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Assessing central serous 
chorioretinopathy with deep 
learning and multiple optical 
coherence tomography images
Junseo Ko1,2,10, Jinyoung Han1,2,3,10, Jeewoo Yoon1,2, Ji In Park4, Joon Seo Hwang5, 
Jeong Mo Han6, Kyu Hyung Park7 & Daniel Duck‑Jin Hwang3,8,9*

Central serous chorioretinopathy (CSC) is one of the most common macular diseases that can reduce 
the quality of life of patients. This study aimed to build a deep learning‑based classification model 
using multiple spectral domain optical coherence tomography (SD‑OCT) images together to diagnose 
CSC. Our proposed system contains two modules: single‑image prediction (SIP) and a final decision 
(FD) classifier. A total of 7425 SD‑OCT images from 297 participants (109 acute CSC, 106 chronic 
CSC, 82 normal) were included. In the fivefold cross validation test, our model showed an average 
accuracy of 94.2%. Compared to other end‑to‑end models, for example, a 3D convolutional neural 
network (CNN) model and a CNN‑long short‑term memory (CNN‑LSTM) model, the proposed system 
showed more than 10% higher accuracy. In the experiments comparing the proposed model and 
ophthalmologists, our model showed higher accuracy than experts in distinguishing between acute, 
chronic, and normal cases. Our results show that an automated deep learning‑based model could 
play a supplementary role alongside ophthalmologists in the diagnosis and management of CSC. In 
particular, the proposed model seems clinically applicable because it can classify CSCs using multiple 
OCT images simultaneously.

Central serous chorioretinopathy (CSC) is the fourth most common retinopathy and is characterized by the 
serous detachment of the neurosensory  retina1. If subretinal fluid (SRF) persists, it can damage the outer layer of 
the retina, causing permanent loss of visual function, which is associated with a decrease in the patient’s quality 
of  life2,3. CSCs are usually classified into acute or chronic CSC according to the chronicity of the disease, and it 
is important to evaluate the chronicity of the disease to determine the treatment plan or  prognosis4.

CSC has traditionally been diagnosed using multimodal imaging modalities, including fluorescein angiogra-
phy (FA) and indocyanine green angiography (ICGA)4,5. Among these modalities, optical coherence tomography 
(OCT) is non-invasive, fast, and shows highly reproducible  results6,7 and is now considered a gold-standard 
imaging modality for the follow-up of CSC  patients5.

Applying deep learning to OCT images has been demonstrated to be useful for assessing CSC. The prior work 
reported that the proposed deep learning model can distinguish between 1) normal and CSC and 2) acute and 
chronic CSC types for a given OCT  image8. While the prior work provided valuable insight into the potential 
of using an OCT image to assess CSC, it may not have considered actual clinical practice where multiple OCT 
images, instead of one image, from a single patient are analyzed at the same time. In clinical practice, ophthal-
mologists usually make a final diagnosis by simultaneously looking at several OCT images per case. Therefore, 
in this study, we aimed to build a deep learning model that could comprehensively read multiple OCT images. In 
addition, the performance of our proposed model for discriminating between normal vs. acute CSC vs. chronic 
CSC was investigated and compared with that of ophthalmologists.
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Results
A total of 7425 images from 297 participants (normal 82, CSC 215) were included in the study. The 215 patients 
with CSC were enrolled at the outpatient clinic, with 109 and 106 being diagnosed with acute and chronic CSC, 
respectively. The mean age of the participants in the normal group was 64.3 ± 8.25 years and that of those in the 
CSC group was 54.12 ± 9.88 years. Detailed information on the data used in this study is presented in Table 1.

Model performance. As shown in Table 2, the proposed model for classifying multiple classes (i.e., acute, 
chronic, and normal), combined with ResNet-50 and logistic regression, showed an average cross-validation 
accuracy of 94.2% (95% CI 0.897–0.986), sensitivity of 94.9%, and specificity of 99.1%. The kappa score between 
our model and the ground truth was 0.909. The proposed model showed the best accuracy compared to other 
possible combinations such as VGG19 + logistic regression (92%), VGG19 + SVM (90%), and VGG19 + XGBoost 
(89%). In addition, our proposed model had a higher accuracy than both the three-dimensional convolutional 
neural network (3D-CNN) (75.6%) and CNN-long short-term memory (CNN-LSTM) (83%) models.

Model performance in comparison with ophthalmologists. To evaluate the proposed model from 
a clinical perspective, we selected the 4th fold which showed the best performance result among the fivefold 
cross-validation, and provided the data to the seven ophthalmologists. Figure 1 shows the performances of the 
seven ophthalmologists and our proposed model. Our model achieved a higher accuracy than any ophthalmolo-
gist, implying that the proposed model exhibited expert-level performance. Our proposed model achieved a 
high accuracy of 98.33%, whereas the ophthalmologists showed accuracies between 66.00 and 96.66%. Figure 2 
shows the confusion matrix of the 4th fold of the proposed model and retina specialists. The proposed model 
performed better than all the ophthalmologists and accurately classified all cases except one. In nine cases, incor-
rect classifications were noted for three or more ophthalmology residents out of four. Among these nine cases, 
all three ophthalmology experts correctly diagnosed three cases. Our model also correctly classified these three 
cases that were correctly classified by the ophthalmology experts. A difficult case that was wrongly classified by 
three ophthalmology residents and two of the three experts was correctly classified by the model. Table 3 illus-
trates the examples of consensus and non-consensus cases between the model and graders.

Discussion
CSC usually shows spontaneous improvement in more than half of patients, but it can lead to the permanent 
deterioration of visual function due to damage to the photoreceptor cells of the outer retinal  layer4,9. Therefore, 
it is important to distinguish acute CSC from chronic CSC considering clinical information such as the time 
of symptom onset. Acute CSC usually has a self-limited natural course. However, if there is no spontaneous 

Table 1.  Baseline characteristics of patients who had undergone macular OCT. OCT optical coherence 
tomography, CSC central serous chorioretinopathy, SD standard deviation.

Normal

CSC

Acute CSC Chronic CSC Total CSC

Image, no 2050 2725 2650 5375

Patients, no 82 109 106 215

Age (years), mean (SD) 64.30 (8.25) 49.31 (8.36) 59.7 (8.83) 54.12 (9.88)

Sex, no (%)

Male 22 (26.83%) 95 (87.16%) 97 (91.50%) 192 (89.30%)

Female 60 (73.17%) 14 (12.84%) 9 (8.50%) 23 (10.79%)

Eye, no. (%)

Right 42 (51.22%) 62 (56.88%) 22 (20.75%) 84 (39.07%)

Left 40 (48.78%) 47 (43.12%) 84 (79.25%) 131 (60.93%)

Table 2.  Accuracy of cross-validation in baseline models and the proposed model. Significant values are in 
bold. 3D-CNN three-dimensional convolutional neural network, CNN-LSTM convolutional neural network–
long short-term memory model, VGG19 VGG architecture with 19 layers and our custom fully connected 
layers, ResNet-50 ResNet architecture with 50 layers, XGB XGBoost Classifier, SVM support vector machine.

Onefold Twofold Threefold Fourfold Fivefold Average

3D-CNN 80% 82% 79% 73% 64% 75.6%

CNN-LSTM 80% 79% 86% 85% 78% 83%

VGG19 + XGB 92% 89% 91% 87% 86% 89%

VGG19 + SVM 92% 93% 90% 95% 80% 90%

VGG19 + Logistic Regression 94% 95% 90% 93% 88% 92%

ResNet-50 + Logistic Regression 91% 95% 97% 98% 90% 94.2%



3

Vol.:(0123456789)

Scientific Reports |         (2022) 12:1831  | https://doi.org/10.1038/s41598-022-05051-y

www.nature.com/scientificreports/

improvement after follow-up, active treatment such as focal laser treatment, intravitreal anti-vascular endothelial 
growth factor injection, or photodynamic therapy may be considered. On the other hand, in the case of chronic 
CSC, it may be difficult to improve visual function in cases with permanent photoreceptor damage. If an active 
lesion such as subretinal fluid is observed, active intervention should be performed immediately to prevent 
further damage to visual function.

In this study, we built a model to assess CSC using multiple OCT images simultaneously. Unlike the prior 
 work8 that only used one image per patient, the proposed model considered a real clinical scenario in which 
several OCT images per case were used in diagnosis. Our model effectively distinguished between acute and 
chronic CSC, and its performance was comparable to or better than those of 3D-CNN, CNN-LSTM, and expe-
rienced ophthalmologists.

In our experiments, the proposed model outperformed the ophthalmologists in assessing CSC. There were 
nine cases where three of four ophthalmology residents failed to correctly classify the images, and all three oph-
thalmology experts correctly diagnosed three cases among these 9 cases. Our model correctly classified all nine 
cases, demonstrating that the proposed model can perform at the expert level. Furthermore, there was a case in 
which three residents and two experts incorrectly classified the condition. However, our model could correctly 
classify such a challenging case. Thus, the proposed model showed promising performance for classifying CSCs 
using deep learning and 25 spectral domain (SD)-OCT images. We expect our model to play a supportive role 

Figure 1.  Performance comparison between ophthalmologists and the proposed model. This figure shows the 
accuracy between the ophthalmologists and the proposed model in distinguishing different CSC subtypes. Our 
proposed model showed the highest accuracy compared to any ophthalmologist. Our model achieved a high 
accuracy of 98.33%, whereas the ophthalmologists showed accuracies between 66 and 96.66%.

Figure 2.  Confusion matrix comparison between our proposed model and the three retina specialists. The 
confusion matrix shows the confusion matrix of the 4th fold from the fivefold cross-validation. The x-axis 
denotes the predicted class and the y-axis denotes the actual class of a given patient. Our proposed model 
showed 98.3% accuracy and accurately classified all cases except for one normal case. All the retina experts had 
more than 10 years of clinical experience.
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alongside ophthalmologists. In addition, our model should help to diagnose challenging cases for non-retinal 
specialists.

We evaluated the proposed model using 3D-CNN10 and CNN-LSTM10 models. These models comprise 
two parts: (i) extracting a feature description using multiple images and (ii) making a final decision using the 
extracted feature vector. In the CNN-LSTM model, multiple two-dimensional (2D) images were used as input, 
and a description of each image was generated in the CNN layers. After the CNN layers, each LSTM cell classi-
fies diseases using the sequential information of images. Similar to the CNN-LSTM model, the proposed model 
used a CNN model to extract a description vector for each image. To further improve the performance, our 
model used lesion cuts and a softmax output. In the 3D-CNN model, a 3D image consisting of a set of multiple 
2D images was used as an input. The fully connected layer in the 3D-CNN model could classify diseases using 
the description vector generated from the 3D-CNN layers.

While 3D-CNN and CNN-LSTM models require much training data, only a relatively small number of 
SD-OCT images were available in this study. To remedy this issue, we split the model decision process into two 
parts: (i) the prediction of a single image and (ii) the final decision. First, we trained the single-image prediction 
(SIP) model using only the lesion cuts. Thereafter, the final decision (FD) classifier was trained using logistic 
regression, and it could learn with a relatively small amount of training data. Thus, the proposed model showed 
good performance in assessing CSCs without large training data.

This study has several limitations. First, in our study, the number of subjects was not large enough and exter-
nal validation was not performed. External validation should be performed with images from different OCT 
manufacturers in future studies because all the images were extracted from a single OCT device at one academic 
center. However, the dataset was sufficient to demonstrate the feasibility of our model for classifying CSCs with 
multiple OCT images simultaneously. Second, we investigated the performance of the model without clinical 
information (e.g., symptom duration, age, sex) or other imaging modalities such as fundus photography, infra-
red reflectance imaging, FA, and ICGA. Performance obtained by combining diverse clinical data with multiple 
modalities would be more accurate compared to considering only OCT images. Third, the proposed model may 
suffer from training complexity. In other words, lesion cuts were annotated by ophthalmologists to train the SIP 
model, which could introduce additional cost to the process. In addition, the output of the SIP model was used to 
train the FD classifier. This means that training the SIP and FD classifiers cannot be parallelized. In future work, 
we plan to enhance our model to achieve an end-to-end model, which can train the feature descriptor and final 
classifier together. Regardless of the above limitations, the proposed model shows promising performance, and 
further investigations seem necessary regarding its potential impact on clinical practice.

In summary, we developed a deep learning model that showed good performance in distinguishing chronic 
CSC from acute CSC simultaneously using multiple SD-OCT images. Thus, our model could play a supplemen-
tary role alongside ophthalmologists in the classification of CSC. Additionally, automation of the classification 
process using the model may improve patients’ quality of life by improving prognosis and may save cost and 
time for both healthy people and patients with CSC.

Methods
This study was conducted in accordance with the 1964 Helsinki Declaration. The Ethics Committee of Hangil 
Eye Hospital approved the research protocols and their implementation. The committee waived the requirement 
for obtaining informed consent, given that this was a retrospective observational study of medical records and 
was retrospectively registered.

Data collection and labelling. We analyzed the records of patients who visited Hangil Eye Hospital 
between January 2017 and January 2021. We used SD-OCT (Heidelberg Spectralis, Heidelberg Engineering, 
Heidelberg, Germany) images of normal participants and patients with CSC. Central volume scans using a 

Table 3.  Examples of consensus and non-consensus cases between residents, specialists, and our models. 
Acute Acute central serous chorioretinopathy, Chronic Chronic central serous chorioretinopathy.

         

Ground 
truth Acute Acute Acute Acute Acute Acute Acute Acute Normal

Resident 1 Chronic Chronic Chronic Chronic Chronic Chronic Chronic Chronic Normal

Resident 2 Chronic Chronic Chronic Chronic Chronic Chronic Chronic Chronic Chronic

Resident 3 Chronic Chronic Chronic Chronic Chronic Chronic Chronic Chronic Chronic

Resident 4 Chronic Acute Acute Acute Acute Acute Acute Acute Chronic

Specialist A Chronic Acute Chronic Chronic Chronic Acute Chronic Chronic Normal

Specialist B Acute Acute Acute Acute Acute Acute Acute Acute Normal

Specialist C Acute Acute Acute Chronic Acute Acute Acute Acute Normal

Proposed 
model Acute Acute Acute Acute Acute Acute Acute Acute Normal
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25-scan pattern and macular thickness map protocols were routinely performed using the SD-OCT scanner 
at our hospital. Through this process, a volumetric assessment of the central retinal structures consisting of 25 
single horizontal axial scans was routinely performed (scanning area: 6 × 6 mm, centered at the fovea). Although 
horizontal or vertical scan images were also available, they were not used in this study. Instead, we only used the 
central volume scans comprising 25 images.

All CSC cases were diagnosed by fundus examination, FA, ICGA, and OCT images by independent retinal 
specialists (DDH and JSH). A confocal scanning laser ophthalmoscope (Heidelberg Retina Angiograph, HRA; 
Heidelberg Engineering, Germany) was used to perform simultaneous FA and ICGA in all CSC cases. One eye 
per patient was selected for this study, with one visit per patient. Based on the retinal pigment epithelium or 
photoreceptor status and the duration of symptoms, patients were classified as having acute CSC or chronic CSC 
as follows: (1) acute CSC with SRF lasting ≤ 4 months and (2) chronic atrophic CSC with definite retinal pigment 
epithelium and photoreceptor atrophy with or without SRF. In cases of disagreement, a third retina specialist 
(JMH) evaluated the discrepancy and discussed the case with other specialists. After discussion, all discrepancies 
were resolved by consensus. Our analysis excluded data that showed the presence of other potentially conflicting 
retinal pathologies such as age-related macular degeneration, polypoidal choroidal vasculopathy, pachychoroid 
neovasculopathy, and pachychoroid pigment epitheliopathy.

Data preprocessing. To feed the SD-OCT images into deep neural networks, we first cropped the 
596 × 1264-pixel SD-OCT images and obtained 380 × 764-pixel red–green–blue (RGB) images. We then down-
sampled the cropped image to 163 × 254-pixel RGB images. To remedy overfitting issues, we also performed 
a data augmentation process in which the model learns from randomly transformed input images, including 
horizontal image flips, random brightness changes from 0.7 to 1.3, and random rotations of the image of up to 
15°. The data augmentation process was applied only during the training phase.

The proposed model. To classify each subject with a set of 25 SD-OCT images into three different classes 
(i.e., acute CSC, chronic CSC, and normal), we built a hierarchical deep learning model that consists of two 
different modules: SIP and FD classifier. As shown in Fig. 3, for the SIP model, we utilized a popular CNN 
architecture, ResNet-5011, to extract the softmax score (i.e., class probability) from a single SD-OCT image. 
We used other well-known CNN-based models including VGG-1612 and Inception  V313, but we decided to use 
ResNet-5011 as it performed better than the others. More specifically, we stacked four linear layers with dropouts 
on top of the ResNet-50 architecture. We used the final linear layer with a softmax activation function to predict 
the multiclass classification result.

To train the SIP model, we first initialized ResNet-50 with pre-trained weights that were acquired from the 
large-scale image dataset  ImageNet11,14. We then froze the ResNet-50 layers and only updated the weights of the 

Figure 3.  An illustration of our proposed model. We used ResNet-50 as a single-image prediction (SIP) model 
and stacked custom fully connected layer after the convolution layers. For the final decision (FD) classifier, 
logistic regression was used.
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four fully connected layers during training. This deep learning technique, called transfer  learning15, helped our 
model to avoid overfitting and train  faster15. In the test phase, we use normal 25 SD-OCT scans as the input. In 
the training phase of the SIP model, however, we extracted only lesion cuts from all 25 SD-OCT images. The 
purpose of the SIP model is to classify a single OCT image into each class. If non-lesion cuts are used in the 
training phase, the SIP model cannot distinguish between normal-class images and non-lesion cuts from CSC 
images. To train the SIP model for its purpose, we only used lesion cuts in the training phase to achieve improved 
model performance. The output of the SIP model is a three-dimensional softmax vector (e.g., [0.2, 0.2, 0.6]), 
where each scalar value denotes the class probability for acute CSC, chronic CSC, and normal, respectively. By 
concatenating all softmax vectors for the 25 SD-OCT images, we passed a 25 × 3 (i.e., number of SD-OCT cuts 
for the patient × number of classes)-shaped matrix to the FD classifier.

For the FD classifier, we used logistic  regression16,17 which took a 25 × 3 shaped matrix extracted from the 
previous stage as input and predicted the final class label (i.e., acute CSC, chronic CSC, or normal). We tried 
other well-known machine learning classifiers such as  XGBoost18,  SVM19, and Random  Forest20, but we opted 
for logistic regression as it performed better than others. The FD classifier made overall clinical decisions based 
on 25 softmax vectors extracted from a single patient.

Experiment setup. Baseline models: 3D-CNN and CNN-LSTM. To compare the performance of our pro-
posed model with those of other deep neural networks, we tested the 3D-CNN21 and CNN-LSTM10 models 
(Fig. 4). All baseline models took the same input images as the proposed model; each image was a 163 × 254-pixel 
RGB image. The 3D-CNN model used as a baseline model in this study took a 4-dimensional image set (i.e., 
number of images × image width × image height × number of channels) as inputs and predicted the final class 
label (i.e. acute CSC, chronic CSC, and normal). As shown in Fig. 4a, the overall architecture consisted of three 
3D convolution layers, three max pooling layers, two batch normalization layers, a global average pooling layer, 
and a fully connected layer followed by a softmax activation function. The 3D-CNN model considered the series 
(volume) of the 25 SD-OCT images simultaneously and performed the convolution.

Figure 4b shows the overall architecture of the CNN-LSTM model used in this study. The embedding vectors 
extracted from 25 2D convolution blocks were fed into LSTM layers with 64 hidden units, which were followed 
by a fully connected layer with a softmax activation function. Each 2D convolution block consisted of six 2D 

Figure 4.  An illustration of the baseline models (CNN-LSTM, 3D-CNN). (a) The 3D Convolution module 
extracted spatial and temporal features from the 25 SD-OCT cuts. The last fully connected layer classified each 
class using a 3D image description vector extracted from the 3D convolution module. The number in front of 
‘@’ denotes the filter size, and after the ‘@’ is the size of the output vector. (b) The CNN-LSTM (Convolutional 
Neural Network—Long Short Term Memory) model used CNN as the feature extractor, LSTM for sequence 
learning, and the fully connected layer as a classifier. The CNN architecture summarized a single image into a 
latent vector. LSTM analyzed each latent vector from each image. The final classifier predicted the labels using 
outputs of LSTM. The LSTM layers contain 64 cells. Acute and chronic in the output box indicate acute CSC and 
chronic CSC, respectively.
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convolutional layers with max-pooling layers. By combining CNN and LSTM, the model could consider both 
spatial and sequential  information22.

The proposed model. To train and evaluate the proposed model, fivefold cross-validation was performed. We 
first split the entire dataset into five different folds, and then trained the model with four folds and tested it with 
the remaining fold. Note that each fold has similar distribution to the original data distribution. The detailed 
description of the fivefold cross-validation information is summarized in Table 4. The same patient was not 
included in the training and test sets at the same time. The SIP model was trained using 75% of all cases in the 
training set, which was randomly sampled similar to the distribution of the training data. The FD classifier was 
trained using the remaining 25% cases that were not used in the SIP model. For the FD classifier, we used the 
softmax values, which were the prediction results of the 25 SD-OCT cuts by the SIP model.

To evaluate the proposed model from a clinical perspective, we selected the classification round that showed 
the best performance result among the fivefold cross-validation and provided the test fold data of the chosen 
round to seven ophthalmologists as follows: three retina specialists with more than 10 years of clinical experience 
each at an academic ophthalmology center, and four ophthalmology residents.

Data availability
The data are not available for public access because of patient privacy concerns, but are available from the cor-
responding author upon reasonable request.

Received: 17 August 2021; Accepted: 30 December 2021
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