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Modelling the emergence dynamics 
of the western corn rootworm 
beetle (Diabrotica virgifera 
virgifera)
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The western corn rootworm is an invasive species to Europe and is a major agricultural pest that 
causes widespread economic and yield losses to maize producers. The Gompertz curve was originally 
used to model human population mortality. It is a sigmoidal curve where the beginning and end of 
a period shows the slowest time for growth, and adequately describes observed dynamics of many 
phenomena. We propose the use of the Gompertz function in a Bayesian Hierarchical framework to 
model the emergence dynamics of the western corn rootworm beetle. The proposed model includes 
the use of climatic variables to assess how weather can influence the observed dynamics. We apply the 
model to Austrian monitoring data collected in 2004–2015.

Invasive species have plagued farmers since the transition from natural landscapes towards agro-ecological 
 systems1. Nowadays, climate change and globalisation, i.e. global trade and transport of agricultural prod-
ucts, are among the most important drivers for the spread of invasive species and their introduction to new 
 environments1,2. One such an invasive species is the Western Corn Rootworm (WCR; Diabrotica virgifera virgif-
era) beetle, a univoltine (one generation per growing season) leaf beetle, which is known to cause massive crop 
yield losses to Zea mays maize  crops3,4. Maize is one of the most important crops in global agriculture, because of 
its high yield potential, the comparably low labour input, profitability and versatile use, vendibility on established 
markets, as well as the favourable agronomic characteristics (e.g. low requirements on crop rotations—can be 
planted in  monocultures5). However, the WCR beetle is particularly problematic in intensive maize production 
regions, i.e. if maize is cultivated in monocultures, as it has little or no natural  predators4.

The WCR beetle originates from North America and is believed to have been introduced to Europe at the 
beginning of the 1990s. It was first detected in Serbia close to Belgrade international airport in 1992, and since 
then the WCR infestation has continued to spread further and further year after  year6. Within the European 
Union, the WCR beetle was given quarantine status in  20037. After introduction of this regulation, monitoring 
of the WCR beetle became mandatory in infested or vulnerable locations or maize  fields8. The monitoring was 
intended to assess the spread and severity of the infestation in hopes that effective pest management strategies 
could eradicate the population. However, eradication was not achieved. In places of long running WCR infesta-
tion the number of WCR beetles observed have increased at an alarming rate. The quarantine status of the WCR 
beetle was repealed in  20148. In Austria, the WCR beetle was first detected in  20029. WCR infestation severely dis-
advantages the livelihood of maize growers across Austria, whereby South-East Austria is particularly  affected10. 
Most severe economic damages up to total crop yield losses were reported for about 10000 ha maize area in  20145.

In order to make effective pest management decisions, it is important to understand the emergence dynam-
ics of established WCR beetle populations. The WCR beetle is known to spend its egg stage in the soil, emerg-
ing in the late spring or early  summer3,11. However, previous studies show that environmental factors such as 
temperature and precipitation influence the phenological cycle. For example, warmer temperatures increase 
the observed adult abundance, and WCR beetle emergence can last until the first frost. On the other hand, 
previous studies have reported that increased precipitation, and colder temperatures in winter as well as longer 
cold periods below −10 ◦C increase mortality in the overwintering  eggs12–15. As is the case for many insects, the 
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emergence dynamics of the WCR beetle can be described with sufficient accuracy by a parametric curve, such 
as, for example, the Gompertz curve.

In this study, we use the Gompertz curve to model the observed emergence dynamics of the WCR beetle. The 
Gompertz curve was first proposed by Benjamin Gompertz in 1825 to describe the law of human  mortality16. The 
Gompertz curve is a sigmoidal curve which describes growth as being the slowest at the beginning and the end of 
a period. It is usually described by three parameters; an asymptote α , a relative starting value β , and a growth rate 
coefficient γ . Since its introduction, the Gompertz curve has been applied in many population biology  studies17–20.

In this study, the upper asymptote parameter α was considered as a proxy for the saturation level of WCR 
population growth. The growth rate coefficient γ was treated as an indicator of the WCR beetles’ emergence 
period, with lower values of γ indicating a more protracted period of beetle emergence.

We incorporated the above structure into a Bayesian hierarchical modelling framework and used Markov 
Chain Monte Carlo (MCMC) methods for parameter estimation and posterior inference. We applied the model 
to the WCR trapping data for Austria obtained in 2004–2015. We investigated the effect of climate covariates 
such as temperature and precipitation on the WCR beetle emergence dynamics. The handling of missing data 
and possible inclusion of spatial autocorrelation is also discussed .

The overview of the paper is as follows; In “Data” section we give an overview of the used data. “Methodol-
ogy” section provides a detailed description of the methodology and the handling of missing data. The results are 
presented in “Results” section and discussed in “Discussion” section where we also address the need/potential 
for future research.

Data
The data set consists of WCR trappings recorded across maize-growing locations in Austria, as shown in Fig. 121. 
A trap was placed at a location if the WCR beetle had been previously observed and at locations and regions that 
are considered vulnerable to WCR  infestation8. The traps were laid at the beginning of the maize growing season 
(usually in the beginning of June) until harvest (usually the beginning of October), thus giving a monitoring 
period of 19 weeks. The traps operated by releasing pheromones which attracted male beetles, and yellow sticky 
tapes trapped the WCR  beetle22. Each week, the number of beetles caught were counted and the traps were 

Figure 1.  The locations of the placed traps where at least one WCR beetle was caught in 2004–2015.
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replaced. The WCR trapping data was collected during the monitoring periods of 2004–2015, with only observed 
cases recorded, i.e. traps that trapped at least one WCR beetle over the monitoring period.

Of the total of 4745 traps, monitoring WCR beetles between 2004 and 2015, a total of 2702 traps (56.9%) 
had at least one non-zero record and were included in the analysis. In this data set blanks or zeroes were used 
interchangeably, thus one could not distinguish if a record was missing or was indeed a zero count. Each of the 
2702 traps consisted of 19 weeks of monitoring data, however for the first three and the last three weeks of the 
monitoring season, zero counts were recorded for almost all the traps. For the remaining 2702*13=35126 records, 
18158, (51.7%) were recorded as either blanks or zeroes, of which 1881 suspicious blanks/zeroes were recorded 
in the middle of the season. Because we were modelling cumulative emergence, omitting a missing data point 
would mean omitting the records for the entire trap and thus loosing 2698 traps or 83.68% of the data. Instead, 
after a consultation with two domain experts, we set up the following scheme:

• Any blank or zero records until the first numeric entry were coded as zero, as they are likely to be zero in the 
beginning of the monitoring period/early season ( n = 8213 , or 16%)

• Any blank or zero records which occurred between two non-zero entries, at least one of which was greater 
than or equal to 10, were re-coded as missing. ( n = 78 or 0.15% ). Otherwise they were coded as zeroes.

• Any blank or zero records which occurred between two zero entries were coded as zeroes, as sequential zero 
counts are possible ( n = 25 , or 0.05%).

• Any blank or missing record that were directly adjacent to a non-zero entry was coded as missing (i.e. at least 
one non-zero entry), as there is a chance that it is missing rather than a zero count ( n = 3010 , or 5.86%).

Note, that in the Bayesian framework, missing values are treated as (nuisance) parameters. The model also 
includes covariates to see if emergence dynamics were associated with climatic variables, and were available for 
each trap location based on the nearest weather  station23. In this work the following variables were considered; 
the average winter temperature (1st January–end of March), the average spring temperature (1st April–end of 
June), and the precipitation sum during winter (1st January–end of March) and the temporal trend for the year. 
Moreover, the percentage of the agricultural area per Austrian municipality used for cultivating maize crops 
(maize), as provided by the Austrian  Gemeindedatenbank24 was included in the analysis.

Methodology
Let yitk denote the WCR count observed for trap i in week t in year k, and assume it to follow a Poisson distribu-
tion with parameter µitk

The intensity parameter µitk represents the rate of emergence for a given time period. Instead of allowing it to 
depend purely on time t, a phenological variable of growing degree days (GDD) is used, as warmer temperatures 
are required for WCR  development25–28. GDDs reflect the heat accumulation and are defined as an integral of 
warmth above a base temperature after a given start date:

The above integral can be approximated by

 Here Tmin is the minimum daily temperature, Tmax is the maximum daily temperature, and Tbase is a set base 
temperature. In this study, the base temperature was set to 10 ◦ C, and the starting date was the beginning of April, 
which marks the start of the growing season in Austria.

The rate of cumulative emergence of the WCR beetle can be described by a Gompertz function. The Gompertz 
function is a sigmoidal function which describes growth as being slowest at the beginning and the end of a given 
period and is defined as

where α is the upper asymptote, β is a relative starting value, γ is a growth rate coefficient which affects the slope, 
and zt are the cumulative growing degree days. In this study, one can consider the asymptote as proxy to the 
saturation level of WCR population growth. Lower values of β suggest an earlier first emergence in the season, 
while lower values of γ indicate a longer emergence period. To investigate whether there is an association between 
climate variables and the emergence dynamics, the Gompertz curve parameters were assumed to linearly depend 
on climate covariates. In this regression modelling framework, a spatially correlated residual structure can be 
added in either α , β , and/or γ if there is evidence to do so.

To reflect the nature of the emergence dynamics and to preserve the shape of the increasing Gompertz curve, 
the parameters of the model were restricted to positive values such that α > 0 , β > 0 , and γ > 0 . The time at 
inflection or period of highest growth can be obtained by solving Eq. (4) for the value of t at which the concavity 
of the function changes. The time at inflection is described as:

(1)yitk|µitk ,∼ Poisson(µitk)

(2)GDD =

∫

(T(t)− Tbase)dt.

(3)GDD = max

(

Tmax − Tmin

2
− Tbase , 0

)

.

(4)f (zt) = α exp(−β exp(−γ zt)).
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The Gompertz function describes cumulative emergence. Thus to describe the marginal emergence rate, the 
derivative of the Gompertz function can be used instead. Consequently, as the WCR trapping data consisted of 
weekly counts, the rate of emergence µitk is better described by the log of the derivative of the Gompertz function

The parameters αik , βik and γik are site and year specific such that:

 Here, τα , τβ , and τγ are the precision (inverse variance) parameters of the prior distributions for α , β and γ 
respectively. Moreover, the means of the distributions µαik , µβik , and µγik can be expressed as functions of known 
covariates:

 Here a0 is the intercept, w is a vector of the regression coefficients, and Xαik are the location and year specific 
covariates. The predictors used in the regression of µαik are the average winter temperature, the precipitation sum 
during winter, the year, the percentage of the agricultural area per Austrian municipality used for cultivating 
maize crops (maize), and the corresponding centred coordinates of the trap locations; x, y, and their functions x2 , 
y2 , and xy. The parameter g0 is the intercept for the regression of µγik , and u is the corresponding regression 
coefficient. The predictor used for µγik is the average yearly spring temperature.

The intercepts and regression coefficients ( w and u ) were given non-informative normal priors N(0, 0.01). 
The precision parameters τα , τβ and τγ were assigned prior distributions Gamma(0.01, 0.01).

The model was fitted using WinBUGS through the R2WinBUGS package in  R29–31. The model was run for 
20000 iterations, with a burn-in of 10000 iterations, and a thinning rate of five. Convergence was determined by 
visual assessments of trace plots and marginal posterior densities.

Results
The regression coefficients of the model parameters are tabulated in Table 1. The parameter α , which represents 
the proxy for the saturation level of WCR population growth was found to be positively correlated with the aver-
age winter temperature. During the study period a 1 ◦C increase in the average winter temperature was associated 

(5)T∗
z =

log(β)

γ

(6)log(µitk) = log(αik)+ log(γik)+ log(βik)+ γizitk − βik exp(−γ zitk).

(7)αik ∼ N(µαik , τα)

(8)γik ∼ N(µγik , τγ )

(9)βik ∼ N(µβik , τβ).

(10)µαik =a0 + w
TXαik ,

(11)µβik =b0,

(12)µγik =g0 + u
TXγik .

Table 1.  Regression coefficients of the model parameters.

Parameter Variable Post. mean (post. sd) 95% Cred. int

µα

Intercept 2.03 (0.257) (1.51, 2.51)

Winter temperature 0.143 (0.031) (0.008, 0.021)

Precipitation − 3.72× 10
−6 ( 3.42× 10

−6) (− 1.04× 10
−5 , 2.80× 10

−6)

Maize 0.00014 (0.00013) (− 0.00012, 0.000392)

Year 0.106 (0.002) (0.064, 0.143)

x 0.069 (0.078) (− 0.099, 0.217)

y 0.175 (0.132) (− 0.086, 0.043)

xy − 0.082 (0.105) (− 0.305, 1.250)

x2 0.058 (0.038) (− 0.016, 0.133)

y2 − 0.097 (0.203) (− 0.510, 0.314)

τα 0.149 (0.004) (0.141, 0.158)

µβ

Intercept 0.209 (0.026) (0.158, 0.257)

τβ 0.672 (0.024) (0.628, 0.722)

µγ

Intercept − 0.289 (0.014) (− 0.325, − 0.268)

Spring temp 0.0454 (0.0127) (0.020, 0.069)

τγ 2.890 (0.1060) (2.670, 3.090)
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with an average 15.38% increase. The coefficient for the year variable was also positively correlated with α , with 
average increase of 11% per year.

The growth rate coefficient γ which represents the emergence rate was found to be positively correlated with 
the average spring temperature. During the study period a 1 ◦ C rise was associated with an average increase of 
4% in the expected growth rate. Increased average spring temperature increases the growth rate coefficient which 
means that the asymptote is reached sooner.

The posterior mean estimate, and the corresponding 95% credible interval for the observed mean cumula-
tive count is depicted in Fig. 2. This figure shows that the 95% posterior predictive interval encapsulates the 

Figure 2.  The average observed cumulative weekly WCR count and their corresponding posterior mean 
estimate and the 95% credible interval. The x-axis shows the monitoring week on top, and the average 
cumulative GDD on the bottom.
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overall observed dynamics, and describes the data well as the posterior predictive mean estimates are similar to 
the average observed counts. The wide posterior predictive intervals illustrate the variability of the data itself.

Discussion
The objective of this study was to better understand the emergence dynamics of established populations of the 
WCR beetle in Austria. Furthermore, it was of interest to see how climate variables such as temperature and 
precipitation as well as the maize production intensity (i.e. the percentage of agricultural area per Austrian 
municipality used for cultivating maize crops) affected the observed emergence dynamics. The results of the 
study showed that the saturation level of WCR population growth was most affected by temperature, and aver-
age population sizes increased each year during the study period. The rate of WCR beetle emergence was found 
to be positively correlated with spring temperatures, which means that peak emergence is reached earlier in the 
season. For growers, this is problematic as it means their maize crops are subject to higher levels of predation 
from the WCR beetle at early growing stages (i.e. germination of maize plants), when being particularly suscep-
tible to damages from larval root  feeding32. Therefore, it may be beneficial to grow maize varieties that mature 
later. Alternatively, maize can be planted earlier in the season, so that the rootstock is well established to better 
withstand damage caused by the WCR beetle, i.e. larval root feeding.

Due to climate change, the average temperatures around the world have risen and are expected to continue, 
and with this come new challenges to  agriculture33. The saturation level of WCR population growth was found to 
be positively correlated with the average winter temperature. Therefore, the effect of warmer winters are twofold. 
Firstly, as a result of climate change there is likely to be an expansion of suitable habitats for WCR 34,35. Secondly, 
increased temperatures and increased areas of suitable habitats are likely to result in larger WCR beetle popula-
tions and more severe infestations in upcoming growing  seasons12.

Higher spring temperatures were also found to be associated with peak emergence occurring earlier in the 
growing season. This information is vital for insecticide spraying, as it is usually timed according to peak emer-
gence so that it is most effective in reducing population  size36,37. However, legal bans of chemical control agents 
in Austria (e.g. legal ban of insecticide treated seeds due to Implementing Regulation EU No (485/2013); 2013) 
limit the availability of pesticides and therefore farmer’s self-efficacy to control the WCR  beetle38. Therefore, 
more diversified crop rotations are deemed to be the most effective WCR control measure in the long term. The 
adoption of these strategies is beneficial to growers as they have the best hopes of reducing yield loss. Additionally 
results by Feusthuber et al.39 indicate that crop rotations are economically more efficient for WCR control com-
pared to insecticide applications, which is especially relevant at high crop yield loss levels from WCR  infestation39.

Overall, the Gompertz curve have proven to be suitable for modelling the emergence dynamics of the WCR 
beetle in Austria. However, some limitations were faced during model development. Firstly, and most impor-
tantly, the large number of missing data (i.e. blanks and zeroes) in the data set. Because a protocol for the data 
recording was not available, the blanks and zeroes were used interchangeably for missing observations and 
actual zero counts respectively. We came up with a reasonable re-coding scheme, but other choices are possible. 
Moreover, the choice of sampling locations did not follow any design. A better planned study may provide more 
insights into the phenomena. The analysis was based on the observed WCR beetle counts for traps with at least 
one non-zero count during the 2004–2015 monitoring period.

The work done in this project has given valuable and practical insights on the emergence and phenological 
dynamics of the WCR beetle. As a result, pest management strategies can be adapted so that population control 
measures can be timed accordingly with peak emergence. We envision future work to include a more effective 
sampling study design. As the data that was used incorporated traps with at least one catch, we can incorporate 
the emergence model into a hurdle model which will extend the work previously done by Falkner et al.12.

Data availability
The data that support the findings of this study are available from the Austrian Agency for Health and Food Safety 
but restrictions apply to the availability of these data, which were used under license for the current study, and 
so are not publicly available. The data are not publicly available due to them containing information that could 
compromise research participant privacy/consent.
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