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Comparative assessment and novel 
strategy on methods for imputing 
proteomics data
Minjie Shen1,5, Yi‑Tan Chang1,5, Chiung‑Ting Wu1,5, Sarah J. Parker2, Georgia Saylor3, 
Yizhi Wang1, Guoqiang Yu1, Jennifer E. Van Eyk2, Robert Clarke4, David M. Herrington3 & 
Yue Wang1*

Missing values are a major issue in quantitative proteomics analysis. While many methods have 
been developed for imputing missing values in high-throughput proteomics data, a comparative 
assessment of imputation accuracy remains inconclusive, mainly because mechanisms contributing 
to true missing values are complex and existing evaluation methodologies are imperfect. Moreover, 
few studies have provided an outlook of future methodological development. We first re-evaluate 
the performance of eight representative methods targeting three typical missing mechanisms. 
These methods are compared on both simulated and masked missing values embedded within 
real proteomics datasets, and performance is evaluated using three quantitative measures. We 
then introduce fused regularization matrix factorization, a low-rank global matrix factorization 
framework, capable of integrating local similarity derived from additional data types. We also explore 
a biologically-inspired latent variable modeling strategy—convex analysis of mixtures—for missing 
value imputation and present preliminary experimental results. While some winners emerged from our 
comparative assessment, the evaluation is intrinsically imperfect because performance is evaluated 
indirectly on artificial missing or masked values not authentic missing values. Nevertheless, we show 
that our fused regularization matrix factorization provides a novel incorporation of external and 
local information, and the exploratory implementation of convex analysis of mixtures presents a 
biologically plausible new approach.

Liquid chromatography coupled to mass spectrometry (LC–MS) is a popular method for high-throughput iden-
tification and quantification of thousands of proteins in a single analysis1,2. The LC–MS signals can be displayed 
in a three-dimensional space consisting of the mass-to-charge ratios, retention times and intensities for the 
observed peptides. However, this approach suffers from many missing values at the peptide or protein level, 
which significantly reduces the amount of quantifiable proteins with an average of 44% missing values from 
traditional LC–MS workflows3–5.

While there are multiple causes for this missingness, three typical missing mechanisms are widely acknowl-
edged. Low abundant proteins may be missing because their concentration is below the lower limit of detection 
(LLOD); while poorly ionizing peptides or problems in technical pre-processing may cause proteins to be miss-
ing not at random (MNAR)6. However, missingness may also extend to mid- and even high-range intensities5, 
statistically categorized into missing at random (MAR) and missing completely at random (MCAR)7. MAR is 
actually missing conditionally at random given the observed data distribution or underlying parametric covari-
ates. MCAR depends on neither observed nor missing data, thus the incomplete data are representative of the 
entire dataset. While MAR allows prediction of the missing values based on observed data, unfortunately, the 
MAR and MNAR conditions cannot be distinguished based on the observed data because by definition missing 
values are unknown8,9. More importantly, missing values in reality can originate from a mix of both known and 
unknown missing mechanisms7,10.

A common solution for missingness is to impute the missing values based on assumed missing mechanisms. 
However, this approach can introduce a profound change in the distribution of protein-level intensities because 
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most methods are only designed for a single missing mechanism. These changes can have unpredictable effects 
on downstream differential analyses. While many imputation methods have been adopted for imputing missing 
values in proteomics data, comparative evaluation of their relative performance remains inconclusive. Moreover, 
few studies provide an outlook on how best to address unresolved problems or future development directions4,9,10.

To better understand the strengths and limitations of both imputation methods and assessment designs, we 
conduct a collective assessment of eight representative methods involving three typical missing value mechanisms 
in conjunction with authentic missing values. Compared using a set of realistic (preserving data distribution) 
simulations derived from real proteomics data sets, the performance of the selected methods is measured by three 
criteria11, root-mean-square error (RMSE), normalized root-mean-square error (NRMSE), and sum of ranks 
(SOR). Several important observations are evident from this comparison study. First, while imputation methods 
perform differentially under various missing mechanisms, algorithmic parameter settings, and preprocessing 
procedures, some methods consistently perform better than others across a range of realistic simulation studies. 
Second, the quality of performance assessment depends on the efficacy of simulation designs; a more realistic 
simulation design should include authentic missing values and preserve the original overall data distribution. 
Third, existing assessment methodologies are imperfect in that performance is indirectly assessed on imputing 
either artificial or masked, but not authentic missing values (see Discussion section).

To explore a more integrative strategy for improving imputation performance, we discuss a low-rank matrix 
factorization framework with fused regularization on both sparsity and similarity—Fused Regularization Matrix 
factorization (FRMF)12–14, which can naturally integrate other-omics data such as gene expression or clinical 
variables. We also introduce a biologically-inspired latent variable modeling strategy—Convex Analysis of Mix-
tures (CAM)14,15, which explicitly formulates a data matrix as mixtures of underlying biological archetypes and 
performs missing value imputation on original intensity data (before log-transformation). Preliminary results 
on real proteomics data are provided together with an outlook into future development directions.

Results
Experimental design and protocol.  We selected eight representative methods for comparative assess-
ment, based on their intended missing mechanism(s) and imputation principles (summarized in Fig. 1). One 
method (Min/2) is devoted to MNAR (LLOD)7, two methods (swKNN and pwKNN) are tailored to MAR (local-
similarity)16, and five methods (Mean, PPCA, NIPALS, SVD, and SVT) are intended for MCAR/MAR (global-
structure or low-rank matrix factorization)7,10,17–19. We then explored and tested several variants of FRMF and 
CAM, where local similarity information is obtained from baseline or other data acquired from the same sam-
ples.

We conducted the comparative assessments in two complementary simulation settings. In simulation set-
ting 1, the simulation data were generated from the observed data portion (no authentic missing value) of a real 
proteomics dataset, where artificial missing values were introduced by two typical missing mechanisms and used 
for performance assessment. In simulation setting 2, the simulation data were generated from the complete data 
matrix (including authentic missing values) of a real proteomics dataset, where a small percentage of data points 
were randomly set-aside (masked values) and used solely for performance assessment. Preprocessing eliminates 
proteins with missing rates higher than 80% and then performs log2 transformation5. Parameters were optimized 
for each imputation method by parameter sweeping over a wide range of settings at each missing rate. The overall 
experimental workflow is given in Fig. 2.

Real proteomics data.  Real LC–MS proteomics data form the base from which the simulation data sets 
were produced6. Data were acquired using label-free data-independent acquisition (DIA) protocol, and pro-
tein level output was generated by mapDIA20. The resulting dataset contains 200 samples associated with 2682 
proteins measured in human left anterior descending (LAD) coronary arteries collected as part of a study of 
coronary and aortic atherosclerosis21. Data were produced in three separate batches, indexed as A, B, and C; and 
all data passed the quality control and preprocessing procedures6,21, as summarized in Table 1 (Supplementary 
Information). To avoid unknown and unnecessary batch effects, all simulation datasets were generated from 
batch A dataset that has the largest sample size (n = 98). For the simulations on other batches, please see the 
Supplementary Information.

Figure 1.   Comparative assessment of eight representative missing value imputation methods, divided into three 
categories.
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Simulation data generated from the observed portion of the data matrix (Setting 1).  Based 
on the observed portion of data matrix (without authentic missing values), we adopted a hybrid missing data 
model and used the R package imputeLCMD to introduce artificial missing values while preserving the original 
observed data patterns22. Specifically, MCAR missing values were introduced by randomly replacing some data 
points with ‘NA’ (not available) according to the designed missing rates (approximately from 1 to 50%); MNAR 
missing values were introduced by quantile cut-off for the full dataset7,10,23; and mixed MCAR and MNAR miss-
ing values were introduced by assigning (1− β) portion of MCAR and β portion of MNAR; corresponding to 
missing rate α and β = 0, 0.1, 1 (Supplementary Information).

Simulation data with set‑aside masked values from the full data matrix (Setting 2).  In this 
simulation setting, we used the full data matrix (including both observed and authentic missing values) from the 
human coronary proteomics dataset. To preserve the original patterns of both observed and authentic missing 
values, for each protein, a small percentage of data points in the complete data matrix were randomly set-aside 
as ‘NA’ (masked values) with the masking rate(s) proportional to the authentic missing rate(s). This procedure 
was repeated for all proteins and the masked values were considered as a mix of MNAR and MAR conditioned 
on the observed missing rates and data patterns. The resulting total missing rates (authentic and masked) versus 
mean expressions are shown in Figure S5, preserving well the overall patterns of the original full data matrix 
(Supplementary Information).

Performance assessment focused on MNAR (Setting 1).  As shown in Fig. 3a, under an MNAR miss-
ing mechanism assumption, SVT and Min/2 yielded the best performance, and the relative performance of SVT 
and Min/2 depends on the missing rates and criterion used for evaluation. It is important to reiterate that in real-
ity the MAR and MNAR conditions cannot be distinguished based on the observed data because by definition 
missing values are unknown8,9. As expected, the MNAR-devoted method, Min/2, performs much better than the 
others. The baseline method Mean performs worst among all methods (see additional results in Supplementary 
Information). Note that SOR increases expectedly when the missing rate increases because SOR is positively 
associated with the number of missing proteins, therefore the value of SOR may not imply the absolute per-
formance of a method. Additional experimental results are given in Figure S2 and Figure S6a (multiple trials).

Performance assessment focused on MCAR (Setting 1).  Imputation performance of the eight meth-
ods on the MCAR mechanism is summarized in Fig. 3b. Experimental results show that NIPALS performs better 
than all other methods and for almost all three evaluation criteria. SVT is the best method when RMSE is used. 
Min/2 performs the worst among all other methods in all cases, likely due to its design for the MNAR mecha-
nism. Mean performs consistently poorly over different missing rates, with only except for Min/2 showing a 
worse performance. While all methods perform worse when the total missing rate increases, the ranking of their 

Figure 2.   Two-phased workflow of realistic simulation-based assessment on missing value imputation 
methods.

Table 1.   Summary of real proteomics datasets used in this work (DIA-MS).

Sample size Protein size
Total Missing Rate
#MV/(#Sample*#Protein)

Setting #1 protein size
(non-missing proteins)

Setting #2 protein size
(proteins with ≤ 80% missing rate)

Batch A 98 2107 24.67% 751 (35.64%) 1935 (91.84%)

Batch B 55 2604 29.63% 819 (31.45%) 2324 (89.25%)

Batch C 47 2590 25.52% 976 (37.68%) 2325 (89.77%)
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relative performances remains unchanged (see additional results in Supplementary Information). Additional 
experimental results are given in Figure S1, Figure S3, and Figure S6b (multiple trials).

Performance assessment focused on authentic missing values (Setting 2).  As shown in Fig. 3c, 
NIPALS, SVT, and protein-wise or sample-wise KNN achieve the best performance, where authentic missing 
values are dominant and where imputation accuracy is evaluated on the masked values. This observation is 
consistent with what has been reported previously5,6,11. As expected, the MNAR-devoted method Min/2 has 
the worst performance. Similar to the case of MCAR, low-rank methods and local-similarity methods perform 
worse when the total missing rate increases, and among these methods, SVD and PPCA perform worse than the 
baseline method Mean when the total missing rate is large. Note that because low abundant proteins often have 
higher authentic missing rates and accordingly higher masking rates, more low abundant proteins (possibly the 
minimum values) are masked than highly expressed proteins. Thus, the counterintuitive decrease in NRMSE by 
Min/2 is expected when the authentic missing rate increases. Additional experimental results are given in Figure 
S4 and Figure S6c (multiple trials).

The relative imputation performance among these representative existing methods is summarized in Table 2, 
assessed by three performance measures and over three data batches. 

Evaluation of the FRMF method focused on authentic missing values (Setting 2).  In this study 
we aimed to experimentally test whether the FRMF method that integrates local similarity derived from within 
and/or external data could improve imputation accuracy as compared with global low-rank SVD, an existing 
approach based on a similar principle. We evaluated three variants of the FRMF method. RMF serves as a base-
line sparsity regularized matrix factorization algorithm13; FRMF_self introduces a fused-regularization utilizing 
the similarity among samples embedded within the data matrix; and FRMF_cross_patho exploits external path-

Figure 3.   (a) Imputation performance of the eight methods on the simulation data of setting #1, with assumed 
MNAR missing mechanism and varying total missing rates. (b) Imputation performance of the eight methods 
on the simulation data of setting #1, with assumed MCAR missing mechanism and varying total missing rates. 
(c) Imputation performance of the eight methods on the simulation data of setting #2, focusing on authentic 
missing mechanism and varying masked rates.

Table 2.   Summary of the relative performance among the imputation methods being evaluated.

Overall summary (Batch A, Batch B, Batch C)

Mechanisms

Best Worst

Criteria

NRMSE RMSE SOR NRMSE RMSE SOR

Setting #1

MCAR​
NIPALS
SVT
KNN PW

SVT
NIPALS
KNN PW

NIPALS HalfMin HalfMin HalfMin

MIX
(90% MCAR + 10%MNAR)

SVT
NIPALS
KNN PW

SVT
NIPALS
KNN PW

SVT
NIPALS
KNN PW

HalfMin HalfMin HalfMin

MNAR SVT
HalfMin HalfMin SVT

HalfMin Mean Mean Mean

Setting #2

MAR + MNAR
SVT
KNN SW
NIPALS

SVT
NIPALS
SVT
KNN SW

HalfMin HalfMin HalfMin
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ological scores using a fused-regularization strategy where the pathological scores are the qualitative percentages 
of the intimal surface involvement of various atherosclerotic changes graded by pathologists6.

The experimental results are shown in Fig. 4a. While RMF performs comparably with SVD and starts to 
perform better when missing rates are larger than 25%, both FRMF_self and FRMF_cross_patho performs sig-
nificantly better than RMF. This preliminary result implies a potential benefit for combining global low-rank and 
local-similarly regularizations, and also for leveraging external information via fused regularization. Additional 
experimental results on multiple trials are given in Figure S7a.

Evaluation of the CAM method focused on authentic missing values (Setting 2).  In this study 
we aimed to experimentally test whether the CAM method that exploits biologically interpretable latent vari-
able models in the matrix factorization could improve imputation accuracy as compared with the top existing 
approaches that use a similar principle (i.e. SVT; NIPALS). Accordingly, based on biologically-inspired latent 
variable modeling of complex tissues14,15, we proposed and evaluated three variants of a CAM based imputation 
strategy. CAM_complete performs CAM based imputation using the non-missing portion of full data matrix; 
CAM_SVT and CAM_NIPALS perform CAM based imputation using full data matrix where the input data 
matrix is initialized by either SVT or NIPALS, respectively.

The experimental results are shown in Fig. 4b and Figure S9a. As expected, CAM_complete performs much 
better than the baseline method Mean. More importantly, both CAM_NIPALS and CAM_SVT consistently 
performs better than NIPALS and SVT—the two top performers from our earlier comparative assessment. This 
preliminary result shows that biologically-plausible latent variable modeling may potentially improve imputation 
accuracy within the framework of low-rank optimization. Additional experimental results on multiple trials are 
given in Figure S7b.

Discussion
The ability to simulate the missing mechanisms (MNAR, MAR, or MCAR) depends on the efficacy of the tools 
applied. However, because simulation relies on the statistics estimated from the observed portion of a data 
matrix, and so the artificial missing values introduced cannot fully resemble authentic missing mechanisms and/
or patterns present in the original overall data distribution. More critically, performance can only be assessed on 
evaluating the imputed artificial not authentic missing values, because authentic missing values are intrinsically 
unknown and the overall data distribution may be distorted by the introduced artificial missing values. While it 
may be informative to compare the impact of the imputation versus non-imputation on some subsequent data 
analysis in the future, we have opted to focus on assessing direct imputation accuracy, because the evaluation 
using subsequent analysis would be indirect and task-dependent.

To address the aforementioned issues in the presence of authentic missing values, a small percentage of 
set-aside values were introduced into the complete data matrix and used solely for the purpose of assessment. 
Because masked values are randomly assigned onto both observed and authentic missing values, the simulation 
maximally preserves the original overall data distribution. Masked values may represent a mix of MNAR (high 
missing rate associated with low protein abundance) and MAR (joint distribution of both observed and authentic 
missing values). However, performance is assessed indirectly on imputing masked not authentic missing values. 
An interesting addition may be to include the performance accuracy in estimating non-missing values by the 
imputation function.

Figure 4.   (a) Imputation performance of the FRMF variants on the simulation data of setting #2, with varying 
masked rates. (b) Imputation performance of CAM variants on the simulation data of setting #2, with varying 
masked rates, in comparison to that of SVT and NIPALS. The imputation accuracy is evaluated in the original 
intensity space (before log-transformation).
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Imputation accuracy could be affected by data preprocessing and algorithmic parameter setting. In this 
study, sample-wise normalization and protein-wise standardization are performed based on the requirements of 
each method. Data preprocessing affects the scale of NRMSE, but relative performance across various methods 
remains consistent. While imputation performance varies with parameter setting, there is no theoretical guide-
line for optimizing the parameter setting. Nevertheless, a cross-validation approach could be used to optimize 
algorithms parameters in future work. Here, we used grid search to tune the parameters based on the consid-
eration that when all possible parameters are enumerated the optimal setting can be reached. Moreover, other 
correlation-based relative performance measures (Pearson and/or Spearman) can be calculated on introduced 
missing or masked values and non-missing values.

The observation that imputation methods based on low-rank matrix factorization (e.g. SVT or NIPALS) per-
form consistently better than other ones (in both simulation settings) is consistent with the reports from other 
similar evaluation studies4,11. While the true missing mechanisms in proteomics data are unknown and hard 
to simulate, the better performance of SVT or NAPALS may be expected particular in the cases with relatively 
small sample size. Missing value imputation is principally an unsupervised learning task, and the sample size is 
determined by the number of observed values over both samples and proteins. Concerning unavoidable noise/
outlier and sample heterogeneity embedded within the observed values of data matrix, related to possibly much 
smaller ‘effective’ sample size, SVT or NIPALS leverages low-rank regularization to avoid potential overfit of the 
model to noise/outlier.

FRMF is a novel integrated imputation approach with promising preliminary results. However, the effective-
ness of FRMF for improving global low-rank matrix completion methods depends on both sample diversity and 
the complementary nature of additional and relevant measurements such as the complementary roles of local 
similarity and global structure. For example, FRMF imputation may be performed on combined biologically 
diverse sample groups, or local similarity derived from gene expressions may be incorporated to impute protein 
missing values on the same samples.

The CAM method we propose represents a new direction for future work. For example, CAM may be inte-
grated into FRMF to leverage local similarity derived from complementary information on the same samples and 
the input data matrix for CAM may be initialized by missing-value-insensitive NMF (nonnegative matrix factori-
zation)12. More importantly, CAM performs missing value imputation using the original intensities rather than 
log-transformed data. This approach is both biologically plausible and mathematically more rigorous because 
log-transformation violates the linear nature of low-rank matrix factorization24.

There are two major approaches for generating bottom-up MS proteomic data: DIA and DDA (data-depend-
ent acquisition). Therefore, we also applied FRMF and CAM methods to the simulation datasets (setting #2) 
based on a DDA dataset produced by the Orbitrap Elite analyzer coupled to an Easy-nLC 1000 system (Thermo 
Scientific), followed by tandem mass spectra of the 20 most abundant peaks in the linear ion trap. This DDA 
dataset is associated with the same study samples (Table S1). The experimental results are given in Figure S8 
and Figure S9b. It can be seen that FRMF variants consistently outperform peer methods including SVD and 
RMF, and CAM_NIPALS performs slightly better than SVT while worse than NIPALS. We would like to reiter-
ate that while MAR allows prediction of missing values based on observed data, unfortunately, the MAR and 
MNAR conditions cannot be distinguished based on the observed data because by definition missing values are 
unknown. Given that DDA data type has higher missing rates (Table S1), expectedly, the CAM method may 
not perform well because biologically interpretable basis may not be correctly estimated due to missing marker 
genes and critical gene patterns that cannot be recovered by SVT.

In future work, support vector machine or artificial neural network (ANN) based methods may be considered 
as emerging imputation competitors11, and a combination approach utilizing an ensemble of strategies could be 
explored4. We have recently begun to explore a deep matrix completion method25. Furthermore, some advanced 
hyperparameter auto-search tools could be adapted to optimize the hyperparameters often embedded within 
various imputation algorithms26. Conclusions and insights from more recent similar evaluation work should 
also be considered11.

Method
Brief introduction to the eight existing methods. 

•	 Min/2 (half minimum) Taking MNAR as the missing value mechanism, for each protein the missing values 
are estimated as half the minimum value of the observed intensities in that protein across all samples6,9.

•	 Mean For MAR/MCAR as the missing value mechanism, for each protein we replaced the missing values 
with the mean value of the observed intensities in that protein across all samples6,9.

•	 swKNN (sample-wise k-nearest neighbors) Taking MAR as the missing value mechanism, we leveraged 
local similarity among samples for each protein, replacing the missing values with the weighted average of 
observed intensities in that protein proportional to the proximities of k-nearest neighboring samples9.

•	 pwKNN (protein-wise k-nearest neighbors) Where MAR was the presumed missing value mechanism, we 
leveraged local similarity among proteins for each sample, replacing the missing values with the weighted 
average of observed intensities in that sample proportional to the proximities of k-nearest neighboring pro-
teins (with protein-wise normalization)9.

•	 PPCA (probabilistic PCA) For MCAR/MAR as the missing value mechanism, a low-rank probabilistic PCA 
matrix factorization was estimated by the expectation maximization (EM) algorithm and then used to impute 
missing values27.



7

Vol.:(0123456789)

Scientific Reports |         (2022) 12:1067  | https://doi.org/10.1038/s41598-022-04938-0

www.nature.com/scientificreports/

•	 NIPALS (non-linear estimation by iterative partial least squares) Taking MCAR/MAR as the missing value 
mechanism, a low-rank missing-data-tolerant PCA matrix factorization was estimated by iterative regression 
and then used to impute missing values28,29.

•	 SVD (SVDImpute) For MCAR/MAR as then missing value mechanism, a low-rank SVD matrix factoriza-
tion was estimated by the EM algorithm and used to impute missing values28,30.

•	 SVT (singular value thresholding) Where we assumed MCAR/MAR to be the missing value mechanism, a 
low-rank SVT matrix factorization was estimated by iteratively solving a nuclear norm minimization problem 
and then used to impute missing values19.

Background information of the data utilized.  Coronary artery disease remains a leading cause of death 
in industrialized nations, and early detection of disease is a critical intervention target to effectively treat patients 
and manage risk. The early detection of atherosclerotic status and burden in unselected populations by circulating 
factors remains limited, with a pressing need for sensitive and specific circulating biomarkers to more accurately 
estimate risk of major adverse cardiac events and target high risk individuals for early preventive interventions. We 
quantified the proteome of 99 paired abdominal aorta (AA) and left anterior descending coronary artery (LAD) 
specimens (N = 198 specimens total) acquired during autopsy of young adults free of diagnosed cardiac disease. 
Trained pathologist scored each specimen for surface involvement of fatty streak or fibrous plaque/calcified lesions6.

Specimens were flash frozen in liquid nitrogen and stored until further processing. Each tissue was pulver-
ized in liquid nitrogen and homogenized. Protein concentration of the supernatant was assessed by CB-X assay 
kit (G-Biosciences MO, USA), and 15 μg of protein was aliquoted and precipitated using 2-D cleanup kit (GE 
Healthcare MA, USA) and then reconstitute in 6 M urea, 50 mM ammonium bicarbonate. We used both data-
dependent acquisition (DDA) and DIA acquisitions to maximize peptide detection and protein identification. 
To generate a peptide spectral library for subsequent identification and quantification of peptides and proteins, 
peptides from representative specimen were pooled and separated into 80 basic reverse phase fractions. These 
were analyzed by DDA mass spectrometry analysis for the assembly of a human vascular peptide assay library. 
Peptide peak groups were extracted from an existing library of pooled human vascular lysates described previ-
ously and can be accessed at http://​www.​pepti​deatl​as.​org/​PASS/​PASS0​1066, using the openSWATH workflow21. 
In the discovery phase, proteome of these specimens with varying degrees of lesion was analyzed as quantified 
by label-free spectral counting of DDA-MS data6. To facilitate rapid transition from discovery into translation, 
we employed DIA-MS, for which a targeted peptide peak group readily exists for each peptide identified from a 
protein of interest detected in discovery phase21.

Performance measures.  Three quantitative measures were used to evaluate imputation accuracy, namely 
Root Mean Square Error (RMSE), Normalized Root Mean Square Error (NRMSE), and Sum of Ranks (SOR). 
Specifically, RMSE and NRMSE are given by31,32

respectively, where � is the index set of missing values in complete data matrix X , |�| is the total number of 
missing values, X̂ is the imputed complete data matrix, and σ 2

X�
 is the variance of missing values. To address the 

bias of NRMSE with the MNAR missing mechanism, SOR has been proposed as23.

where P is the number of proteins containing at least one missing value, i is the protein index in this protein 
subset, and rank(NRMSEi) is the ranks of protein-wise NRMSE across different imputation methods.

Introduction to FRMF method.  Low-rank matrix factorization is a popular and effective approach for 
missing data imputation13. For imputing proteomics data, the assumption is that there is only a small number of 
biological processes determining the expression profiles. This fundamental assumption is biologically plausible 
because measured abundances in a given sample contain substantial information of other unobserved proteins, 
and information of other samples with shared properties can also be useful in the learning step4,11. Consider an 
m× n complete data matrix X describing m samples and n proteins. A low-rank matrix factorization approach 
seeks to approximate X containing missing values by a linear latent variable model,

where Am×l and Sl×n are the low-rank factor matrices, and l ≪ min(m, n) . To prevent overfitting, the solution is 
often formulated as a regularized sparse SVD minimization problem on the observed values
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where α is the fused regularization parameter, and F(i) denotes the neighborhood sample subset of sample i and 
can be determined using baseline data or other relevant measurements such as gene expression or pathological 
score. In our study, F(i) was determined by the between-sample cosine similarity cos(X i ,Xk) based on data 
matrix in FRMF_self, or cos(Pi ,Pk) based on external pathological scores on samples in FRMF_cross_patho.

Because pair-wise local similarity among samples has already been exploited for determining neighborhood 
F(i) , we adopted the average-based fused regularization13. A local minimum of the objective function given by 
Eq. 3 can be found by performing gradient descent in latent variable vectors Ai and Sj,

While single-omics missing value imputation methods have been extensively studied4,11, the research of multi-
omics integrated missing value imputation strategy is relatively recent. The contributions of the work presented 
here are three-fold: (1) we elaborate how additional information on the same samples can benefit missing value 
imputations; (2) we coin the term Fused Regularization to represent the local similarity constraints on imputa-
tion functions, and we mathematically illustrate how to design a matrix factorization objective function with 
fused regularization; and (3) the proposed method is quite general and can be easily extended to incorporate 
other contextual information such as pathological or clinical scores, etc.

Introduction to CAM method.  CAM is a latent variable modeling and deconvolution technique previ-
ously used for identifying biologically-interpretable cell subtypes or biological archetypes Sl×n and their compo-
sition Am×l in complex tissue ecosystems6,14,15,21. We adopted the CAM framework into Eq. 1 and demonstrate 
that hybrid CAM_SVT and CAM_NIPALS can effectively manage missing values and that this combination 
leads to a novel and biologically-plausible imputation strategy. The workflow of CAM based method with three 
variants is given in Fig. 5. Below we present a brief introduction to the CAM principle. Detailed mathematical 
descriptions and algorithms can be found in our previous publications14,15.

The functions of complex tissues are orchestrated by a productive interplay among many specialized cell 
subtypes or task archetypes33. These biological components interact with each other to create a unique physi-
ological or pathophysiological state. To characterize this ground yet dynamic state, mathematical deconvolution 
of bulk tissue data has been used to model biological tissues as an aggregate of distinct cell or molecular subtypes. 
The primary objective of mathematical deconvolution is to computationally detect subtype-specific markers, 
determine the number of constituent subtypes, calculate subtype proportions in individual samples, and estimate 
subtype-specific expression profiles34. Supported by advanced machine learning algorithms and proven theorems, 
unsupervised deconvolution methods can decompose the mixed molecular signals into many latent variables; 
these subtypes are biological interpretable and functionally enriched6,14,35,36.

(3)min

m
∑
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n
∑
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I
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)2
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2
F + α

m
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Figure 5.   Workflow of the CAM based imputation method with two variant algorithms.
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The CAM pipeline is built on the strong parallelism between nonnegative latent variable models and the 
theory of convex sets (Fig. 6)14,37,38. Tissue samples to be modeled contain an unknown number and varying 
proportions of molecularly distinctive subtypes (Fig. 6a). Molecular expression in a specific subtype is modeled 
as being linearly proportional to the abundance of that subtype. We showed that the scatter simplex of bulk 
data is a rotated and compressed version of the scatter simplex of subtype expressions (Fig. 6b). According to 
the theory of convex sets37, every molecular feature within the scatter simplex can be uniquely determined by 
the nonnegative combination of the vertices. Thus, the number of the vertices corresponds to the number of 
molecularly distinctive subtypes present in the bulk samples and the molecular features residing at the vertices 
are the molecular markers defining such subtypes14. CAM works by detecting the vertices of the scatter sim-
plex geometrically, i.e., determining the multifaceted simplex that most tightly encloses the globally measured 
expression mixtures. Subsequently, the molecular markers residing at the vertices are first identified, and the 
proportions and specific expression profiles of constituent subtypes are then estimated14. The number of latent 
components is determined by the minimum description length (MDL) criterion, given by 

where k is the number of latent components, and nMG is the number of marker proteins.

Data availability
The scripts used in the paper is available in R script ProImput. Code for all experiments can be found in the 
vignette at https://​github.​com/​Minji​eSh/​ProIm​put. The operation system can be any system supporting R 
language.
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