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Designing a multilayer film 
via machine learning of scientific 
literature
Kenta Fukada* & Michiko Seyama

Scientists who design chemical substances often use materials informatics (MI), a data-driven 
approach with either computer simulation or artificial intelligence (AI). MI is a valuable technique, 
but applying it to layered structures is difficult. Most of the proposed computer-aided material search 
techniques use atomic or molecular simulations, which are limited to small areas. Some AI approaches 
have planned layered structures, but they require a physical theory or abundant experimental results. 
There is no universal design tool for multilayer films in MI. Here, we show a multilayer film can be 
designed through machine learning (ML) of experimental procedures extracted from chemical-coating 
articles. We converted material names according to International Union of Pure and Applied Chemistry 
rules and stored them in databases for each fabrication step without any physicochemical theory. 
Compared with experimental results which depend on authors, experimental protocol is superiority 
at almost unified and less data loss. Connecting scientific knowledge through ML enables us to predict 
untrained film structures. This suggests that AI imitates research activity, which is normally inspired 
by other scientific achievements and can thus be used as a general design technique.

A multilayer functional film is a layered structure formed by stacking materials and integrating multiple 
 functionalities1–4. This film resolves various issues simultaneously, but such a problem-solving technique requires 
innumerable experiments by trial and error. Recently, much attention has been paid to materials informatics (MI), 
which uses either computer simulation or a neural network (NNW). However, MI is difficult to apply to layered 
structures because computer simulation  methods5–9 are limited to a small calculation area at present. Moreover, 
 NNWs10–15 also have many obstacles in preparing training data for layered structures. For example, experimental 
 results16–20 or specific physical  simulations21–23 are useful for precisely predicting chemical structures, including 
those in layered  films20–23, but they require massive tests in a laboratory or by computer. Meanwhile, various 
information sources for machine learning (ML) have been studied, with the focus on material databases con-
taining chemical  reactions24–27, biological  inofrmaton28, and inorganic crystal  structures29,30, which have led to 
proposals for the retrosynthesis of organic molecules or property-fulfilling inorganic compounds. Another recent 
approach is to utilize published scientific  literature31–36, which is full of human knowledge. Compared with other 
data sources, diverse information can easily be gathered with natural language processing  tools36,37. Scientific 
knowledge is perpetuated through a series of human research activities, and past literature provides a roadmap to 
future  discoveries38. Academic achievements are promising sources of information for  MI39; however, our survey 
of databases related to layered structures found that they are lacking in comprehensiveness. Moreover, multiple 
functionalities are implemented by taking into account trade-offs in some properties, not by solely relying on 
theory, and previous approaches have difficulty meeting such a complex  target40–42.

Here, we propose designing multilayer functional films by ML of scientific literature [see Supplementary 
Information, Section S1 for concept image]. This method uses function-fulfilling substances to estimate the 
material of each layer in order starting from the substrate. Compared with inference of the whole layered struc-
ture at once, it is superior in terms of tolerance to changes in layer number or the order of stacked materials. To 
estimate multilayer structures from the substrate to the intermediate layer and outermost layer, we developed 
an inference engine in which multiple NNWs are connected to each other, which we refer to as ‘cascade neural 
networks’ (CNNWs). We selected NNWs over other technologies, such as support vector machines, for their ease 
of implementation and high extensibility (see section S2). Moreover, material names were converted with material 
descriptors characterized by one-hot encoding with International Union of Pure and Applied Chemistry (IUPAC) 
rules for utilizing functional groups to reflect the bonding force at the interface. This is the first attempt to develop 
a tool that supports materials researchers and engineers in designing layered films with multi-functionality. To 
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verify this concept, we predicted untrained films selected from published papers, which facilitated the assessment 
of inference performance, and designed an original functional film through the system as a demonstration. Our 
approach using scientific literature is a pioneering method of material design for multilayer films.

Results and discussion
Data preparation and system overview. We collected 300 film structures from academic articles (see 
Methods and Section S3 for reuse permission) and designed multilayer functional films by ML. The entire train-
ing and inference process is outlined in Fig. 1. Most of the research articles contained an experimental section 
and presented new functions, and here we considered the experimental process as input data and functions as 
output data. These data were extracted by hand and then stored in a database. To clarify the characteristics of 
each material, we used material descriptors with functional groups (see Fig. S2 and S3 for details). After these 
relationships had been learned with AI, the relationships between input and output data were used reversely 
through an inference process. In other words, an experimental procedure for multilayer film was proposed by 
inputting an arbitrary function. The datasets and NNW structures used in this study are summarized in Fig. 1d.

Training of multilayer functional film structures. We prepared training data using the following pro-
cedures: First, layered structures (= 300) and functionalities (= 26) were stored in the Film_DB by hand (see 
Fig. 2, Table S1 and S3). Each fabrication step in the scientific articles was separated according to terms related 
to coating such as ‘dipped’, ‘sprayed’, and ‘deposited’. Then, related materials in each sentence were stored. The 
second procedure was to convert material names with material descriptors in the Material_DB (see Table S2 and 
S4). Each substance was unified with IUPAC naming rules and then characterized with material descriptors to 
add feature values by one-hot encoding (nominal scale), which was done to determine whether part of the mate-
rial name matched the classification by the descriptor. The last procedure was to generate training data derived 
from the combination of two materials in the film. For example, a three-layer film (Layer 1, A, B; Layer 2, C, D; 
Layer 3, E) was separated into A–B, A–C, A–D, B–A, B–C, B–D, C–D, C–E, D–C, D–E as coatable (true) and 
A–E, B–E, C–A, C–B, D–A, D–B, E–A, E–B, E–C, E–D as uncoatable (false) (see Methods and Fig. S4). Then, 
the NNW learned the film-forming properties between two randomly selected substances. After classifying 297 
structures for training and three untrained structures as test samples for hold-out validation (see section S5), it 
learned the material pairs in 5,422 data derived from 297 structures. We monitored its accuracy, namely whether 
the AI output fitted the training data, as total training data increased (Fig. 2c). Here, we compared four types 
of material descriptors (see Methods for details). Type 1 was the simplest; however, it was difficult to train fine 
relationships due to its low number of feature values. Others had higher accuracy because they had more feature 
values. Every material relationship was surveyed through AI (see Fig. S5). Originally, 47.5% of material pairs 
from 5422 training data had film-forming properties. A higher percentage from the border value meant that AI 
tended to output false positives; a lower percentage meant it tended to output false negatives. Among the four 
types of material descriptors, type 3 and 4 showed relatively fast convergence and were considered suitable for 
learning, whereas others showed turbulence and unstable results.

Inference of multilayer functional film structures. To estimate multilayer functional film by ML, 
we propose CNNWs, a cascade connection of multiple NNWs (see Fig. 3, S6 and S7). Here, we use the same 

Figure. 1.  Machine learning method for multilayer functional films. (a) Starting from substrate, CNNWs 
estimate upper layer’s material on down layer, and this procedure is repeated until the end of outermost surface. 
(b) Strongly connect scientific knowledge such as antifouling films with different specialties. (c) Whole system 
for learning and inference. d, Summary of training datasets and NNW structures.
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trained NNW in CNNWs. Prediction procedures were designed as follows: First, ‘User data’ containing the user-
defined substrate and functions and ‘Candidate data’ with material names extracted from “Film_DB” fulfilling 
above functions were prepared. Then, material names converted by a material descriptor with Material_DB were 
entered into CNNWs. Starting from the substrate, the material of each layer was predicted, and this procedure 
was repeated until the outermost surface. Finally, CNNWs proposed a layered structure with user-defined func-
tions.

Figure 2.  Data collection and learning by different material descriptors. (a) Data extraction process for layered 
structure and functionalities. (b) Process for learning film formation property through training data. (c) 
Accuracy of judgment results with four different material descriptors with increasing total training data.

Figure 3.  Prediction of multilayer functional films with CNNWs. Connected NNWs plan multilayer film 
structures from substrate to each layer in order. Through these processes, upper materials (latter process) on 
lower ones (former process) were gathered as stacked-layer information.
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To verify the concept of multilayer film design by AI, we first assessed the film stacking property at each 
interface. The trained NNW judged the film-forming property of each untrained layer (see Table S5). Every 
prediction result should be true because all test data were from published articles, except for material pairs 
marked with asterisk (*), which means that they were not in untrained films. However, the prediction for those 
materials is also expected to be true, because there is a hydrophobic-hydrophobic interaction. Material pairs 
labeled with two asterisks (**) mean that these were not contained in training data. The type 4 material descriptor, 
which used the multiple features, showed the highest accuracy for predicting untrained data. Other descriptors 
gave relatively low accuracy, so type 4 was considered to be suitable for inference. Therefore, ML was performed 
with this descriptor in subsequent statements. Moreover, there seemed to be an appropriate number of train-
ings (Table S5), and we summarize the relationship between number of trainings and estimation performance 
in Fig. 4. From the above results, less training data led to misjudgment, and too much training data also caused 
deterioration, namely it led to a lack of flexibility due to over-fitting. In particular, type 4 with 7.5 or 10.0 million 
total training data (over 5000 training data were used for learning many times, allowed duplication) showed the 
highest estimation performance, including for material pairs labeled with * or **. This is because we considered 
that related materials were also able to be proposed by using functional groups as material descriptors. For 
example, material pair No. 109/No. 37 or No. 42 was expected to have a hydrophobic-hydrophobic interaction 
through “fluoro”. No. 390/No. 224 material pair had Coulomb force between negative charge from “carboxy” 
and positive charge from “amino”. This kind of pair might be contained in training data. Another pair, No. 124/
No. 125, had a similar relation in trained data through “specific polymer - silver” such as No. 124/No. 19 (silver/
trifluoroacetate) in Article No. 146.

We considered that the reason for the highly accurate judgment in type 4 was the utilization of the article’s 
relationship (see Fig. S8 and S9). Untrained articles as test samples had potential to be predicted by training 
data through ML. We considered that combining various designs has potential to lead to new designs. Finally, 
we predicted the whole structures of three untrained films through CNNWs. Figure 5 shows matching ratio 
between results from AI output and untrained film structures. By using candidate data extracted from training 
data with limited functionalities defined by the user, enhanced film estimation performance was observed. In 
the case of type 4, training data’s material (= 425) was reduced to candidate data (= 227). CNNWs proposed for 
instance, Cellulose—trichlorovinylsilane—perfluorodecanethiol—toluene—perfluoroalkylether in the test of 
article No. 46. This structure was almost the same with untrained test data. We also demonstrated the design of 
an original functional film based on this concept (see section S6). This method is a unique estimation approach 

Figure 4.  Optimization of training number. Analyzation accuracy for untrained films with type 4. Prediction 
accuracy was calculated through count of the true number divided by total interface (= 14 in Table S5). When 
prediction accuracy decreased at 12.5 million, over learning was observed.

Figure 5.  Estimation results with CNNWs. Prediction results for untrained article. (a) No. 46, (b) No. 180, 
(c) No. 39. Insoluble means AI was unable to propose function-fulfilling structures. Others showed function-
fulfilling structures with different matching ratios between AI output and the untrained film’s structure.
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for multilayer structures, and it is available for various complicated structures with multiple material interfaces 
or fabrication steps, which data-driven approaches now have difficulty estimating. Thus, this technology offers 
a new way for designing multilayer structures in materials science.

Methods
Data collection from academic articles and labeling. We gathered articles on multilayered films 
especially with antifouling property, because it was surface modification technology having tendency to col-
laborate with some functions and widely used in daily-life products (see Fig. 1b and Section S4). By selecting 
‘hydrophobic’ or ‘hydrophilic’ as main keywords, we manually collected about 200 papers containing 300 film 
structures. We surveyed their film fabrication process (the details are shown in Fig. 2a and b) and stored film 
structures and functions in a database named Film_DB. Substances for coating were converted with IUPAC 
rules through PubChem (https:// pubch em. ncbi. nlm. nih. gov/). Each name was characterized with four types 
of material descriptors newly defined as follows: using each material names as is (type 1); IUPAC names clas-
sified through functional groups with hypernym, a higher level concept, such as alkyl group (type 2) and with 
hyponym, a lower level concept, such as methyl group (type 3); or with both higher and lower level concepts 
(type 4) as shown in Fig. S2 and S3. Materials with characterized information were stored in a database named 
Material_DB. Finally, films were classified for 297 training and three untrained structures to assess the estima-
tion property by the hold-out validation method.

Training material stacking property between two substances by NNW. From 297 training struc-
tures, we made 5422 training data related to the stacking properties of material pairs (see Fig. S4). Briefly, mate-
rials of adjacent layers limited to those in ascending order and materials in the same layer were defined as True. 
On the other hand, materials with descending order or materials of distant layer were set to False, because they 
had no track record of film stacking. If the same pair had different film-forming properties, priority was assigned 
to “True”. Through this process, 5,422 material pairs were formed. Their relationships (whether upper layer’s 
material can be coated on a lower layer’s material or not) were learned by the NNW on ML software Tensorflow 
(https:// www. tenso rflow. org/). The NNW was organized as follows: The input layer was double the amount of all 
material descriptors. The middle layer and output layer were fixed to 500 and 2, respectively (see Fig. 1d). From 
training data, 100 randomly selected data were used for learning and then the accuracy was checked by another 
one hundred data. By repeating this process, the layer-forming property was learned.

Estimation of multilayer functional film structures by CNNWs. We used untrained films for hold-
out validation. After the above training, we extracted candidate data from training data that had potential to 
achieve an untrained film’s functions. Starting from a substrate, the upper layer’s material was estimated by 
inputting data composed with two materials (upper and lower layer’s material) into the NNW, and this proce-
dure was repeated until the end of outermost surface. Finally, the film was judged as to whether the materials 
met all functions of untrained film.

Conclusion
We proposed designing multilayer functional films by ML of chemical-coating articles. The technology features 
CNNWs that connect multiple NNWs. For data preparation, 300 film structures were collected from 200 papers, 
and constituent substances were converted with IUPAC naming rules and then characterized with four types of 
material descriptors. By comparing descriptors, classification through functional groups (type 4) with training 
performed 7.5 or 10.0 million times was found to be suitable for learning (Fig. 2c) and inference of the relation-
ship between the two materials (Table S5 and Fig. 4). Then, we showed the prediction results of untrained film 
structures by CNNWs of type 4. Moreover, enhanced film estimation performance was observed by squeezing 
candidate data (Fig. 5). This technology represents a new way to design complex structures related to daily-life 
products by connecting scientific literature.

Received: 25 March 2021; Accepted: 4 January 2022

References
 1. Manabe, K. et al. Controllable broadband optical transparency and wettability switching of temperature-activated solid/liquid-

infused nanofibrous membranes. ACS Nano 10, 9387–9396 (2016).
 2. Jing, X. & Guo, Z. Fabrication of biocompatible super stable lubricant-immobilized slippery surfaces by grafting a polydimethyl-

siloxane brush: Excellent boiling water resistance, hot liquid repellency and long-term slippery stability. Nanoscale 11, 8870–8881 
(2019).

 3. Xu, L. & He, J. Antifogging and antireflection coatings fabricated by integrating solid and mesoporous silica nanoparticles without 
any post-treatments. ACS Appl. Mater. Interfaces 4, 3293–3299 (2012).

 4. Fukada, K., Kawamura, N. & Shiratori, S. Trace material capture by controlled liquid droplets on a superhydrophobic/hydrophilic 
surface. Anal. Chem. 89(10391–10396), 2 (2017).

 5. Gautier, R. et al. Prediction and accelerated laboratory discovery of previously unknown 18-electron ABX compounds. Nat. Chem. 
7, 308–316 (2015).

 6. Pan, D. & Galli, G. A first principles method to determine speciation of carbonates in supercritical water. Nat. Commun. 11, 1–6 
(2020).

 7. Aspuru-Guzik, A., Dutoi, A. D., Love, P. J. & Head-Gordon, M. Chemistry: Simulated quantum computation of molecular energies. 
Science 309, 1704–1707 (2005).

https://pubchem.ncbi.nlm.nih.gov/
https://www.tensorflow.org/


6

Vol:.(1234567890)

Scientific Reports |          (2022) 12:930  | https://doi.org/10.1038/s41598-022-05010-7

www.nature.com/scientificreports/

 8. Raj, S., Sasidharan, S., Dubey, V. K. & Saudagar, P. Identification of lead molecules against potential drug target protein MAPK4 
from L. donovani: An in-silico approach using docking, molecular dynamics and binding free energy calculation. PLoS ONE 14, 
e0221331 (2019).

 9. Gapsys, V. et al. Large scale relative protein ligand binding affinities using non-equilibrium alchemy. Chem. Sci. 11, 1140–1152 
(2020).

 10. Butler, K. T., Davies, D. W., Cartwright, H., Isayev, O. & Walsh, A. Machine learning for molecular and materials science. Nature 
559, 547–555 (2018).

 11. Zahrt, A. F. et al. Prediction of higher-selectivity catalysts by computer-driven workflow and machine learning. Science. 363, 
eaau5631 (2019).

 12. Roszak, R., Beker, W., Molga, K. & Grzybowski, B. A. Rapid and accurate prediction of pKa values of C–H acids using graph 
convolutional neural networks. J. Am. Chem. Soc. 141, 17142–17149 (2019).

 13. Cheng, L., Kovachki, N. B., Welborn, M. & Miller, T. F. Regression clustering for improved accuracy and training costs with 
molecular-orbital-based machine learning. J. Chem. Theory Comput. 15, 6668–6677 (2019).

 14. Turcani, L., Greenaway, R. L. & Jelfs, K. E. Machine learning for organic cage property prediction. Chem. Mater. 31, 714–727 (2019).
 15. Mannodi-Kanakkithodi, A., Pilania, G., Huan, T. D., Lookman, T. & Ramprasad, R. Machine learning strategy for accelerated 

design of polymer dielectrics. Sci. Rep. 6, 20952 (2016).
 16. Liu, Z., Zhu, D., Rodrigues, S. P., Lee, K. T. & Cai, W. Generative model for the inverse design of metasurfaces. Nano Lett. 18, 

6570–6576 (2018).
 17. Trejo, O. et al. Elucidating the evolving atomic structure in atomic layer deposition reactions with in situ XANES and machine 

learning. Chem. Mater. 31, 8937–8947 (2019).
 18. Lussier, F., Missirlis, D., Spatz, J. P. & Masson, J. F. Machine-learning-driven surface-enhanced Raman scattering optophysiology 

reveals multiplexed metabolite gradients near cells. ACS Nano 13, 1403–1411 (2019).
 19. Li, J., Tu, Y., Liu, R., Lu, Y. & Zhu, X. Toward, “On-Demand” materials synthesis and scientific discovery through intelligent robots. 

Adv. Sci. 7, 1901957 (2020).
 20. Qu, Y., Jing, L., Shen, Y., Qiu, M. & Soljačić, M. Migrating knowledge between physical scenarios based on artificial neural networks. 

ACS Photonics 6, 1168–1174 (2019).
 21. Ju, S. et al. Designing nanostructures for phonon transport via Bayesian optimization. Phys. Rev. X. 7, 021024 (2017).
 22. Sakurai, A. et al. Ultranarrow-band wavelength-selective thermal emission with aperiodic multilayered metamaterials designed 

by Bayesian optimization. ACS Cent. Sci. 5, 319–326 (2019).
 23. Yamawaki, M., Ohnishi, M., Ju, S. & Shiomi, J. Multifunctional structural design of graphene thermoelectrics by Bayesian opti-

mization. Sci. Adv. 4, eaar4192 (2018).
 24. Segler, M. H. S., Preuss, M. & Waller, M. P. Planning chemical syntheses with deep neural networks and symbolic AI. Nature 555, 

604–610 (2018).
 25. Kang, P. L., Shang, C. & Liu, Z. P. Glucose to 5-hydroxymethylfurfural: Origin of site-selectivity resolved by machine learning 

based reaction sampling. J. Am. Chem. Soc. 141, 20525–20536 (2019).
 26. Molga, K., Dittwald, P. & Grzybowski, B. A. Computational design of syntheses leading to compound libraries or isotopically 

labelled targets. Chem. Sci. 10, 9219–9232 (2019).
 27. Klucznik, T. et al. Efficient syntheses of diverse, medicinally relevant targets planned by computer and executed in the laboratory. 

Chem. 4, 522–532 (2018).
 28. Koch, M., Duigou, T. & Faulon, J. L. Reinforcement learning for bioretrosynthesis. ACS Synth. Biol. 9, 157–168 (2020).
 29. Isayev, O. et al. Universal fragment descriptors for predicting properties of inorganic crystals. Nat. Commun. 8, 1–12 (2017).
 30. Hayashi, H., Hayashi, K., Kouzai, K., Seko, A. & Tanaka, I. Recommender system of successful processing conditions for new 

compounds based on a parallel experimental data set. Chem. Mater. 31, 9984–9992 (2019).
 31. Eltyeb, S. & Salim, N. Chemical named entities recognition: A review on approaches and applications. J. Cheminformatics. 6, 17 

(2014).
 32. Kim, E. et al. Materials synthesis insights from scientific literature via text extraction and machine learning. Chem. Mater. 29, 

9436–9444 (2017).
 33. Jensen, Z. et al. A machine learning approach to zeolite synthesis enabled by automatic literature data extraction. ACS Cent. Sci. 

5, 892 (2019).
 34. Kononova, O. et al. Text-mined dataset of inorganic materials synthesis recipes. Sci. data. 6, 203 (2019).
 35. Müller, H. M., Kenny, E. E. & Sternberg, P. W. Textpresso: An ontology-based information retrieval and extraction system for 

biological literature. PLoS Biol. 2, e309 (2004).
 36. Krallinger, M., Rabal, O., Lourenço, A., Oyarzabal, J. & Valencia, A. Information retrieval and text mining technologies for chem-

istry. Chem. Rev. 117, 7673–7761 (2017).
 37. Swain, M. C. & Cole, J. M. ChemDataExtractor: A toolkit for automated extraction of chemical information from the scientific 

literature. J. Chem. Inf. Model. 56, 1894–1904 (2016).
 38. Tshitoyan, V. et al. Unsupervised word embeddings capture latent knowledge from materials science literature. Nature 571, 95–98 

(2019).
 39. Hatakeyama, S. K. & Oyaizu, K. Integrating multiple materials science projects in a single neural network. Commun. Mater. 1, 49 

(2020).
 40. Miyao, T., Kaneko, H. & Funatsu, K. Inverse QSPR/QSAR analysis for chemical structure generation (from y to x). J. Chem. Inf. 

Model. 56, 286–299 (2016).
 41. Tagade, P. M. et al. Attribute driven inverse materials design using deep learning Bayesian framework. NPJ Comput. Mater. 5, 1–14 

(2019).
 42. Onishi, T., Kadohira, T. & Watanabe, I. Relation extraction with weakly supervised learning based on process-structure-property-

performance reciprocity. Sci. Technol. Adv. Mater. 19, 649–659 (2018).

Acknowledgements
K.F. and M.S. thank S. Aoshima for data preparation.

Author contributions
K.F. designed the study and M.S. supervised the work.

Competing interests 
The authors declare no competing interests.



7

Vol.:(0123456789)

Scientific Reports |          (2022) 12:930  | https://doi.org/10.1038/s41598-022-05010-7

www.nature.com/scientificreports/

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 022- 05010-7.

Correspondence and requests for materials should be addressed to K.F.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2022

https://doi.org/10.1038/s41598-022-05010-7
https://doi.org/10.1038/s41598-022-05010-7
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Designing a multilayer film via machine learning of scientific literature
	Results and discussion
	Data preparation and system overview. 
	Training of multilayer functional film structures. 
	Inference of multilayer functional film structures. 

	Methods
	Data collection from academic articles and labeling. 
	Training material stacking property between two substances by NNW. 
	Estimation of multilayer functional film structures by CNNWs. 

	Conclusion
	References
	Acknowledgements


