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Optimal control problem arising 
in mathematical modeling 
of cerebral vascular pathology 
embolization
Tatiana Sharifullina*, Alexander Cherevko & Vladimir Ostapenko

Arteriovenous malformation (AVM) of the brain is a congenital vascular abnormality, in which the 
arterial and venous blood pools are intertwined and directly connected. This dangerous disease causes 
a high risk of intracranial hemorrhage and disrupts brain functioning. The preferred method of AVM 
treating is embolization, which is the endovascular filling of abnormal AVM vessels with a special 
embolic agent. Despite the fact that this method is widely used in neurosurgery, in some cases its 
use is accompanied by perioperative AVM vessels rupture. In this regard, the aim of this work is to 
study the optimal scenarios for multi-stage AVM embolization from the effectiveness and safety of 
the procedure point of view. Mathematically, the joint movement of blood and embolic agent in the 
AVM body is described on the basis of a one-dimensional two-phase filtration model, which takes into 
account the redistribution of blood to surrounding healthy vessels. For the numerical solution of the 
resulting integro-differential system of equations, a monotonic modification of the CABARET scheme 
is used. To find optimal embolization scenarios, the optimal control problem with phase constraints 
arising from medicine is formulated. A modified particle swarm optimization method is used to solve 
this problem numerically. This technique is used to obtain optimal embolization scenarios on the basis 
of real patients clinical data collected during neurosurgical operations.

Arteriovenous malformation (AVM) of the brain is a congenital vascular abnormality, in which the arterial and 
venous blood pools are intertwined and directly connected, bypassing the capillary vessel network. By type of 
pathological blood vessels, connecting the arterial and venous pools, AVMs can be divided into racemic pathol-
ogy (consisting of large number of small diameter vessels, which are chaotically intertwining and intersecting 
with each other) and fistula one (consisting of large vessels). The resistance of the corresponding part of circu-
latory system is reduced due to the capillary network absence. This causes changes in both the hemodynamic 
parameters (flow rate and pressure) and the strength properties of the blood  vessels1–4.

Currently, the most common methods of AVM treatment are microsurgical, endovascular and  radiosurgical5. 
AVMs have a complex effect on intracranial hemodynamics, which varies with changes in morphology and angio-
architecture, especially with different treatment methods. Endovascular embolization is the filling of abnormal 
blood vessels with a special embolic agent in order to shut them off from the bloodstream. Due to the minimal 
invasiveness and the possibility of operating in deep, functionally significant brain areas, embolization is one 
of the most effective methods at the current level of medical  development6. Despite the fact that this method is 
widely used, the risk of perioperative vascular rupture is still a serious  danger7. Therefore, the study of optimal 
scenarios for multi-stage AVM embolization from the effectiveness and safety of neurosurgical surgery point of 
view remains an urgent task.

For the mathematical description of blood flow, a one-dimensional approximation of the Navier–Stokes equa-
tions is widely used, obtained by averaging these equations over blood vessel cross-section8. There are works in 
which the equations describing flows in pipes with rigid and elastic boundaries are analytically  investigated8–10. 
Viscous fluid flow in a network of soft tubes is also modeled on the basis of a one-dimensional approximation 
of mass and momentum conservation  laws11–13. Numerical simulation of hemodynamics for large blood vessels 
based on 3D–1D coupled flow is also  considered14–16.

The interaction of AVM and blood flow in the surrounding vessels is often studied in analogy with electric 
and hydraulic  networks17–19. Such models allow us to assess the impact of various embolization scenarios on 
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blood flow redistribution and are consistent with the general medical view on pathology hemodynamics. Vari-
ous approaches are used to describe the joint flow of blood and embolic agent, for example, a two-phase flow 
model was used to simulate a viscous fluid drop movement of embolic agent through a bifurcation point or 
multifurcation point based on dimensionless Navier–Stokes equations for incompressible  liquids20. A model 
of AVM embolization was proposed based on the concept of two-fluid modeling and scalar transport, where 
embolic agent and blood interaction along with its hardening is simulated by viscosity  increase21. Another 
approach to the description of the embolization process is based on the two-phase filtration model in the authors’ 
 work22. The present paper is a extension of this work. In comparison to the present work  in22 blood flow into the 
adjacent healthy vessels was not considered, the cross-section area and porosity were assumed to be constant, 
and embolization was modeled without taking into account embolic agent solidification between the stages of 
surgery (simplified one-stage case). The optimal control  problem22 differs in form from the one described below, 
but is essentially the same, namely, it requires performing the operation in the most efficient way in compliance 
with safety constraints. The formulation of the optimal control problem in present paper is obtained from the 
control  problem22 by interchanging the constraint and the objective functional, which is typical of extremum 
search problems with constraints. In the  work22, the search for an extremum of the functional was based on the 
calculation of its value on the grid in the three-dimensional control parameter space with subsequent interpola-
tion. While present work uses the global optimization method - the particle swarm method, which significantly 
accelerates calculations, increases their accuracy and allows us to explore the control parameter space of a larger 
dimension. Despite the large number of publications dedicated to the AVM hemodynamics, research expansion 
in this direction is a great scientific interest.

In this paper, mathematical modeling of AVM embolization is carried out as follows: the flow of blood and 
embolic agent through the AVM body is considered as filtration flow based on Darcy’s law, taking into account 
the redistribution of blood to healthy vessels. This approach is justified for small-vascular racemic AVM compart-
ments embolization description. It is assumed that both liquids are Newtonian with constant viscosity, incom-
pressible and immiscible, while ignoring the interfacial capillary forces, the effect of embolic agent adsorption, 
as well as the deformation and permeability of the vessel walls.

As a result, the mathematical description of the joint movement of blood and embolic agent in the AVM body 
is based on a one-dimensional two-phase filtration model that takes into account the redistribution of blood to 
surrounding healthy vessels. For the numerical solution of the resulting system of integro-differential equations, 
a monotonic modification of the CABARET scheme is used, which localizes with high accuracy the strong and 
weak discontinuities that occur when solving this  problem23,24. For numerical calculations real blood and embolic 
agent (ONYX18) viscosities were used. To find optimal embolization scenarios, the optimal control problem 
of multi-stage embolization with phase constraints arising from medicine is formulated. To solve this problem 
numerically a particle swarm optimization method is  used25,26, which is specially modified in order to adapt it 
to the problem under consideration. The proposed technique is used to obtain optimal embolization scenarios 
on the basis of real patients clinical data collected during neurosurgical  operations22,27.

In the next section, a mathematical formulation of the one-stage embolization problem is given, leading to 
an initial-boundary value problem for a system of integro-differential equations, including a hyperbolic partial 
differential equation, which is a quasilinear scalar conservation law with a nonconvex flux. Then the optimal 
control problem of one-stage AVM embolization is formulated, where the control is a time function setting the 
boundary condition of the problem and is included in the coefficients of the equation. The objective functional 
is the integral of the initial-boundary value problem solution at terminal time. The phase constraints on the 
control function represent additional integral and algebraic relations. The objective functional and constraints 
are selected according to medical indications. We introduce a class of piecewise linear continuous and discon-
tinuous functions used as controls for the AVM embolization process. Further, the optimal control problem of 
multi-stage AVM embolization is formulated, which leads to a chain of integro-differential initial-boundary value 
problems, in which each subsequent problem uses the results of solving the previous problem as parameters of 
a new system of equations.

Next, we present a monotonic modification of the CABARET scheme, which localizes with high accuracy the 
strong and weak discontinuities that arise when solving the initial-boundary value problem under consideration. 
The modification of the particle swarm optimization method is proposed that is specially adapted to the consider-
ing problem in order to more fully investigate the admissible parameters area and accelerate the progress of the 
particle swarm to the absolute minimum. Numerical verification of the optimal control problem of multi-stage 
embolization using real patients clinical data was performed, on the basis of which AVM embolization optimal 
scenarios were obtained. Also we discusses the limitations of the proposed method, as well as the possibilities 
for its further development.

One-stage embolization problem formulation
In this paper, blood and embolic agent movement through small-vascular racemic AVM is modeled (Fig. 1) as 
a two-phase filtration process of immiscible incompressible liquids, where the displaced phase is blood, and the 
displacing phase is embolic agent. We also take into account the redistribution of blood to surrounding healthy 
vessels. We will consider a one-dimensional case, which mathematical description is based on Darcy’s law and 
the mass conservation laws for each phase. In the one-stage embolization case, an initial-boundary value problem 
is obtained for a system of integro-differential equations, in which the hyperbolic partial differential equation 
is a quasi-linear scalar conservation law with a nonconvex flux function. This conservation law is similar to the 
one widely used to describe the multiphase filtration  process28,29.

Based on this initial-boundary value problem, it is set the task of finding the optimal regime of one-stage AVM 
embolization from the effectiveness and safety of neurosurgical surgery point of view. The objective functional 
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and constraints that arise in the optimal control problem are selected according to medical indications. The 
control is a time function that determines the embolic agent injection at the AVM input. The embolization effec-
tiveness is determined by the degree of blood displacement from the AVM by the embolic agent at the operation 
end. One of the possible risks of the operation complications is the embolic agent entering in the vein, as a which 
result the AVM or vein vessels rupture may occur. Also, during the operation, vascular network has an additional 
stress, since when the embolic agent is injected, the pressure in the arterial vessels increases. Excessive pressure 
build-up is dangerous. Both of these factors increase the brain hemorrhage  risk30 and will be further used in the 
optimal embolization control problem.

Derivation of the conservation law simulating the process of one-stage embolization. Con-
sider the one-dimensional joined filtration flow of blood and embolic agent through the AVM body. Denote by A 
the AVM cross-section area available for the phase flows, by m the AVM body porosity, by Q the volume flow rate 
of two-phase mixture. These values can vary both in space and in time. Let S(t, x) ∈ [0, 1] be the local saturation 
(blood concentration) of the porous medium by the displaced phase (i.e. the fraction of the pore volume occu-
pied by blood). Taking this into account, the concentration of the displacing phase is 1− S(t, x) . We introduce 
the Buckley–Leverett saturation function f(S)29, which sets the distribution of the phases volume flow inside a 
porous medium and is equal to the flow fraction of displaced phase in the total two phases flow.

We derive the differential form of the integral conservation law of blood volume, assuming that the AVM 
walls are impermeable and the phases are incompressible fluids. The change in blood volume �V1 on the segment 
�x = x2 − x1 during the time �t = t2 − t1 is

This change is due to the blood flow through the cross-sections at points x = x1 and x = x2:

Equating the values (1) and (2), we obtain the integral conservation law of blood volume

where m(x) and A(x) are given piecewise continuous functions of the spatial coordinate x. The differential form 
of the conservation law (3) has the form

Since the Eq. (4) is hyperbolic, its solution S(t, x) is considered in the class of piecewise continuous functions. 
We will assume that the Buckley–Leverett function f (S) ∈ C2[0, 1] satisfies the following conditions

where ξ is the inflection point. Since the AVM side surface is impermeable and the liquids are incompressible, 
the total volume flow rate of the two phases Q(t) does not depend on the spatial coordinate x and is determined 
by the relation

where Qb = Q f (S) is the volume blood flow and Qe = Q (1− f (S)) is the volume flow rate of an embolic agent 
inside AVM. With this assumptions, the Eq. (4) can be written in the following equivalent non-divergent form

(1)�V1 =

∫ x2

x1

mAS|t2t1 dx.

(2)�V2 = −

∫ t2

t1

Q f (S)|x2x1 dx.

(3)
∫ x2

x1

mAS|t2t1 dx +

∫ t2

t1

Q f (S)|x2x1 dx = 0,

(4)
∂

∂t
(mAS)+

∂

∂x

(
Q f (S)

)
= 0.

f (0) = 0, f (1) = 1; f ′(S) > 0, S ∈ (0, 1);

f ′′(S) > 0, S ∈ (0, ξ); f ′′(S) < 0, S ∈ (ξ , 1);

Q(t) = Qb(t, x)+ Qe(t, x),

Figure 1.  AVM embolization model representation. Q—volume flow rate of two-phase mixture; Qb and Qe

—volume flow rates of blood and embolic agent inside AVM; qb and qe—volume flow rates of blood and embolic 
agent at the AVM input; p1—blood pressure at the AVM input; p2—blood pressure at the AVM output.
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which is more convenient for performing numerical calculations.

Initial and boundary conditions. The differential equation (5) is solved in the domain

where L and T are some positive numbers. Since at the initial time t = 0 there is only blood inside the AVM, 
then the initial value of its concentration is given by the following formulas

Blood flow changes during the cardiac cycle is not taken into account due to the duration of the embolization 
process is significantly longer than the cardiac cycle duration, and the blood flow rate qb(t) = Qb(t, 0) at the 
AVM input is determined by the formula

in which q̄b(S̄) is a given function that determines the redistribution of blood between AVM and surrounding 
healthy vessels, where

is the average blood concentration in the AVM. At the AVM input ( x = 0 ) the embolic agent flow qe(t) = Qe(t, 0) 
determines the embolization process and is a control function. Then the flow rate Q(t) of two-phase mixture 
inside the AVM, included in (5), is determined by the formula

Assuming that the blood and embolic agent flows satisfy the inequalities

we obtain that the flow of two-phase mixture

in consequence, the characteristics of the differential equation (5) propagate with velocities 
Q(t)f ′(S)/(m(x)A(x)) > 0 . This means that for the correct formulation of the initial-boundary value prob-
lem for the Eq.  (5) one boundary condition must be set on the left boundary of the segment [0, L] and 
there is no need to set boundary conditions on the right boundary of this segment. It follows from formula 
f (S(t, x)) = Qb(t, x)/Q(t) and relation (8) that the boundary value S(t, 0) is expressed in terms of boundary 
phase flows and is defined as follows

where the function S̄(t) is given by the integral formula (7). As a result, we obtain the integro-differential problem 
(5), (6), (8), (9) in which the integral relation (9) plays the role of a non-standard boundary condition for the 
function S(t, x). It is important to emphasize that the control function qe(t) is included both in the coefficients 
of the Eq. (5) and in the boundary condition (9).

Optimal control problem in the case of one-stage embolization
To formulate the embolization optimal control problem, it is necessary to determine objective functional and 
constraints arising from medical indications, which establish the effectiveness criteria and safety conditions of 
the operation. The embolization effectiveness will be determined by how completely the embolic agent fills the 
AVM at the operation end. Mathematically, this condition lead to minimizing the objective functional

where Sqe (t, x) is the solution of the initial-boundary value problem (5), (6), (8), (9) with control function qe(t) , 
which sets the embolic agent flow at the AVM input.

The safety embolization conditions can be chosen in the form of the following restrictions

(5)
∂S

∂t
+

Q

mA

∂f (S)

∂x
= 0,

W = {(x, t) : 0 ≤ x ≤ L, 0 ≤ t ≤ T},

(6)S(0, x) = 1, x ∈ [0, L].

qb(t) = q̄b(S̄(t)),

(7)S̄(t) =
1

L

L∫

0

S(t, x)dx,

(8)Q(t) = qe(t)+ qb(t) = qe(t)+ q̄b
(
S̄(t)

)
.

qb(t) > 0, qe(t) ≥ 0, t ∈ [0,T],

Q(t) > 0, t ∈ [0,T],

(9)f (S(t, 0)) =
q̄b(S̄(t))

qe(t)+ q̄b(S̄(t))
,

(10)J[qe] =
1

L

L∫

0

Sqe (T , x)dx,

(11)Sqe (t, L) = 1, t ∈ [0,T],
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where p1 is the pressure at the AVM input, and p∗ is the specified critical pressure. Fulfillment the condition (11) 
avoids the penetration of the embolic agent into the venous bed, and fulfillment the inequality (12) avoids an 
excessive increase in blood pressure in the AVM. Violation of the conditions (11) and (12) increases the cerebral 
hemorrhage  risk30.

Taking into account the fact that Qb = Q f (S) , the pressure function is determined from Darcy’s law for  AVM29

where p2(S̄) is a given function of the blood pressure at the AVM output. The local resistance to blood flow inside 
the AVM is given by the ratio

where ηb is the blood viscosity, K is the absolute permeability of the AVM and kb(S) is the blood relative phase 
permeability; the values of ηb , K and kb(S) are assumed to be known. For the given functions f(S), rb(S) , q̄b(S̄) 
and p2(S̄) , Eqs. (5), (8) and (13) form a closed system of integro-differential equations for determining the blood 
concentration S(t, x) inside the AVM, the mixture flow rate Q(t) and the pressure p1(t) at the AVM input. The 
pressure p1(t) is used to verify the considered optimal AVM embolization model by comparing with the pressure 
obtained during intraoperative monitoring.

Thus, in the optimal control problem, it is necessary to find a function qe(t) that minimizes the objective 
functional (10), which is determined on the basis of the problem (5), (6), (8), (9) solution. Besides, it must be done 
the restrictions (11), (12) on the blood concentration S and the pressure p1(t) determined by the formula (13).

Control functions class
We consider a numerical solution of the problem (5), (8), (13) with initial (6) and boundary (9) conditions that 
satisfies the constraints (11) and (12). The choice of the control class is determined by one of the methods of 
embolization in real surgical practice: at the initial time interval, there is increase in the embolic agent supply; 
at the next time interval, a constant value of this flow is maintained; and at the last short time interval, there is a 
decrease in the embolic agent supply to the AVM input. We use linear interpolation of this embolization method. 
As a result, we consider the following continuous functions as a control function class

where γ > 0 is a dimensionless parameter, Q(0) = qb(0) is the blood flow through the AVM before surgery,

is a dimensionless function in which the parameter θ satisfies the condition 0 < θ ≤ T − ε , and ε ∈ (0,T) is a 
small constant. Admissible control class is expanded to include the function that is discontinuous at the initial 
moment of time

obtained from the function (15) when θ → 0.
For the control class (14) and (15), time interval [0, θ ] corresponds to an increase in the supply of embolic 

agent to the value γ Q(0) ; time interval [θ ,T − ε] corresponds to maintaining a constant value of this flow; time 
interval [T − ε,T] corresponds to a decrease in the embolic agent supply to the AVM input. The control class 
(14) and (16) corresponds to the case when there is a discontinuous increase in the embolic agent supply.

As a result, the optimal embolization problem is led to finding the control parameters

that determine embolic agent supply (14). The corresponding solution of the initial-boundary value problem 
(5), (6), (8), (9), (13) gives an absolute minimum to the functional (10), which corresponds to minimizing the 
average blood concentration in the AVM at the operation end. The solutions to the optimal control problem 
must satisfy the constraints (11) and (12), where (11) prohibits the embolic agent from entering the vein, and 
(12) restricts the blood pressure at the entrance to the AVM during embolization. Next, instead of the parameters 
(17), we will use the following control parameters

(12)max
t∈[0,T]

p1(t) ≤ p∗,

(13)p1(t) = p2(S̄(t))+ Q(t)

L∫

0

rb(x, S(t, x))f (S(t, x))dx,

rb(S) =
ηb

A(x)K kb(S)
,

(14)qe(t) = γ Q(0)E(t),

(15)E(t) =

{
t/θ , 0 ≤ t ≤ θ ,
1, θ ≤ t ≤ T − ε,
(T − t)/ε, T − ε ≤ t ≤ T ,

(16)E(t) =

{
0, t = 0,
1, 0 < t ≤ T − ε,
(T − t)/ε, T − ε < t ≤ T ,

(17)γ > 0, θ ≥ 0, T ≥ θ + ε,

γ > 0, θ1 = θ ≥ 0, θ2 = T − θ − ε ≥ 0,
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where the parameter θ1 corresponds to the time of increasing the embolic agent supply to the AVM input, θ2 
corresponds to the time of maintaining the achieved flow of embolic agent, γ is the intensity of the embolic 
agent supply.

Multi-stage embolization
Multi-stage embolization problem formulation. A real neurosurgical operation for AVM emboliza-
tion usually proceeds in several stages, the number of which is denoted by N. Mathematical modeling of multi-
stage embolization is a generalization of the one-stage embolization described in the previous section. Between 
the stages there are time breaks, during which the embolic agent remains fixes inside the AVM and does not 
change its location in the following stages of embolization. For the mathematical modeling, we assume that the 
duration of these time breaks is zero. Taking this into account, embolization at each i-th stage occurs on the 
time interval [Ti−1,Ti] , where T0 = 0 . The cross-section area available for the flow of phases at the i-th stage 
is denoted by Ai(x) , so A1 = A is the original cross-section area. The fraction of cross-section Ai occupied by 
blood is denoted by Si(t, x) , and the fraction of the original cross-section A1 occupied by blood is denoted by 
�i = SiAi/A1 . Between the stages there is a change in the fraction of the AVM cross section available for the 
flow of phases

which establishes a connection between the successive embolization stages. We will assume that in the AVM 
part available for the phases flow it is not change from stage to stage the filtration characteristics: porosity m, 
absolute permeability K, relative phase permeability kb and Buckley–Leverett function f. In the multi-stage case, 
the embolization process at each i-th stage is modeled similarly to the one-stage embolization case, which was 
described above. Thus, the initial-boundary value problem simulating the i-th embolization stage on the time 
interval [Ti−1,Ti] , is similar to (5), (6), (8), (9), (13), is given by equations

with the following initial and boundary conditions

Optimal control problem in the case of multi-stage embolization. For the optimal control prob-
lem of multi-stage embolization, we will use the average blood concentration in the AVM at the end of the N-th 
stage as the objective functional

where SN is the solution of problem (18)–(23) at the N-th embolization stage, and control function qe(t) is given 
on the interval t ∈ [0,TN ] . In this case, constraints similar to (11), (12) have the form

For multi-stage embolization, we consider a control that at each stage similar to the control for one-stage 
embolization (14)–(16). Such control can be considered as a linear approximation of the clinical process of 
multi-stage embolization and written as follows

Ai(x) = A1(x)�i−1(Ti−1, x) = Ai−1(x)Si−1(Ti−1, x),

(18)
∂Si

∂t
+

Qi

mAi

∂f (Si)

∂x
= 0,

(19)Qi(t) = qe(t)+ q̄b
(
� i(t)

)
,

(20)p1(t) = p2(� i(t))+ Qi(t)

L∫

0

rb(x,�i(t, x))f (�i(t, x))dx,

(21)� i(t) =
1

L

L∫

0

�i(t, x)dx, rb(x,�i(t, x)) =
ηb

Ai(x)K kb(�i(t, x))
,

(22)Si(0, x) = 1, x ∈ [0, L],

(23)f (Si(t, 0)) =
q̄b(� i(t))

qe(t)+ q̄b(� i(t))
.

(24)JN [qe] =
1

L

L∫

0

�N (TN , x) dx, �N =
SNAN

A1
,

(25)Si(t, L) = 1, t ∈ [Ti−1,Ti], i ∈ 1,N .

(26)max
t∈[Ti−1,Ti]

p1(t) ≤ p∗, i ∈ 1,N .

(27)qe(t) =γi Qi(Ti−1)Ei(t), γi > 0, t ∈ [Ti−1,Ti], i = 1,N ,
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where the parameters θi , Ti and ε satisfy the conditions

Admissible control class is expanded to include discontinuous functions at t = Ti−1

obtained from functions (28) when θi → 0.
As a result, the optimal embolization problem is reduced to finding the control parameters

that determine the embolic agent supply (27), and the corresponding solution of the initial-boundary value prob-
lem of multi-stage embolization (18)-(23) gives an absolute minimum to the functional (24), which corresponds 
to minimizing the average blood concentration in the AVM at the multi-stage operation end. The solutions to the 
multi-stage optimal control problem must satisfy the constraints (25) and (26), where (25) prohibits the embolic 
agent from entering the vein, and (26) restricts the blood pressure at the entrance to the AVM at i-th embolization 
stage. Next, instead of the parameters (30) we will use the following control parameters

where the parameter θ1i corresponds to the time of increasing the embolic agent supply to the AVM input, θ2i 
corresponds to the time of maintaining the achieved flow of embolic agent, γi is the intensity of the embolic agent 
supply at the i-th embolization stage.

Methods
Finite difference scheme. For the numerical solution of the initial boundary value problem (22), (23) 
for the system of integro-differential equations (18)–(21), we will use a monotone modification of the explicit 
two-layer time the CABARET  scheme31, which has a second-order approximation on smooth solutions. 
This modification of the CABARET scheme was proposed in  paper23 and is used to model the problems of 
 hemodynamics22,32. The main advantages of this scheme are due to the fact that it is given on a compact spatial 
stencil and, when approximating linear equations, is time-reversible and accurate with two different Courant 
numbers r = 0.5, 1 , which gives it unique dissipative and dispersive  properties33.

Numerical simulation is carried out one after another at all stages of embolization, and the same difference 
scheme is applied at each stages. We present the algorithm of CABARET scheme for the i-th stage. Let us divide 
the segment [0, L] on which the considered problem is solved into J equal parts of length h = L/J and define a 
rectangular uniform difference grid

where h is a constant spatial step, and τni  is the time step at the n-th time layer, determined from the CFL-
stability condition at the i-th embolization stage. Let us denote by Sci  the approximate numerical value of the 
blood concentration Si at the i-th stage. The CABARET scheme uses the flux (ui)nj = Sci (t

n
i , xj) and conservative 

(Ui)
n
j+1/2 = Sci (t

n
i , xj+1/2) variables set respectively in the integer xj and half-integer xj+1/2 = xj + h/2 spatial 

nodes of the difference grid (32).
Let (ui)nj  and (Ui)

n
j+1/2 be the known numerical solution of the problem (18)–(23) at the time layer tni  ; for 

n = 0 the exact grid approximation of the initial condition (22):

The numerical solution (ui)n+1
j  , (Ui)

n+1
j+1/2 at the time layer tn+1

i  is obtained by CABARET scheme in several stages. 
At the first stage, according to the formula

where r ∈ (0, 1) is the CFL number, the time step of the scheme at the n-th time layer is calculated. At the second 
stage, by approximating the Eqs. (19)–(21) with the second order, we find at the n-th time layer the numerical 
values of the mixture flow

and the blood pressure at the AVM input

(28)Ei(t) =

{
(t − Ti−1)/θi , Ti−1 ≤ t ≤ Ti−1 + θi ,
1, Ti−1 + θi ≤ t ≤ Ti − ε,
(Ti − t)/ε, Ti − ε ≤ t ≤ Ti ,

0 < ε < min
i=1,N

(Ti − Ti−1), 0 < θi ≤ Ti − Ti−1 − ε.

(29)Ei(t) =

{
0, t = Ti−1,
1, Ti−1t ≤ Ti − ε,
(Ti − t)/ε, Ti − ε ≤ t ≤ Ti ,

(30)γi > 0, θi ≥ 0, Ti ≥ Ti−1 + θi + ε, i ∈ 1,N ,

(31)γi > 0, θ1i = θi ≥ 0, θ2i = Ti − Ti−1 − θi − ε ≥ 0, i ∈ 1,N ,

(32){xj , t
n
i } : xj = jh, j = 0, J; tn+1

i = tni + τni , t
0
i = 0;

(ui)
0
j = 1, j = 0, J; (Ui)

0
j+1/2 = 1, j = 0, J − 1.

(33)τni =
rh

max
j

ai
(
tni , xj+1/2

) , ai(t, x) =
Qi(t) f

′(Si(t, x))

m(x)Ai(x)
,

(34)Qn
i = qe(t

n
i )+ q̄b

(
V

n
i

)
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where

At the third stage for j = 0, J − 1 using the difference equations

where (fi)nj = f
(
(ui)

n
j

)
 , the values of the conservative variables

at the half-integer time layer tn+1/2
i = tni + τni /2 are calculated. At the fourth stage, the values of numerical flows

at the half-integer time layer tn+1/2
i  are found.

At the fifth stage, using formula (34), in which the index n is replaced by the index n+ 1/2 , the numerical 
value of the mixture flow Qn+1/2

i  at the half-integer time layer is determined, after which, at the sixth stage for 
j = 0, J − 1 from the difference equations

we calculated the values of the conservative variables (Ui)
n+1
j+1/2 at the (n+ 1)-th time layer. At the seventh stage, 

we find the values of the flux variables (ui)n+1
j  at the (n+ 1)-th time layer. A detailed description of the numerical 

algorithm at the fourth and seventh stages is given below.

The numerical fluxes calculations. At the beginning of the fourth stage, as a result of the second-order 
approximation of the integral boundary condition (23) on the left boundary of the half-integer time layer, the 
value of the numerical flow is calculated

where

Further in the formulas of this section, the index i, which specifies the number of the embolization stage, is 
omitted for brevity.

The numerical fluxes f n+1/2
j  for j = 1, J  are defined as follows. First, their preliminary values are calculated 

by the formulas

and corrected as follows

where mn
j = min

(
f nj−1/2, f

n
j

)
 , Mn

j = max
(
f nj−1/2, f

n
j

)
 and

is a conventional two-sided limiter.

p(tni ) = p2
(
V

n
i

)
+

Qn
i ηb

K

J−1∑

j=0

f
(
(Vi)

n
j+1/2

)
h

A1(xj+1/2) kb

(
(Vi)

n
j+1/2

) ,

V
n
i =

h

L

J−1∑

j=0

(Vi)
n
j+1/2, (Vi)

n
j+1/2 =

(Ui)
n
j+1/2 Ai(xj+1/2)

A1(xj+1/2)
.

(Ui)
n+1/2
j+1/2 − (Ui)

n
j+1/2

τni /2
+

Qn
i

m(xj+1/2)Ai(xj+1/2)

(
(fi)

n
j+1 − (fi)

n
j

h

)
= 0,

(Ui)
n+1/2
j+1/2 = Sci

(
t
n+1/2
i , xj+1/2

)

(fi)
n+1/2
j = f

(
(ui)

n+1/2
j

)
, (ui)

n+1/2
j = Sci

(
t
n+1/2
i , xj

)

(Ui)
n+1
j+1/2 − (Ui)

n
j+1/2

τni
+

Q
n+1/2
i

m(xj+1/2)Ai(xj+1/2)

(
(fi)

n+1/2
j+1 − (fi)

n+1/2
j

h

)
= 0

(35)(fi)
n+1/2
0 =

q̄b

(
V

n+1/2
i

)

qe(t
n
i )+ q̄b

(
V

n+1/2
i

) ,

(36)V
n+1/2
i =

h

L

J−1∑

j=0

(Vi)
n+1/2
j+1/2 , (Vi)

n+1/2
j+1/2 =

(Ui)
n+1/2
j+1/2 Ai(xj+1/2)

A1(xj+1/2)
.

f̄
n+1/2
j = f

(
ū
n+1/2
j

)
, ū

n+1/2
j =

(
unj + ūn+1

j

)
/2, ūn+1

j = 2U
n+1/2
j−1/2 − unj−1,

(37)f̃
n+1/2
j = F

(
f
n+1/2

j ,mn
j ,M

n
j

)
,

F(u,m,M) =

{
u, m ≤ u ≤ M,
m, u ≤ m,
M, u ≥ M,
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It is  shown34 that the correction of fluxes (37) is not sufficient to preserve the local monotonicity of the dif-
ference solution at the (n+ 1) - th time layer, which is necessary for the absence of non-physical oscillations on 
the shocks. Therefore, if at the n-th time layer in the vicinity of the grid node xk+1/2 the difference solution is 
locally monotone, an additional correction of the numerical fluxes is performed

where

If neither of the two conditions (38) or (39) is fulfilled, the flux correction f̃ n+1/2
k  is not carried out, i.e. 

f
n+1/2
k = f̃

n+1/2
k .

At the beginning of the seventh stage, the flux variable value is found on the left boundary of the computa-
tional domain

where f −1 is the inverse function of f, and f n+1
0  is the numerical flux given by the formulas (35) and (36), in 

which the index n+ 1/2 is replaced by n+ 1 . The flux variables un+1
j  , where j = 1, J  are defined as follows: their 

second preliminary values are calculated by the formulas

which are corrected as follows

where mn+1
j = min

(
Un+1
j−1/2,U

n+1
j+1/2

)
 and Mn+1

j = max
(
Un+1
j−1/2,U

n+1
j+1/2

)
.

The multi-stage embolization optimal regime: modified particle swarm optimization 
method. To solve the problem of optimal multi-stage embolization, we use a numerical algorithm based 
on the particle swarm  method25. To apply this method, the optimal control problem (24)–(26) is rewritten as a 
functional

with penalty functionals I1 and I2 , where I1[Si] = 0 when the constraint (25) is met and I1[Si] = 1 when the 
constraint is violated; similarly, I2[Si] = 0 when constraint (26) is met and I2[Si] = 1 when this constraint is 
violated; here the solutions Si depends on the control function qe(t) . In the following calculations, in formula (40) 
we assume R = 1000 . In the future, the objective functional modification (40) makes it possible to significantly 
simplify the application of the particle swarm method near a priori unknown part of the boundary domain of 
control parameters set by the constraints (25) and (26).

The required parameters θ1i , θ2i and γi , where i ∈ 1,N  , included in the functional (40), are represented as the 
coordinates of the abstract particle x ∈ R

3N , which set M = {x1, . . . , xM} is called as the particles  swarm25,26. 
The particle swarm method for minimizing the functional consists in setting the initial position of each particle 
and organizing the iterative process of moving these particles so that after a given finite number of iterations I 
all the particles end up in a small neighborhood of some point x∗ that is the global minimum to the functional 
(40). At each iteration it is determined the displacement velocity vj and the best position pj of each particle xj , 
and also the global best position pg of all the particles for all the previous iterations. At the end of the iterative 
process, point x∗ = pg is the solution of the minimization problem.

The search for the vector x∗ is as follows. First, in the domain of control parameters (31) we allocate M 
bounded disjoint subdomains �j ; for each �j the initial position of single particle is set according to the formula 
x0j = �[�j] , where �[�j] is a functional that randomly selects the point in the domain �j . The initial velocity 
of each particle is v0j = 0 and its initial best position is p0j = x0j  . For all particles x0j  the value of the functional 
ĴN (x

0
j ) is calculated, after which the formula

(38)f nk−3/2 ≤ f nk−1 ≤ f nk−1/2 ≤ f nk ⇒ f
n+1/2
k = F1

(
f̃
n+1/2
k ,ϕn

k−1

)
,

(39)f nk−3/2 ≥ f nk−1 ≥ f nk−1/2 ≥ f nk ⇒ f
n+1/2
k = F2

(
f̃
n+1/2
k ,ϕn

k−1

)
,

F1(u,M) =

{
u, u ≤ M,
M, u ≥ M,

F2(u,m) =

{
u, u ≥ m,
m, u ≤ m,

ϕn
k−1 =

A(xk−1)m(xk−1)

(
Un
k−1/2 − unk−1

)

rn Qn
, rn =

τn

h
.

un+1
0 = f −1

(
f n+1
0

)
,

ũ n+1
j = 2u

n+1/2
j − unj , u

n+1/2
j = f −1(f

n+1/2
j ),

un+1
j = F

(
ũ n+1
j ,mn+1

j ,Mn+1
j

)
,

(40)ĴN [qe] = JN [qe] + R

N∑

i=1

(I1[Si] + I2[Si]),

p0g = argmin
j=1,M

ĴN (x
0
j )
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is used to find the initial global best position for all particles.
Let the values xkj  , vkj  , pkj  , j = 1,M  , and pkg be known at the k-th step of the iteration. The values at the (k + 1)

-th step of the iteration are determined in several stages.

• The formulas 

are used to calculate the preliminary values v̄k+1
j  and x̄k+1

j  , where wk = w1 − w2k/I is the inertia  weight25,26; 
rk1 and rk2 are the values of random variables uniformly distributed over the interval [0, 1]; c1 , c2 , w1 and w2 are 
given positive constants such that w2 < w1 < 1.

• The coordinates of the particle x̃k+1
j =

(
(x̃1)

k+1
j , . . . , (x̃3N )

k+1
j

)
 are calculated using their preliminary values 

x̄k+1
j =

(
(x̄1)

k+1
j , . . . , (x̄3N )

k+1
j

)
 according to the formula 

 The particle velocities ṽk+1
j  are calculated as follows ṽk+1

j = x̃k+1
j − xkj .

• The formulas 

 are used to calculate the new best personal and global particles positions.
• The set of all particles M is randomly divided into two disjoint subsets M1 and M2 : in the set M1 the parti-

cles are included with a given probability P, and in the set M2 with a probability 1− P , where P is the given 
number.

• For all j = 1,M  , the final positions and velocities of the particles at the (k + 1)-th iteration are determined 
by the formulas 

When k + 1 = I the iterative process is ended.
The proposed algorithm differs from the classical particle swarm optimization  method25 in that a special initial 

particle distribution is selected and that at each algorithm iteration the positions of all particles are reinitialized 
with a certain probability P. This modification was required for a more complete examination of the admissible 
parameter domain and to accelerate the progress of the swarm to an absolute minimum.

Using clinical data of real patients. To verify the optimal control embolization problem, we use clinical 
data obtained during monitoring of hemodynamic parameters in process of neurosurgical operations. In these 
operations, total embolization of the AVM was achieved, that is, the AVM available volume at the operation end 
was completely filled with the embolic agent. The monitoring was carried out at the National Medical Research 
Center named after academic  Meshalkin27 using a Philips ComboMap system and the Philips ComboWire sen-
sor (sensor diameter is 0.36 mm and its length is 1.85 m), which measures blood velocity and pressure inside the 
cerebral vessels near the pathology. This way the pressure and velocity at the AVM input were obtained before, 
during and after the embolization, as well as at the AVM output before and after the operation. To obtain the geo-
metrical AVM parameters: the length L, the cross-section area A as well as input artery cross-section area, data 
from angiographic studies (perioperative X-ray tomography) were used (Table 1). In numerical calculations, the 
blood viscosity is ηb = 4 cP , and the embolic agent viscosity is ηe = 18 cP , which corresponds to the viscosity of 
the common embolic agent  ONYX186, where cP is viscosity unit centipoise.

Using the method proposed in the previous  papers22, the functions kb(S) , p2(S̄) , q̄b(S̄) , f(S) and rb(S) are con-
structed for each patient on the basis of clinical data. These functions are included in the initial-boundary value 
problem for a system of integro-differential equations (18)–(23). In the numerical solution of the optimal control 
problem (24)–(26), the value p∗ is chosen as the maximum pressure at the AVM input during the operation. In 

v̄k+1
j = wkvkj + c1 r

k
1 (p

k
j − xkj )+ c2 r

k
2 (pg − xkj ), x̄k+1

j = xkj + v̄k+1
j

(x̃l)
k+1
j =

{
(x̄l)

k+1
j , (x̄l)

k+1
j ≥ 0,

0, (x̄l)
k+1
j < 0,

l = 1, 3N .

pk+1
j =

{
pkj , ĴN (p

k
j ) ≤ ĴN (x̃

k+1
j ),

x̃k+1
j , ĴN (p

k
j ) > ĴN (x̃

k+1
j )

j = 1,M,

pk+1
g = argmin

j=1,M

ĴN (p
k+1
j )

xk+1
j =

{
�[�j], x̃k+1

j ∈ M1,

x̃k+1
j , x̃k+1

j ∈ M2,
vk+1
j =

{
0, x̃k+1

j ∈ M1,

ṽk+1
j , x̃k+1

j ∈ M2,

Table 1.  Geometrical and filtration characteristics of AVM reconstructed from clinical data.

Patient L (cm) A (cm2) K (cm2) kb(S) p∗ (mmHg)

K 2.4 2.275 7.35 · 10−7
S
1.178 80.7

S 3 1.327 8.35 · 10−6
S
1.380 114.6

P 4.5 4.714 7.94 · 10−6
S
1.168 55
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calculations without loss of generality, it is assumed that m = 1 , since other constant values of m can be reduced 
to this case by scaling the time variable t. The initial cross-section area A is assumed to be constant and equal 
to the average cross-section of the AVM before embolization. It should be noted that the developed method 
can be used to numerically solve the problem of multi-stage embolization with variable values m(x) and A(x). 
To verify the proposed model, we consider the multi-stage embolization problems for patients K, S and P. The 
geometrical and filtration characteristics of the pathologies of these patients used for calculations are shown in 
Table 1 and Fig. 2.

The investigation was conducted in accordance with the Helsinki Declaration and approved by the Inspec-
tion Commission of the Meshalkin Clinic (Session No. 549). All included patients gave their informed consent.

Results
Numerical calculations were performed for patients K, S and P based on the clinical data given above. For the 
calculations, a space-uniform difference grid was used (32), where J = 100 , with a time step given by the formula 
(33), in which CFL number r = 0.5 . The small parameter included in the control (28), (29) is ε = 0.1 s, which 
corresponds to the medical practice of quickly stopping the embolic agent supply at the end of each emboliza-
tion stage. According to the  papers25,26, the parameters of the particle swarm algorithm were chosen as follows: 
P = 0.15, w1 = 0.9, w2 = 0.5, c1 = c2 = 1.49 . At each stage, the number of iterations of the particle swarm 
method is I = 300.

In order to be consistent with the clinical data, numerical calculations were performed in such a way that 
the objective functional value was ĴN (TN ) ≤ 0.05 . It was shown that such a functional value for patients K, S 
is achieved in two embolization stages, and for patient P in three stages. A further increase in the number of 
embolization stages leads to smaller values of the objective functional. It should be noted that in a real neurosur-
gical operation, the number of stages can be more than three. To solve the optimal control problem of two-stage 
embolization by the particle swarm optimization method, the number of particles is chosen to be M = 16 , and for 
the problem of three-stage embolization, the number of particles is increased to M = 32 . For the optimal regimes 
obtained as a result of the numerical solution of the multi-stage embolization problem, Table 2 shows the values 
of the objective functional ĴN and the corresponding values of the parameters pg for three patients K, S and P.

Figure 3 shows a comparison of the clinical and calculated pressures at the AVM input for the optimal regimes. 
This figure shows a good correlation between the calculated and clinical pressures for patients K and S. At the 
same time, for the patient P, the behavior of the clinical and calculated pressures differs to a greater extent. This 
probably due to the fact that this patient has a difficult clinical case, as indicated by the rupture of AVM vessels 
after surgery. Thus, it can be assumed that the process of clinical embolization was not carried out in an optimal 
way for patient P. Figure 4 shows the distributions of blood concentration S1(t, x) and S2(t, x) along the AVM 
for the found two-stage optimal embolization regime for patient K. For patients S and P, such distributions have 
a similar behavior.

Figure 2.  Graphs of functions approximating the clinical data of patients (K—circles, S—squares, P—
rhombi): pressure p2 at the AVM output and blood flow qb at the AVM input, depending on the average blood 
concentration in the AVM ¯S.

Table 2.  Optimal functional value and optimal control parameters in the case of N-stage embolization.

Patient ĴN N pg

K 0.0233 2 (18.3616, 4.5428, 0.3262, 2.3975, 2.6563, 1.7723)

S 0.0327 2 (2.5994, 0.0000, 0.7303, 0.0000, 0.2459, 2.6093)

P 0.0429 3 (7.3273, 6.5195, 0.1412, 1.7879, 6.6116, 0.2083, 0.1527,2.9485, 0.6610)
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Discussion
Despite the well-developed technique of embolization operations, the risk of perioperative vascular rupture is 
still a serious danger. In this regard, the development of new methods of mathematical modeling of the AVM 
embolization process remains an urgent task. For modeling, it is desirable to have detailed information about the 
AVM geometrical structure, which would allow you to define the functions A(x) and m(x). However, modern 
medical examination methods of reconstructing the AVM geometry, such as computed tomography, magnetic 
resonance imaging and cerebral angiography, allow us to determine in vivo vessels with an average diameter of at 
least 0.5 mm. This not enough to determine the detailed geometric structure of the AVM, which often consisting 
of a large number of conjoined intertwined thin vessels, the diameter of which can reach 0.1 mm. In addition, 
important information is provided by intraoperative intravascular measurements of hemodynamic parameters 
near the pathology. Such measurements are possible only in sufficiently large vessels adjacent to the AVM, and 
measurements directly inside the AVM are seriously difficult and often impossible. Due to the above limitations, 
the proposed mathematical model is simplified, but despite this, it demonstrates a good agreement between the 
behavior of the calculated pressure and the clinical one. It should be noted that the question of the theoretical 
justification of the existence and uniqueness of the optimal control problem solution under consideration requires 
additional study and can be the subject of another mathematical investigation. Since this theoretical study is not 
the subject of interest of our applied work, we obtain optimal control using numerical modeling.

Figure 3.  Comparison of the AVM inlet pressures p1 obtained during neurosurgical surgery (circles) and as a 
result of numerical simulation (solid line), as well as the corresponding optimal embolization regimes qe(t) : (a) 
for patient K, (b) for patient S, (c) for patient P.
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On the basis of the mathematical model, it was possible to obtain a good correlation of the calculated and 
clinical pressure at the AVM input for patients K and S. Among the considered patients, patient P stands out, for 
which three-stage embolization was required to achieve the functional value ĴN < 0.05 , in contrast to patients K 
and S, for which such functional values were achieved in two stages. It should be noted that the patient P had a 
hemorrhage immediately after the neurosurgical operation, while the other patients did not have perioperative 
complications. This suggests that the properties of AVM and its surrounding vessels for patient P are significantly 
different from those of the other two patients. This is also evidenced by a significant difference in the behavior 
of the clinical and calculated pressure for this patient. It can be hypothesized that the need for a large number of 
embolization stages indicates a high probability of perioperative complications, and in this case, it is especially 
useful to find the optimal embolization regime. The appearance of optimal discontinuous controls (“bang-bang” 
control type) at the last stage for patients S and P is also interesting.

In the considered model, the influence of surrounding healthy vessels on blood flow through the AVM is 
taken into account by setting the qb and p2 functions based on intraoperative measurements near the pathol-
ogy. Further development of the proposed AVM embolization model may be associated with a more detailed 
description of the interaction of a healthy vascular network and AVM. This, in particular, will allow us to study 
the changes in intracerebral blood flow during embolization away from the pathology. It is also important to 
study the AVM, which consists of several compartments with different properties. To do this, it is necessary to 
improve the proposed model of optimal AVM embolization in order to take into account more physiological 
features of the circulatory system. Another important aspect in improving the model may be taking into account 
the increase in the embolic agent viscosity when it interacts with the blood.

Conclusion
In this paper it is formulated and investigated the optimal control problem of multi-stage embolization, which 
arises in the simulation of neurosurgery on pathological blood vessels of the brain. This simulation is performed 
by describing the joint filtration flow of two phases: blood and embolic agent that thromboses the pathology, 
as well as taking into account the redistribution of blood into healthy vessels. As a result, an initial-boundary 
value problem arises for a system of integro-differential equations that includes a hyperbolic divergent partial 
differential equation with a nonconvex flow function. The numerical solution of this problem, obtained using a 

Figure 4.  Blood concentrations S1(t, x) and S2(t, x) along the AVM for patient K in the optimal regime of two-
stage embolization.
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monotone modification of the CABARET scheme, is used to solve the optimal control problem of multi-stage 
embolization by a modified particle swarm method.

In the numerical solution of the considered problem, the parameters and functions included in the system of 
integro-differential equations and the phase constraints of the optimal control problem are determined on the 
basis of data obtained for real patients during neurosurgical embolization operations. For the obtained solutions 
to the optimal control problem of multi-stage embolization, a good agreement between the calculated and clinical 
pressures is observed. The proposed mathematical model and numerical algorithm will be used to improve the 
methodology and the safety of neurosurgical operations.
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