
1

Vol.:(0123456789)

Scientific Reports |         (2022) 12:1183  | https://doi.org/10.1038/s41598-022-05221-y

www.nature.com/scientificreports

Monte Carlo optimum 
management of 241Am/Be disused 
sealed radioactive sources
Cebastien Joel Guembou Shouop1,2,3*, Serge Mbida Mbembe2, Cedric Tayou Kamkumo2, 
Jean Felix Beyala Ateba2, Maurice Ndontchueng Moyo1,2, Eric Jilbert Nguelem Mekongtso1,2, 
Augustin Simo2 & David Strivay3

The optimum encapsulation of 241Am/Be disused sealed radioactive sources (DSRS) based on PHITS 
Monte Carlo simulations for their long-term storage in Cameroon was performed. The country 
capacity for the management of disused neutron sources was also evaluated and showed that a 
Am1 P60 capsule is sufficient for the total available inventoried 241Am/Be DSRSs. The effective dose 
rate was computed in the enclosures of the DSRS container, which will be temporarily stored in 
the centralized radioactive waste facility. The obtained results were in agreement with the ALARA 
principle for the exposure rate optimization and the obtained exposure dose rates were found to be 
1.830 μSv/h (horizontal calculation) and 0.137 μSv/h (vertical computation) which values are lower 
than the 2.5 μSv/h acceptable limit for the public area. The dose profile for 241Am/Be source obtained, 
the neutron flux, and gamma generated from neutron absorption showed agreement with the 
research hypothesis. The Monte Carlo assessment achieved in the present research will be useful for 
dismantling and preparing the waste package for long-term storage.

Recently, the use of sealed radioactive sources (SRSs) in industrial applications such as petroleum exploration 
(oil and gas industries), well logging, and non-destructive tests has been increased worldwide. At their end-life-
cycle, the SRSs can be recycled or reused for other purposes. If a country does not have the capability to do so, 
they become disused sealed radioactive sources (DSRSs) and need to be safely managed. In developing countries 
like Cameroon, the inventory of radioactive sources available at the National Regulatory Authority revealed 
an increase number of disused radioactive sources over the years. The management of DSRSs is acknowledged 
as a real  challenge1–9. One of the management options is to send back to the manufacturers DSRS that cannot 
be used furthermore, but at time, this option is not possible and the country where it was being used should 
develop its own management capability. Safe management of these disused low activity radioactive sources 
has been a great challenge especially for neutron sources where shielding requires appropriate materials. As a 
result, Regulatory Authorities of developing countries have established and maintained in collaboration with 
international organizations and nuclear power country’s regulatory authorities as the Department of Energy of 
the United States of America (or USNRC) and the International Atomic Energy Agency, a temporary radioactive 
waste management facility.

When a radioactive source becomes disused, it is the most vulnerable part of its life cycle as the control 
procedures change because of being not profitable to the end-users. But it is a sensitive stage because of accident 
and/or incidents that can result if the disused source is being  neglected10–15. Although an improvement has been 
made in safe management of disused sealed sources in developing countries, the issue regarding the space security 
management has also been another challenge. Nevertheless, research works have been carried on developing 
advanced technology for dismantling and disposal of several sources into a special capsule and  container16,17.

Through technical cooperation with its member’s states, the IAEA has developed and established projects on 
management of disused sealed radioactive sources entitled “Sustaining Cradle-to-Grave Control of Radioactive 
Sources—Phase II”18–20. The project aims to assist developing countries to acquire appropriate knowledge on 
the management of DSRSs. Though most countries have laid down regulatory framework on control of sealed 
sources, the management of DSRSs remains an up-to-date scientific  topic21–26. There are still several uncertainties 
on DSRS containers used for radioactive waste disposal since DSRSs emit neutron and gamma radiations, known 
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to cause high level risk if no appropriate protective measures are undertaken. Monte Carlo simulations are used 
to optimize the DSRS disposal containers with a view to reduce the high radiological risk to the population and 
to the radioactive waste management staff.

Since neutron emitters as 241Am/Be have a great variation of stochastic characteristics, their domestic long-
term storage should be considered for optimizing the dismantling and disposal method. Such complex operation 
should not be mistakenly implemented and one of the most powerful tools that can be used to evaluate the waste 
package container radiological safety is the Monte Carlo computational  method8,9,27–32. In the present study, the 
optimum encapsulation of 241Am/Be disused sources based on Monte Carlo simulations for the disposal of DSRSs 
has been suggested. The Monte Carlo project is implemented based on the Particle and Heavy Ion Transport 
code System (PHITS) before the on-site dismantling and long-term storage operations are  undertaken31,33–38.

Monte Carlo simulation
Monte Carlo methods also named MC techniques are usually acknowledged as a group of computational algo-
rithms based on the principle of repetition of random sampling to estimate unknown parameters and that use 
random number generators to solve problems that are stochastics in nature. MC methods are effective in mod-
eling complex situations and problems with a high degree of freedom that cannot be analytically solved, by per-
forming random numbers and random experiments associated with a specific probability density  function27,32,39. 
The application of MC to neutron transport is one of the most appropriate means to evaluate neutron interaction 
in a medium since the neutron interaction with matter (or a medium) is a cross-section-dependent function. 
This radiation (Neutron) interaction with matter usually involved parameters such as the microscopic cross-
section (σ), which describes the interaction of neutron with a light particle and is expressed in the unit of barn or 
 cm−2. Then, when neutrons interact with heavy materials or compounds such as a wall, concrete, or macroscopic 
material, the involved parameter is the macroscopic cross-section (∑). Therefore, the total interaction neutron 
cross-section in a medium in MC simulations is considered as the summation of all cross-sections including 
the absorption, scattering, fission, capture, etc.3. The following equations, therefore, describe the macroscopic 
cross-section of neutron interaction in our geometry during the simulation:

In the previous equations, N describes the atomic density of the target material, ρ refers to the target mate-
rial density, and NA is the Avogadro’s number. From the equation, one can recall that materials with large total 
cross-sections are good neutron moderators. But if the source emits neutrons with energy higher than 2 MeV, the 
most important parameter is the removal cross-section that should be considered physically in the simulation. 
This is mainly because the fast neutrons need to be thermalized before being efficiently absorbed in a medium.

As the main concern in dealing with DSRSs is the neutron shielding, three steps should be considered as the 
average neutron energy is 4.5 MeV: (i) slow the neutrons, (ii) absorb the neutrons, and (iii) absorb the gamma 
rays generated from neutron interaction. To slow neutrons emitted from 241Am/Be source to thermal energies, 
light or hydrogenous materials (water that can evaporate or leak, flammable paraffin, or plastic) are usually used. 
To absorb neutrons, hydrogenous materials are also effective but gamma-ray emission is difficult to shield, and 
it is appropriate to use boron or borate material. In other to effectively evaluate the shielding property of a waste 
capsule or container, another important parameter to be considered for neutron shielding is the mean free path 
denotes by λ. This parameter is described as the average distance a neutron travels between two collisions in the 
target material. There is therefore a way to express the collisional probability at a distance dx taken by a neutron 
in a  medium3:

Neutron transmission, that is the ratio between the intensity of incoming neutrons and that of neutrons 
passing throughout the medium, determines the properties of the material used and its ability to slow down and 
absorb radiation. For the Monte Carlo modeling in this study, the Particle and Heavy Ion Transport code System 
(PHITS) version 3.22 was used. It is a general-purpose Monte Carlo code developed using Fortran programming 
language. The code was used to validate the model built in the present study and to verify the effectiveness of 
material used in slowing down and absorbing neutron emitted from 241Am/Be  DSRSs31,33,37. That ability is related 
to the distance λ and the removal cross-section. PHITS’s use for waste package design, radiation shielding, and 
radiation protection requires an appropriate well-defined method. In this regard, the calculation validation is 
based on the relative standard deviation calculation when the input code is well set. The following equation was 
implemented by the PHITS research team to evaluate the uncertainties on the computed values:
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The input file built in the present research was compiled and executed using the Radioactive Decay Process, 
a data library from DECDC2 (Nuclear Decay Data for Dosimetry Calculation, version 2), a revised data package 
from ICRP Publication 38. The library allows the end-user to use a precompiled system for 1034 nuclides for 
dose calculation in medical, environmental and occupational exposures. This package is a library built from the 
assembled set of Evaluated Nuclear Structure Data File (ENSDF)9,34,40–42.

Material and methods
Nuclear waste management is one of the most challenging issues in nuclear engineering and advanced countries 
deal with spent nuclear fuel while states with no nuclear power plants have to manage DSRSs. In either case, 
disused neutron emitters are involved. Since the present study aims to provide an optimized Monte Carlo-based 
DSRSs management, the description of the neutron source, the geometry, and a brief description of the input 
code is given below.

241Am/Be neutron source simulated. The DSRS consisted of isotropic (α, n) 241Am/Be neutron source. 
The α-emitter is the Am-241, the target is Be-9, the Q-value of the reaction is 5.71 MeV and the neutron yield 
per α is ~ 7.0E(-5) for the following  reaction43:

where the neutron produced per unit energy interval in Be (α, n) sources can be estimated using the following 
equation:

where σ(E) refers to the differential cross-section for neutron production in the center of mass, ε is the stopping 
cross-section for Be, and Eα the alpha particle energy.

The 241Am/Be DSRS used in the present work is made of 8 disused sealed neutron sources that will be dis-
mantled and safely disposed of during the expert mission. The characteristics of the eight composite sources are 
presented in Table 1 along with their activities and the spectrum of the source implemented is given in Fig. 1. 
The source definition was done in PHITS input code using ispfs parameter for spontaneous fission as 241Am is 
one of the 18 fission nuclei defined in PHITS code. A volume source (cylindrical) was defined inside the P60 
capsule prepared to contain the dismantled DSRSs. The energy spectrum of the 241Am/Be source used is shown 
in Fig. 1. Regarding the neutron emission rate,  Strain44 measured an emission rate of 5.7 ×  106 neutrons/second 
in 1962. In 2019, M. Tohamy et al. in their study, expected neutron yield of (2.2 ± 0.2) ×  106  s-1  Ci-145–49. These 
details were implemented for the source definition in the present study using neutrons with a mean energy of 
4.5 MeV in association with 4.438 MeV γ-rays according to the reaction 241Am (n, γ) 12C.

Geometry of the neutron DSRS package. The geometry of the system used to contain DSRSs after dis-
mantling for their disposal is shown in Fig. 2. The DSRSs were dismantled and 241Am/Be sources were stored in 
the Am1 P60 Capsule, then the P60 capsule was encased into a well-prepared borate concrete drum as presented 
in Fig. 2. The entrance was sealed then cover with locally made concrete that is less effective than the industrial 
made concrete. The Am1 P60 capsule is made of stainless steel with an outer wall thickness of 10 mm, 68 mm 
diameter, and with a length or height of 285 mm, sealed with a tight conical plug, pressed into the conical neck 
using a threaded cap.

The output geometry computed using PHITS code is shown in Fig. 3 where each material used for the 
geometry design is represented by a different color in the legend. The tallies for dose calculation and decision-
making process were set one meter away and at the contact of the capsule in two directions: the vertical that is 
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Table 1.  List of disused sealed radioactive sources of 241Am/Be considered for one P60 capsule and projected 
for the dismantling operation and long-term storage activity. The estimated activities were evaluated using the 
datasheet from the manufacturers, that is the radioactive decay law.

Manufacturer Number of sources Nominal activity per source (mCi) Date of activity
Estimated activity per source on 
08/16/2021 (mCi)

TROXLER 02 40.0 ± 0.8 16-08-1982 37.57 ± 0.74

HUMBOLT 04 40.0 ± 0.8 13-09-1989 38.00 ± 0.75

SEDITECH 02 50.0 ± 1.0 15-06-1987 47.33 ± 0.95

Total 08 321.82
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the z-axis and the horizontal, which is r-axis (by extension x-axis due to the isotropic emission of the source). 
The importance was set throughout the geometry depth as the variance reduction method allows fast calculation 
and accurate results achievement in a Monte Carlo calculation.

The PHITS input code. The PHITS Monte Carlo input code for the present study includes the follow-
ing sections: Title, Parameters, Source, Material, MatNameColor, Surface, Cell, T-3Dshow, Importance, three 
T-Track sections, Multiplier, and  End34,50–52. The T-Track sections define different physical values that should be 
extracted during the simulation in other to discuss the obtained data. The range of interest of space and energy as 
well as the unit of each physical parameter was set. The results presented in the following section were obtained 
from a validated input code. In the PHITS input code, the variance reduction is implemented using the weight 

Figure 1.  241Am/Be neutron spectrum from ISO 8529 used for Monte Carlo Simulation. The PHITS input code 
uses this spectrum for the neutron emission from DSRSs under investigation.

Figure 2.  Geometry of the simulation designed for DSRSs waste management optimization. The effective dose 
calculation area is set on the r-axis (refer to as the x-axis or horizontal axis) and z-axis (refer to as the vertical 
axis in the remaining part of the manuscript).
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windows tally. The variance reduction can therefore be used more effectively by biasing the [weight window] 
parameter for a specific region with [ww  bias]53.

Results and discussions
Normalized neutron and photon fluxes are presented in Fig. 4. The neutron flux is highest at the 241Am/Be source 
position which is confined at the Am1 P60 capsule center. The remaining space in the P60 capsule is filled with 
air in the simulated model, as presented in the previous section. As can be seen in Fig. 4, the neutron flux is 
symmetric to the z-axis and decreases gradually towards the outside of the shielding geometry, as neutrons are 
adsorbed by the concrete-filled drum and P60 capsule. Compared to the neutron flux, the photon flux is about 
one order magnitude lower at the center of the geometry. But when neutrons undergo total absorption at the 
exit cross-section of the shielding geometry, the photon flux increase to be higher than the neutron flux. This 
is observed by comparing the top (z-axis) of the geometry where the dark blue color represents the lowest flux 
for both neutron (dark blue) and photon (light dark blue). Such effect is due to the fact that photon shielding 

Figure 3.  Output Geometry of the simulation designed for DSRSs waste management optimization generated 
by PHITS. Different components of the geometry with the materials used and their dimensions.

Figure 4.  Neutron flux (left) and generated photon flux (right) obtained in the computed geometry from the 
DSRSs waste made of the compilation of 241Am/Be sources in a P-60 capsule and stored in a barite concrete-
filled drum. Monte Carlo view for a run of 5 000 000 initial experiences.
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requires high-Z materials such as lead, whereas neutrons are effectively shielded by hydrogen-rich materials such 
as water, paraffin, borate concrete. For this reason, neutron shielding always involved gamma shielding material 
set at a position where the neutron absorption reaches its paroxysm to effectively shield the gamma generated 
from neutron absorption. This can be observed at the position (x; z) = ([− 50 + 50]; [80 90]) in the unit of cm. 
In addition, while appropriate materials for gamma shielding are not effective for neutron shielding, neutron 
shielding materials are ineffective for gamma radiation. It is therefore necessary to assess the contribution to 
the dose rate of each type of radiation in a particular cell. The total dose rate presented in next paragraphs is the 
sum of both neutron and photon contribution.

Monte Carlo simulations are used to optimize the DSRS disposal container in view to reduce high radiological 
risk to the population and the radioactive waste facility staff. To evaluate the effectiveness of shielding materi-
als of the waste package or DSRS container used for 241Am/Be long-term storage, the dose profile was plotted 
for the decision-making process. As seen in Figs. 5, 6, and 7, the horizontal effective dose profiles around the 
DSRS package are displayed. From these figures, it is observed that the distance needed to reduce the effective 
dose rate up to the ALARA acceptable limit for the public area (2.5 μSv/h) is 84.30  cm14,16,27,30,39,54,55. However, it 
appears to be 108.00 cm on the graph displayed in Fig. 6, but the radius of the container is 23.70 cm. The result 
was directly associated to the tally position for the dose rate computed using the code. A volume tally was used 
to validate the resolution of the geometry and the obtained results were in perfect accordance with the real values 
with zero relative standard deviation. Therefore, it appears not necessary to perform another computation for 
the above-mentioned distances. These results are in accordance with the international regulations  (IAEA56–58) 
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Figure 5.  Effective dose (horizontal profile or x-axis) investigated from the tally for output results where the 
interval 0–23.70 cm represents the DSRSs container radius and the interval 23.70–500.00 cm corresponds to the 
closest area to the waste package to be disposed of.
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Figure 6.  Effective dose profile inside the DSRSs container’s [from 0 to 23.70 cm] and in the closest horizontal 
boundary area to reach the ALARA acceptable dose limit of 2.5µSv/h for public acceptance. The slope shift 
observed is mainly due to the change of the medium from the waste package to the enclosure environment 
(filled with air at ground level).
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for the waste drum  design59,60. The effective dose variation displayed in Fig. 7 shows that the acceptable limit 
is reached in the closest of 1.00 m from the surface of the DSRS container (upper contact point). It can be con-
cluded that the design is effective as the effective dose rate at 1 m from the contact of the DSRS container is <  ~ 2 
μSv/h. Thus, the dismantling operation of DSRSs and their packaging into one Am1 P60 Capsule, sealing, and 
storage activities could now be implemented at the centralized disused sealed radioactive sources storage. This 
can now be achieved for the 8 sources presented in Table 1. The evaluation performed also shows how crucial it 
is to evaluate the country’s capacity in terms of Am1 P60 capsules.

Figures 8 and 9 display the vertical effective dose profile for the decision-making process. The definition of 
the source between 21.20 and 49.70 cm is the main reason why the maximum (a peak) is observed in this inter-
val. Considering the ALARA principle, the effective dose rate at the contact of the top of the DSRS container is 
1.750 ± 0.004 μSv/h (seen in Fig. 8 and Table 2). This value is comparably lower than the regulatory value of 2.5 
μSv/h set for public adjacent areas. The effective dose rate at 1.00 m from the top (z-axis) is observed to be 0.137 
μSv/h, which is radiologically acceptable for the public.

The obtained results also show that the optimum packaging and encapsulation of 241Am/Be disused sources 
could be preceded by the Monte Carlo assessment of the waste packages. Though the assessment for the disposal 
of DSRSs was done for disused 241Am/Be neutron sources in Cameroon, the same process could be implemented 
in other countries that deal with neutron sources prepared into special capsule forms. In such cases, the obtained 
results are useful worldwide and available for implementation by other radioactive waste management facilities. 
The aforementioned Monte Carlo simulation is a prior study to the dismantling operation that enhances the 
cradle-to-grave management of DSRSs in developing countries like Cameroon. The dismantling operation could 
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Figure 7.  Dose evolution from the DSRSs container’s contact point to 1.00 m away. The effective dose 
drops from 33.310 ± 0.001 μSv/h at contact to 1.752 ± 0.004μSv/h at 1 m, which is acceptable for the ALARA 
hypothesis.
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Figure 8.  Effective dose (vertical profile or z-axis) investigated from the tally for output results where the 
interval 0–74.00 cm represents the DSRSs container height and the interval 74.00–1000.00 cm corresponds to 
the closest area on top of the encapsulated waste to be disposed of.
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be carried out safely at any time knowing that the effective dose rate in the enclosed areas to the DSRS container 
shall remain less than the recommended value of 2.5μSv/h for the public area. In addition, another work should 
be performed to evaluate the safety and security of the disposal site and the interim storage in the condition 
where many DSRS drums are stored in several stages in a confined area. It should be performed when the DSRS 
capability of the country in the next century is evaluated. This work also helped to evaluate the Am1 P60 capsules 
and the borate concrete-filled drums capacity of each developing country that has to deal with 241Am/Be disused 
sources. Such capacity definition is of primary interest in collaboration with international organizations like 
IAEA and bilateral cooperation for radioactive waste management (the case of US-Cameroon). From the total 
investigated 241Am/Be DSRSs, the country capacity of a Am1 P60 capsule corresponds to one borate concrete-
filled drum for long-term storage purposes. A similar study is being carried on to evaluate the case of gamma 
emitter DSRSs as 137Cs, 60Co, available in large quantities as radioactive waste in developing  countries16,30,39.

Conclusions
The optimum encapsulation of 241Am/Be disused sealed radioactive sources based on PHITS Monte Carlo simula-
tions for the long-term storage of DSRSs in Cameroon was performed. The shielding effectiveness of the disused 
source drums and Am1 P60 capsules for storage operations was evaluated by taking into consideration the total 
number of 241Am/Be DSRSs inventoried. This was to assess the minimum of radiological risk for both radioactive 
waste specialists (operators during the dismantling operations) and the public. The P60 special form capsules 
are to be produced and used in a worldwide project on the “Sustaining Cradle-to-Grave Control of Radioactive 
Sources”. So the characteristics of the special capsule were investigated to conclude on its properties before the 
future implementation of joint dismantling expert missions in participating states.

The effective radiation dose rates obtained were in agreement with the ALARA principle and regulatory 
requirements for the exposure rate optimization. In fact, the obtained effective dose rates were found to be 1.830 
(horizontal calculation) and 0.137 μSv/h (vertical computation) which are lower than the 2.5 μSv/h acceptable 
limit for the public area. For the radiation dose profile of 241Am/Be source obtained, the neutron flux and gamma 
generated from neutron absorption are in accordance with the research hypothesis and fit our expectations. As 
the Am1 P60 capsule was designed to carry up to 10 TBq of 241Am/Be source, the future dismantling operations 
to be arranged should take into consideration all national inventoried 241Am/Be DSRSs. Also, means of filing 
the borate concrete-filled drums and the remaining space in the geometry with locally made concrete should 
be designed prior to the dismantling operation. As the issue of radioactive and nuclear waste management is 
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Figure 9.  Effective dose profile inside the DSRSs container’s [from 0 to 74.00 cm] where the position of 241Am/
Be source pre-encased in a P60 capsule encapsulated into the concrete-filled drum is set between 21.20 and 
49.70 cm.

Table 2.  Data for decision-making process based on Monte Carlo simulation in view to achieve public 
exposure condition in the boundary adjacent areas to the DSRSs container. Public exposure here refers to the 
ALARA principle of less than 1 mSv/year, which in other words means 2.5 μSv/h.

Dose at contact (μSv/h) on x-axis horizontal 33.310 ± 0.001

Dose 1 m away (μSv/h) on x-axis horizontal 1.830 ± 0.005

Distance (cm) needed to reach 2.5 μSv/h on x-axis 84.310 ± 0.009

Dose at contact (μSv/h) on z-axis vertical 1.752 ± 0.004

Dose 1 m away (μSv/h) on z-axis vertical 0.137 ± 0.017

Distance (cm) needed to reach 2.5 μSv/h on x-axis 0.0
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an up-to-date topic, the future perspective will consist of looking at a Monte Carlo-based method to reduce 
the heat of nuclear/radioactive waste and to transmute, if possible on a small scale, long-lived radionuclides to 
short-lived ones. The ongoing research project is actually evaluating the Cs1 P60 capsule national capacity to 
dismantle gamma emitters DSRSs.

Data availability
The data that supports the findings of this study are available within the article and upon reasonable request.
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