 mutation status, the p53 deficiency gene signature is a powerful predictor 
of overall survival and drug sensitivity in a variety of cancer types and treatments. Interestingly, the 
PDSs predicted clinical outcomes more accurately than drug sensitivity in cell lines, suggesting that 
tumor heterogeneity and/or tumor microenvironment may play an important role in predicting clinical 
outcomes using p53 deficiency gene signatures.

The tumor suppressor p53, also known as the guardian of the genome, is a transcription factor encoded by the 
TP53 gene in humans. It acts as a sensor of cellular homeostasis and plays important roles in DNA repair, senes-
cence, metabolism, and induction of apoptotic and non-apoptotic cell death in order to maintain the integrity 
of the genome and normal cellular functions. It can activate a myriad of target genes involved in cell cycle arrest, 
metabolism, and cell death in response to DNA damage, hypoxia, oxidative stress, and DNA mutations, resulting 
in the restriction of tumor  development1. Considering its importance in key cellular processes, TP53 is found to 
be mutated in ~ 50% of human cancers, more than any other gene in human  cancers2. In this regard, Li–Fraumeni 
syndrome is a familial disorder that is associated with a TP53 mutation which predisposes carriers to a broad 
spectrum of  cancers3. Also, a number of knockout mouse studies showed that the loss of the TP53 gene leads to 
the development of spontaneous tumors, particularly sarcoma and  lymphoma4.

In the past decades, much effort has been focused on predicting clinical outcomes based on TP53 status in 
a variety of cancers. Some studies have successfully shown that TP53 mutations/deletion are linked to a poorer 
prognosis in certain cancer types, such as head and neck, liver, and hematopoietic  cancers5. However, numerous 
conflicting results have been reported for cancers of the bladder, brain, breast, lung, colon, esophagus, and  ovary5. 
For instance, there were approximately 1157 reports on lung and bronchus cancers showing that TP53 mutations 
were associated with poor survival, while 1167 reports showed no such  association5. Therefore, based on these 
studies, it appears that no simple generalization can be made regarding the association of TP53 mutation status 
with clinical outcomes. Importantly, it is known that some of the p53 mutants, if not all, show gain-of-function 
rather than loss-of-function mutations, indicating that p53 mutants can induce genes that wild type p53 cannot 
control. Supporting this, recent studies suggest that the prognostic value of the TP53 mutation may depend on 
the mutated  residue6,7, cancer type, presence of mutation in other  genes8, and clinical  backgrounds9. Most impor-
tantly, TP53 mutation status is not the only factor affecting the p53 signaling pathway. Even if cancer cells carry 
wild type p53, its activity is often suppressed upstream by negative regulators, such as MDM2 and  MDM410,11, 
or downstream by promoter methylation of p53 target  genes12,13.

Given the complexity of the regulation of p53 and its target expression, p53 activity is expected to be a bet-
ter prognostic marker than TP53 mutation status. Our group has previously demonstrated that the p53 defi-
ciency score (PDS), which is inferred based on expression levels of p53 regulated genes, is a better predictor of 
recurrence in early-stage lung adenocarcinoma patients than TP53 mutation  status14. In the present study, we 
extended the computational approach to include 20 cancer types to analyze the association between PDS and 
clinical outcomes.
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Results
We have previously proposed a computational method to predict sample-specific PDS in lung adenocarcinoma 
based on the expression of genes that are associated with TP53 gene mutation  status14. Here, we extended this 
method to 19 additional cancer types from The Cancer Genome Atlas (TCGA). These cancer types were selected 
based on having at least 20 patients who had protein-altering TP53 mutations and made up at least 10% of all 
patients within a cancer type. The total number of patients with TP53 mutations in these 20 cancer types was 
3461, which constituted 47% of all included samples (Table 1). Cancer-specific mutation rates ranged from 93% 
for ovarian cancer to 12% for prostate cancer (Table 1). For each cancer type, we generated p53 deficiency signa-
tures in which genes are weighted based on their association with TP53 mutation status; genes highly associated 
with TP53 mutations receive high weights, whereas uncorrelated genes receive small weights. The resulting weight 
profiles were mildly but positively correlated (Fig. 1A), with the highest correlation being between the rectum 
adenocarcinoma and colon adenocarcinoma signatures (Spearman Correlation Coefficient = 0.583, p < 2E−323).

The percentage of surviving patients is high for most TCGA cancer types, which makes it difficult to identify 
prognostic associations due to low statistical power. We selected cancer types with a relatively high death event 
percentage (> 50%). Within these cancer types, we observed significant differences in survival, including uterine 
corpus endometrial carcinoma (log-rank p = 0.003) and lung adenocarcinoma (log-rank p = 0.008) (Fig. 1B,C). 
Interestingly, there was no statistical association between overall survival and TP53 mutation status in these can-
cer types (Fig. 1B,C). In fact, TP53 mutation status was only prognostic in pancreatic adenocarcinoma (log-rank 
p = 2E−3). To more comprehensively evaluate the association between PDS and patient prognosis, we also utilized 
the PRECOG  dataset15, a comprehensive collection of more than 100 gene expression datasets with high-quality 
survival data from patients treated with standard-of-care chemotherapy. We confirmed the prognostic relevance 
of PDS in uterine corpus endometrial carcinoma and lung adenocarcinoma and found a number of additional 
cancer types in which p53 deficiency was associated with prognosis. Generally, high PDSs were associated 
with shorter survival; high PDSs were hazardous in patients with prostate adenocarcinoma, bladder urothelial 
carcinoma, breast invasive carcinoma, liver hepatocellular carcinoma, and head and neck squamous carcinoma 
(Fig. 1D). Interestingly, brain cancers including glioblastoma multiforme and brain lower grade glioma showed 
a negative association with survival, as well as ovarian serous cystadenocarcinoma (Fig. 1D). These findings 
suggest that under standard-of-care chemotherapy, p53 deficiency is associated with poorer survival outcomes 
in about half of the evaluated cancer types; exceptions were observed in brain cancers in which p53 deficiency 
is associated with improved survival.

Next, we examined whether PDSs can predict drug sensitivity in cancer cell lines. Towards this end, we 
inferred PDSs in the Cancer Cell Line Encyclopedia (CCLE) dataset which contains drug sensitivity data on 
different drugs in a wide range of cell  lines16. We could only confidently capture p53 deficiency in a limited num-
ber of cancer types (AUC of predicting TP53 mutation status > 0.60) (Fig. 2A). We thus evaluated associations 
between PDSs and drug sensitivity in five cancer types for which we could confidently capture p53 deficiency 
(breast invasive carcinoma, colon adenocarcinoma, ovarian serous cystadenocarcinoma, pancreatic adenocarci-
noma, and skin cutaneous melanoma). We also only included drugs for which at least 10 cell lines for the given 
cancer type were tested, resulting in the evaluation of 11 drugs for breast invasive carcinoma and up to 15 drugs 

Table 1.  TP53 status of each cancer types.

Cancers # Samples # TP53 mutant # TP53 wild type % Mutation

OV 206 192 14 93.2

UCS 57 52 5 91.2

ESCA 184 158 26 85.9

LUSC 482 403 79 83.6

READ 146 107 39 73.3

HNSC 501 353 148 70.5

PAAD 169 104 65 61.5

COAD 405 223 182 55.1

LUAD 512 260 252 50.8

LGG 524 257 267 49.0

STAD 411 201 210 48.9

BLCA 406 198 208 48.8

UCEC 529 203 326 38.4

SARC 237 86 151 36.3

GBM 158 55 103 34.8

BRCA 1023 349 674 34.1

KICH 66 21 45 31.8

LIHC 360 108 252 30.0

SKCM 467 72 395 15.4

PRAD 494 59 435 11.9
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Figure 1.  Prognostic associations in TCGA and PRECOG. (A) Correlation matrix of TP53 signatures using 
Spearman correlation coefficients (SCC). (B) KM plots for UCEC in TCGA based on TP53 mutation status 
(left) or p53 deficiency scores (PDS) (right). (C) KM plots for LUAD in TCGA based on TP53 mutation status 
(left) or PDS (right). LR p-value calculated between groups using Log-rang tests, HR hazard ratio. (D) Meta-
p-values for association between PDSs and prognosis in PRECOG. Bars indicate − log10(meta p-values). 
Negative values indicate a hazardous role for PDSs, while positive values represent protective associations. LGG 
(brain lower grade glioma), GBM (glioblastoma multiforme), SARC (sarcoma), KICH (kidney chromophobe), 
READ (rectum adenocarcinoma), COAD (colon adenocarcinoma), ESCA (esophageal carcinoma), LUSC 
(lung squamous cell carcinoma), SKCM (skin cutaneous melanoma), PRAD (prostate adenocarcinoma), STAD 
(stomach adenocarcinoma), LIHC (liver hepatocellular carcinoma), OV (ovarian serous cystadenocarcinoma), 
UCEC (uterine corpus endometrial carcinoma), BRCA (breast invasive carcinoma), LUAD (lung 
adenocarcinoma), BLCA (bladder urothelial carcinoma), UCS (uterine carcinosarcoma), HNSC (head and neck 
squamous cell carcinoma), PAAD (pancreatic adenocarcinoma).

Figure 2.  Drug sensitivity in CCLE data. (A) AUC curves of PDS predicting TP53 mutation status for cancer 
types with AUC scores > 0.60. (B) Differences in drug sensitivity based on PDS status using the median of PDSs 
to demarcate low and high p53 deficiency groups. p-value calculated by two-sided Student’s t-test.
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for skin cutaneous melanoma. A small number of evaluated associations was statistically significant (Fig. 2B). 
In two out of five cases (colon adenocarcinoma and skin cutaneous melanoma), p53 deficiency was associated 
with increased drug sensitivity, whereas in the other three comparisons (breast invasive carcinoma, ovarian 
serous cystadenocarcinoma, and pancreatic adenocarcinoma), p53 deficiency was associated with decreased 
drug sensitivity (Fig. 2B).

To further investigate the relationship between the TP53 gene expression signature and drug sensitivity at the 
cell level, we analyzed p53 deficiency and paclitaxel sensitivity by an actual cell culture model of breast cancer 
where a strong inverse association between p53 deficiency and paclitaxel sensitivity was observed (Fig. 2B). We 
treated 9 breast cancer cell lines endogenously expressing a mutant p53 (MDA-MB-468, HCC-1954, MDA-
MB-231, AU-565, SKBR-3, HCC-202, BT-474, HCC1419, and T47D) with various concentrations of paclitaxel 
in vitro. Forty-eight hours later, we performed MTS assays and calculated paclitaxel IC50’s for each cell line 
(Fig. 3A). Supporting the CCLE dataset analysis (Fig. 2B), the MDA-MB-468 and MDA-MB-231 cell lines, which 
showed high PDSs, were highly resistant to paclitaxel (Fig. 3A,B). In contrast, the HCC-1954 cell line was sensi-
tive to paclitaxel (Fig. 3A), even though it had a high PDS (Fig. 3B). Conversely, the HCC-1419 cell line, which 
showed a low PDS (Fig. 3B), was resistant to paclitaxel (Fig. 3A). Overall, among the 9 cell lines tested, there 
was a mild association between high PDSs and paclitaxel resistance in vitro (Fig. 3B), with 2 out of 4 cell lines in 
the high PDS category being resistant to paclitaxel and only 1 out of 5 cell lines being resistant in the low PDS 
category. These results suggest that PDSs can be used as a prognostic marker for clinical samples and in some 
cell lines. The lower association between PDSs and treatment response in cell lines could be due to the inherent 
differences between gene expression profiles of tumor tissues and cell lines, including the absence of surrounding 
stromal cells and immune cells as well as the lack of substantial tumor cell heterogeneity in cell lines. In addition, 
some cell lines are equipped with mechanistic aspects that could cause drug resistance independently of p53 
activity. For example, the breast cancer cell line MCF7 expresses wild type p53. However, the lack of caspase-3 
makes this cell line extremely resistant to cell death stimuli, including paclitaxel, despite its low PDS (score − 203).

Cancer patients often undergo different treatment schemes. To evaluate the effect of different treatment 
modalities in tumor gene expression data, we applied the breast cancer-specific PDS to the METABRIC (Curtis) 
 dataset17, which contains gene expression data from patients treated by a variety of therapies. Overall, PDSs 
were hazardous (Fig. 4A), consistent with our earlier findings in Fig. 1. When comparing low and high PDSs 
in patients treated with the same therapy, significant differences in survival were observed; p53 deficiency was 
always associated with poor prognosis. This association reached statistical significance for the chemotherapy/
hormone therapy/radiotherapy combination (log-rank p = 0.002) (Fig. 4B), the hormone therapy/radiotherapy 
combination (log-rank p = 3E−4) (Fig. 4C) and for patients that did not receive any therapy (log-rank p = 0.02) 
(Fig. 4D). No significant relationship was observed within the patient group treated with only chemotherapy 
(data not shown). Consistent with our earlier findings (Fig. 1B,C), p53 deficiency was a better predictor than 
TP53 mutation status (Fig. 4A–D).

The comparison of the survival probability among treatments also revealed differential survival among 
patient groups treated with different therapies. For example, patients receiving a combination of chemotherapy/
hormone therapy/radiotherapy survived much longer compared to patients who only received chemotherapy 
(Fig. 5A). Interestingly, some treatment groups were associated with PDSs. For instance, the chemotherapy (CT) 
and chemotherapy/radiotherapy (CT/RT) groups of patients had higher PDSs as compared to other treatment 
groups (Fig. 5B). Since patients within this dataset were not randomized into treatment groups, it is possible that 
breast cancer subtypes contribute to this discrepancy as subtypes play a major role in determining treatment 
options. We found that basal and HER2+ breast cancer patients have much higher PDSs compared to the other 
subtypes (Fig. 5C) and these are the breast cancer subtypes with the poorest  survival18. Compared to basal and 
HER2 + breast cancers, the Luminal A, Luminal B, and normal-like subtypes are known to be associated with 
better prognosis. Notably, PDSs predicted patients’ survival within these subtypes (Fig. 5D).

Discussion
Gene expression signatures are emerging as powerful prognostic markers of clinical outcomes as compared to 
mutation status of a small gene set. Previously, we have generated a computational p53 deficiency gene signature 
 model14. In the present study, we sought to investigate whether the PDS also predicts clinical outcomes in other 
cancer types. We have shown that PDS is a better predictor of clinical outcomes as compared to TP53 mutation 
status. It is important to note that the TP53 gene expression signature can be influenced by transcription factors 
other than p53. For instance, although p53 is considered to be the primary transcription factor for this signature, 
the p53 family proteins p63 and p73 are also known to induce the expression of many p53-targeted  genes19–21. 
This may at least partially explain why cell lines expressing mutant p53 had a range of PDSs (Fig. 3). In addition, 
clinical tumor samples likely contain non-cancer cells, such as stromal cells and immune cells, which would also 
affect PDSs as discussed below.

Despite high survival rates in TCGA datasets, which limits the overall statistical power of prognostic analysis, 
we found a significant difference in overall survival in uterine corpus endometrial carcinoma and lung adenocar-
cinoma, where high PDSs predicted poor overall survival (Fig. 1B). Likewise, in the PRECOG dataset, high PDSs 
were found to be associated with poor survival in patients with prostate adenocarcinoma, lung adenocarcinoma, 
bladder urothelial carcinoma, breast invasive carcinoma, liver hepatocellular carcinoma, head and neck squa-
mous carcinoma, and pancreatic adenocarcinoma (Fig. 1C). These results are in accordance with other studies 
in which TP53 gene mutation/signatures were shown to be predictive of clinical outcomes in different types of 
 cancer18,22–26. Surprisingly, in glioblastoma multiforme, brain lower grade glioma, and ovarian serous cystad-
enocarcinoma, high PDSs predicted better survival under chemotherapy (Fig. 1C). Recently, it was reported 
that TP53 mutation status alone is associated with improved survival in  glioblastoma27. Our results support 
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this observation. It is interesting to note that the frequency of TP53 mutations vary among these cancer types 
(Table 1). The functional significance of p53 and its mutation in glioblastoma, low-grade glioma, and ovarian 
cancer needs to be further investigated.

Figure 3.  Drug sensitivity in breast cancer cell lines. (A) The indicated breast cancer cell lines were plated into 
96-well plates and were treated with various concentrations of paclitaxel. MTS assays were performed following 
a 48-h incubation with paclitaxel. (B) PDSs and paclitaxel IC50’s are shown for each breast cancer cell line.



6

Vol:.(1234567890)

Scientific Reports |         (2022) 12:1317  | https://doi.org/10.1038/s41598-022-05243-6

www.nature.com/scientificreports/

Our PDS model was also validated in breast cancer subtypes. The TP53 gene mutation frequency ranges 
from 12% in Luminal A, 32% in luminal B, 75% in HER2-enriched breast cancers to 84% in basal-like  cancers18. 
Indeed, our analysis indicated that the PDSs were high in basal-like and HER2+ breast cancer patients, while 
patients with the Luminal A subtype showed the lowest scores (Fig. 4C). It is worth noting that basal-like and 
HER2-enriched breast cancer subtypes are known to be associated with the worst survival  rates18. Unfortunately, 
patients within the METABRIC/Curtis dataset were not treated with Herceptin therapy, the most common 
therapy for HER2+ breast cancer patients, preventing conclusions about the association between PDSs and 
response to Herceptin. Nevertheless, we were able to scrutinize the impact of PDSs in other therapies based 
on the available data. It was found that high deficiency scores predicted poor survival in patients treated with 
the chemotherapy/hormone therapy/radiotherapy combination (CT/HT/RT) (Fig. 4B), the hormone therapy/
radiotherapy combination (HT/RT) (Fig. 4C), and for patients who did not receive any therapy (Fig. 4D).

While PDSs were associated with treatment response in breast cancer, we noted that the relationship between 
p53 deficiency and treatment sensitivity was complex. A recent comprehensive analysis revealed that although 
mutant p53 can impact clinical outcomes negatively, wild type p53 could also mediate poor clinical responses 
depending on the treatments and breast cancer  subtype28. It has been reported that a 39-gene p53 signature is 
predictive of poor prognosis after adjuvant tamoxifen therapy in ER+, but not ER-, breast  cancer29. In a neoad-
juvant chemotherapy setting however, TP53 mutation status is associated with better patient outcomes in early-
stage breast  cancer30–33. In basal-like breast cancer, p53 deficiency predicts a better response to an epirubicin-
cyclophosphamide  regimen34. Thus, additional variables related to p53 deficiency likely determine treatment 
sensitivity. One suggested cause is that certain therapies, including DNA-damaging reagents, induce senescence 
in p53-proficient tumors, which may, in turn, lead to the emergence of the persister cells that secrete senescence-
associated cytokines and, thereby, promote tumor cell  survival35,36. In this regard, it is interesting to note that 
PDSs predicted clinical outcomes more accurately than drug sensitivity at the cell line level (Fig. 3). This could 
be partially ascribed to cell lines’ intrinsic resistance to cell death that operates independently of the p53 pathway. 
Another possibility may be explained by the fact that cell lines are homogenous clonal cells, whereas tumors 
are comprised of heterogeneous cell populations. While the functional significance of the loss of p53 functions 
in tumor cells has been extensively studied, recent studies have also shown the tumor suppressive role of p53 
in stroma cells and tumor-infiltrating immune  cells37–42. It remains to be determined to what degree the actual 
tumor cells, tumor-associating stroma cells, and tumor-infiltrating immune cells contribute to the TP53 signature.

In conclusion, our study shows that PDSs are a reliable prognostic predictor of clinical outcomes in the 
majority of cancer types and treatments. Moreover, PDSs predict clinical outcomes better than the analysis of 

Figure 4.  PDSs in the METABRIC/Curtis dataset. (A) KM plot evaluating the association of TP53 mutation 
status (left) or PDS (right) with survival in the METABRIC/Curtis dataset (all patients). (B) Association of TP53 
mutation status (left) or PDS (right) with survival for patients receiving a combination of chemotherapy therapy, 
hormone therapy, and radiotherapy. (C) Association of TP53 mutation status (left) or PDS (right) with survival 
for patients receiving a combination of hormone therapy and radiotherapy. (D) Association of TP53 mutation 
status (left) or PDS (right) with survival for patients not receiving any treatment. LR p-value calculated between 
TP53 groups using Log-rang tests, Cox-p p-value calculated using Coxph regression using PDSs as continuous 
variable, DSS disease-specific survival.
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TP53 mutation status. In combination with another gene signature or mutation status, the TP53 signature may 
be used to predict responses to certain therapies more accurately and may help to select a better therapeutic 
option in certain cancers.

Methods
All data presented in this paper are publicly available at http:// fireb rowse. org (TCGA), https:// precog. stanf ord. 
edu (PRECOG), https:// porta ls. broad insti tute. org/ (CCLE), or Curtis et al.17.

TCGA . Level 3 RNA-seq data from The Cancer Genome Atlas (TCGA) project were downloaded from Fire-
Browse (http:// fireb rowse. org). RSEM-normalized gene expression data for 20,501 genes was  provided43. Only 
cancer types containing at least 20 patients with protein-altering TP53 mutations and at least a 10% protein-
altering TP53 mutation rate were included, resulting in the inclusion of 20 cancer types. These included KICH, 
kidney chromophobe; LGG, brain lower grade glioma; GBM, glioblastoma multiforme; BRCA, breast invasive 
carcinoma; LUSC, lung squamous cell carcinoma; LUAD, lung adenocarcinoma; READ, rectum adenocarci-
noma; COAD, colon adenocarcinoma; UCS, uterine carcinosarcoma; UCEC, uterine corpus endometrial car-
cinoma; OV, ovarian serous cystadenocarcinoma; HNSC, head and neck squamous carcinoma; PRAD, prostate 
adenocarcinoma; STAD, stomach adenocarcinoma; SKCM, skin cutaneous melanoma; BLCA, bladder urothe-

Figure 5.  PDSs in breast cancer. (A) Differences in survival comparing different treatment strategies in the 
METABRIC/Curtis dataset. LR-p p-value calculated between TP53 groups using Log-rank test, DSS disease-
specific survival. (B) PDSs compared between distinct treatment groups. (C) PDSs for breast cancer subtypes 
in METABRIC/Curtis dataset. (D) KM plots evaluating the association between PDS and survival in the 
METABRIC/Curtis dataset within PAM50 breast cancer subtypes. LR-p p-value calculated between TP53 groups 
using Log-rank test, Cox-p p-value calculated using Coxph regression using PDSs as continuous variable, DSS 
disease-specific survival.

http://firebrowse.org
https://precog.stanford.edu
https://precog.stanford.edu
https://portals.broadinstitute.org/
http://firebrowse.org
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lial carcinoma; LIHC, liver hepatocellular carcinoma; SARC, sarcoma; PAAD, pancreatic adenocarcinoma; and 
ESCA, esophageal carcinoma (Table 1). TCGA somatic mutation information and clinical data were also down-
loaded from FireBrowse (http:// fireb rowse. org).

PRECOG. Gene expression datasets were obtained from PREdiction of Clinical Outcomes from Genomic 
profiles (PRECOG, https:// precog. stanf ord. edu)15 as normalized datafiles. Clinical data including overall sur-
vival times and outcomes for studies were obtained from the same resource. Datasets were filtered by tissue type 
to match TCGA tumor types, and only datasets with more than 40 samples and over 20% mortality rate were 
included in our analysis. This resulted in the inclusion of 126 datasets.

METABRIC/Curtis data. Breast cancer data for the METABRIC/Curtis dataset was downloaded from a 
previous  publication17. Disease-specific survival and treatment information was obtained from the same publi-
cation.

CCLE. The Cancer Cell Line Encyclopedia (CCLE) data was downloaded from the CCLE database (https:// 
porta ls. broad insti tute. org/)16. This dataset provides gene expression profiles measured by microarray experi-
ments for more than 1100 cancer cell lines and their sensitivity to 24 anticancer drugs. Drug Activity Area was 
utilized as assessment of drug efficacy, where higher Drug Activity Areas indicate higher sensitivity.

Generation of PDS signatures. For a detailed explanation of PDS signature generation, see Zhao et al.14. 
Briefly, for each cancer type, patients were separated into two groups based on the presence or absence of pro-
tein-altering TP53 mutations. A logistic regression model was fitted for each gene using expression as the inde-
pendent variable and TP53 mutation status (0 = TP53 wild type, 1 = TP53 mutation) as the dependent variable. 
Based on the resultant p-values and β-coefficients, genes were separated into an up profile (β  > 0) and a down 
(β < 0) profile. For both up and down profiles, p-values were − log10 transformed, trimmed at 10 to reduce outli-
ers, and scaled into [0, 1] to obtain the weights for genes. The resulting up and down profiles constituted the p53 
deficiency signature for a cancer type.

Calculation of PDSs. For a detailed explanation of p53 deficiency inference, see Zhao et al.14. Briefly, the 
enrichment of cancer type-specific p53 deficiency signatures in patient samples was determined by  BASE44, a 
rank-based gene set enrichment method, for each utilized gene expression dataset. BASE calculated sample-spe-
cific scores, named PDSs based on their gene expression profiles measured by microarray or RNA-seq analysis. 
The deficiency scores indicated the degree of p53 pathway deficiency, with a higher score indicating lower p53 
activity.

Survival analysis. Survival analyses were performed using the R survival package (version 3.2-7). Log-rank 
tests were performed to evaluate overall or disease-specific survival probabilities between two groups using the 
‘survdiff ’ function. Univariate Coxph regression was performed on continuous PDSs using the ‘coxph’ function. 
Kaplan–Meier plots were generated using the ‘survfit’ function. For KM plots using the TCGA data, the percent-
age of TP53 mutated samples was used as a cutoff to determine low and high PDSs. This was done to allow for 
a direct comparison between the prognostic significance of TP53 mutations and PDSs without the confounding 
of different group sizes. For all other KM plots, the median PDS was used to separate low and high PDS groups.

For the survival analysis in the PRECOG dataset, PDSs were inferred in a cancer type-specific manner. After 
computing the PDSs, we fitted a univariate Cox regression model to measure the association between PDSs and 
all-cause or disease-specific mortality (if available). Z-scores were extracted from the fitted models and a meta 
z-score was calculated for PDSs across microarray datasets of the same cancer type. A meta z-score was calculated 
using the weighted Stouffer’s z-score method which uses the dataset sample size as weights. Meta p-values were 
calculated from the meta z-scores by referring to the standard normal distribution.

Cell culture. The HCC-1954, HCC-202, AU-565, SKBR-3, BT-474, and T47D cell lines (ATCC) were main-
tained in RPMI media (Corning) supplemented with 10% fetal bovine serum (FBS) and 1% penicillin–strepto-
mycin (Corning), whereas MDA-MB-468 and HCC-1419 (ATCC) were cultured in RPMI with 10% FBS, 1% 
penicillin–streptomycin (HyClone), 1% MEM non-essential amino acids (Gibco), and 100 μM sodium pyruvate 
(Gibco). The MDA-MB-231 cell line (ATCC) was cultured in DMEM (Corning) with 10% FBS and 1% penicil-
lin–streptomycin (Corning). MTS assays were performed using the CellTiter 96 Aqueous One Solution Cell 
Proliferation Assay kit (Promega) as previously  described45. In brief, 10,000 cells/well were plated into a 96 well 
plate. Twenty-four hours later, the cells were treated with paclitaxel (LC Laboratories) for an additional 48 h. 
DMSO and the apoptosis-inducing pan-kinase inhibitor staurosporine (1 μM) were used as negative and posi-
tive controls, respectively. The absorbance at 490 nm (OD 490 nm) was normalized against DMSO.

Statistical analysis. The Spearman correlation coefficient was reported for correlation analyses and was 
calculated using the R ‘cor’ function. Area Under the Curve (AUC) values evaluating the ability of PDSs in 
predicting TP53 mutation status in the CCLE dataset were calculated and plotted using the ‘pROC’ R package. 
The statistical difference between Drug Activity Areas between TP53 deficiency groups in the CCLE dataset was 
calculated by two-sided Student’s t-tests.

http://firebrowse.org
https://precog.stanford.edu
https://portals.broadinstitute.org/
https://portals.broadinstitute.org/
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