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Proposing a hybrid metaheuristic 
optimization algorithm 
and machine learning model 
for energy use forecast 
in non‑residential buildings
Ngoc‑Tri Ngo1*, Thi Thu Ha Truong2, Ngoc‑Son Truong1, Anh‑Duc Pham1, Nhat‑To Huynh1, 
Tuan Minh Pham3 & Vu Hong Son Pham4

The building sector is the largest energy consumer accounting for 40% of global energy usage. An 
energy forecast model supports decision-makers to manage electric utility management. Identifying 
optimal values of hyperparameters of prediction models is challenging. Therefore, this study develops 
a novel time-series Wolf-Inspired Optimized Support Vector Regression (WIO-SVR) model to predict 
48-step-ahead energy consumption in buildings. The proposed model integrates the support vector 
regression (SVR) and the grey wolf optimizer (GWO) in which the SVR model serves as a prediction 
engine while the GWO is used to optimize the hyperparameters of the SVR model. The 30-min energy 
data from various buildings in Vietnam were adopted to validate model performance. Buildings 
include one commercial building, one hospital building, three authority buildings, three university 
buildings, and four office buildings. The dataset is divided into the learning data and the test data. 
The performance of the WIO-SVR was superior to baseline models including the SVR, random forests 
(RF), M5P, and decision tree learner (REPTree). The WIO-SVR model obtained the highest value of 
correlation coefficient (R) with 0.90. The average root-mean-square error (RMSE) of the WIO-SVR was 
2.02 kWh which was more accurate than those of the SVR model with 10.95 kWh, the RF model with 
16.27 kWh, the M5P model with 17.73 kWh, and the REPTree model with 26.44 kWh. The proposed 
model improved 442.0–1207.9% of the predictive accuracy in RMSE. The reliable WIO-SVR model 
provides building managers with useful references in efficient energy management.

Electricity demand forecasting is an essential task since it supports making important decisions in power system 
planning and operation. Overestimation of energy usage results in unnecessary establishments and spinning 
reserves, inefficient load distributions, and an increase in the operation cost. In contrast, underestimation of con-
sumption leads to insufficient reserves and high costs in the peaking unit, which limits economic and industrial 
development1. The building sector has considered the largest consumer of energy that accounts for nearly 40% 
of global energy usage and 33% of greenhouse gas emissions2. This mainly results from the population explosion 
worldwide and the industrial growth in past decades. An accurate and robust forecast model for building energy 
consumption, thus, is of importance for energy efficiency management.

Three main categories for modeling and forecasting building energy consumption are physics-based, con-
ventional and machine learning (ML) models. Physics-based models are known as “white box” that use physics 
equations and thermodynamic rules to describe the building energy behavior. The accuracy of such models is 
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low. Conventional models, which apply statistical principles, are reasonably accurate for near-linear time-series 
data. They include regressions-based models and auto-regressive models.

ML models have become a mainstream of modeling building energy. They are a branch of artificial intelligence 
(AI) and are referred to as a “black box” that can learn from historical energy use patterns to predict energy 
consumption3. ML provides humans with a mechanism to analyze huge amounts of data4. With the capacity in 
nonlinear approximation, ML models obtain better predictive performance than statistical models do5,6. Two 
sub-divisions of the ML models are single models and combined models. Representatives of individual models 
are artificial neural networks (ANNs)7, support vector machines (SVMs)8, random forest (RF)9, self-adaptive 
probabilistic neural network10, and self-adaptive extreme learning machine11.

Combined models include ensemble and improved models. The ensemble model builds a framework that 
takes advantage of the strengths and weaknesses of single machine learners to obtain better prediction perfor-
mance compared to a single model12. Voting, bagging, RF, decision tree (DT), gradient boosting are popular 
ensemble learners13. Chen et al. used fuzzy C-means clustering and nonlinear regression to develop a day-ahead 
prediction model of hourly energy consumption in the building sector14.

Studies from literature indicated that the accuracy of ML models depends on their hyperparameters’ setting. 
This disadvantage could be overcome by improved models in which an optimization algorithm is employed to 
appropriately tune hyperparameters of the single ML model6. Particle swarm optimization (PSO) and genetic 
algorithm (GA) are often used to improve the performance of ML models. In recent years, nature-inspired algo-
rithms that mimic the behavior of swarms in nature have been widely adopted to solve optimization problems. 
Developed by Mirjalili et al.15, a grey wolf optimizer (GWO) is a swarm-based metaheuristic algorithm that 
stimulates the leadership hierarchy and hunting behavior of grey wolves. The GWO algorithm has been proven 
its capacity in improving the performance of machine leaners in various fields16. For example, a fractional time 
delayed grey model optimized by the GWO was used to predict the natural gas and coal consumption16.

Identifying optimal values of hyperparameters of ML models is challenging. Therefore, this study integrates 
the GWO in the prediction model to optimize hyperparameters of the SVR model, which can improve the predic-
tive performance in the prediction. Particularly, this study develops a hybrid model of wolf-inspired optimized 
support vector regression (WIO-SVR) for energy demand forecasting in non-residential buildings. The proposed 
model integrates the SVR and GWO in which the SVR model serves as a prediction engine while GWO is used 
to optimize the hyperparameters of the SVR model.

There are several feasible alternatives for energy consumption forecast in buildings. They may short-term 
prediction or long-term prediction. The study focuses on the short-term energy consumption prediction in 
non-residential buildings. Particularly, 1-day-ahead energy consumption prediction in 30-min intervals was 
adopted in this study. This means that the 48-step-ahead prediction is produced by the proposed model. Energy 
consumption data were collected in 30-min intervals in Danang city in Vietnam. The data were used to validate 
the predictive performance of the WIO-SVR. The performance of the proposed model is compared with those 
of benchmark models. This study contributes to (i) the state of the knowledge by examining the performance of 
WIO-SVR model in predicting time-series energy data; and (ii) the state of practice by proposing an effective 
tool to help building owners and facility managers in understanding building energy performance for enhancing 
the energy efficiency in buildings.

The rest of this study is organized as follows. “Previous works” reviews literature relating to energy forecast. 
“Methods” elucidates methodologies including the support vector regression (SVR), GWO, the hybrid of GWO 
and SVR, and criteria for predictive accuracy evaluation. The collection of data and analytical results are pre-
sented in “Results”. Finally, “Conclusions” summarizes conclusions and recommendations for future research.

Previous works
The challenges of energy consumption forecasting are data’s nature (i.e., non-linear, non-stationary, and multi-
seasonality) and dependence on influential factors like weather conditions, time, occupancy, etc.17. Physics-based 
and conventional models, thus, are inefficient and ineffective in modeling large building profiles. Data-driven 
approaches like ML models have been widely used to solve high-dimensional energy data5,18. ML and AI have 
been applied in various fields19 such as fish species identification20, rainfall prediction21, and energy reduction 
and greenhouse gas emissions mitigation22.

An accurate energy demand forecast model supports the decision-makers to carry out short-term manage-
ment of the electric utility. In the study of Zhu et al.5, popular ML techniques such as LASSO regression, RF, 
CART, SVR were utilized to predict daily electrical load in non-residential buildings. Residuals of prediction 
models were then analyzed by a statistical quality control theory to monitor and identify abnormal load patterns. 
Biswas et al.23 compared various neural network-based models in predicting residential building energy usage. 
The inputs include the number of days, outdoor temperature, and solar radiation while the outputs consist of 
house and heat pump energy consumption.

Ensemble models, such as RF, DT, gradient boosting have emerged as a promising approach for modeling 
building energy data. Lu et al. developed a tree-based ML model-extreme gradient boosting (so-called XGBoost) 
to predict daily electrical load from the City of Bloomington Intake Tower in Indiana, USA24. This tower plays 
an important role in residents’ lives since its function in collecting water from reservoirs and transporting it to 
hydroelectric power plants or water treatment plants. The complete ensemble empirical mode decomposition 
with the adaptive noise (CEEMDAN) method was applied for decomposing energy patterns. Analytical results 
indicated that the CEEMDAN-XGBoost model outperformed benchmark models in all measures. Ma25 pro-
posed a hybrid deep meta-ensemble networks to forecast hourly electric load data of 20 zones at a US utility. 
Experimental results presented that the forecast ability of the proposed model is superior to that of multi-layer 
perceptron, RF, and gradient boosting regression trees.



3

Vol.:(0123456789)

Scientific Reports |         (2022) 12:1065  | https://doi.org/10.1038/s41598-022-04923-7

www.nature.com/scientificreports/

Pham et al.13 investigated the effectiveness of RF, M5P, and Random Tree (RT) in predicting short-term energy 
consumption in multiple buildings. Five datasets in hourly intervals collected in one year were utilized to validate 
the predictive ability of ML prediction models. Experimental results showed that the RF model was superior to 
the M5P and RT models in 1-step-ahead energy usage prediction. Pan et al.12 proposed a new novel ensemble 
model namely categorical boosting (CatBoost) to estimate multi-dimensional energy consumption data. Find-
ings revealed a better forecast performance of the CatBoost than the RF and gradient boosting decision tree.

The predictive accuracy of the machine learner depends on tuning its parameters. The selection of such 
parameters is a real-world optimization problem. Metaheuristic algorithms have been widely adopted to optimize 
the parameters of the ML models. For example, Somu et al.17 introduced a combined model for short, mid, and 
long-term energy consumption forecasting at an academic building. The long short-term memory networks 
were optimized by the improved sine cosine optimization algorithm. Comparative results indicated the outper-
formance of the proposed forecast model to single models such as the autoregressive integrated moving average 
(ARIMA), Deep Belief Network regression, SVR.

Ma et al.26 established a modified convolutional neural network (CNN) for the interval forecasting of elec-
tricity demand. In the proposed model, the whale optimization algorithm (WOA) was employed to optimize 
parameters of the CNN and comprehensively evaluated calibration and sharpness of the probabilistic forecasting 
performance. For daily electric load forecasting of an office building, Ying et al.27 proposed a backpropagation 
(BP) neural network optimized by the GWO. Moreover, the fuzzy C-means (FCM) clustering algorithm was 
utilized to cluster historical energy profiles. Empirical results indicated that the FCM-GWO-BP model signifi-
cantly improved the prediction accuracy of the pure BP model and the GWO-BP model without clustering.

Various studies have adopted a composite prediction model of a neural network and a metaheuristic algo-
rithm. However, the neural networks have some limitations such as local minimum traps, slow convergence 
speed, and difficulty in determining the size of the hidden layer and learning rate28. Thus, the least square SVR 
is a promising alternative. Besides that, the literature showed that few studies focused on the combination of 
the GWO and SVR for non-residential building energy usage forecasting. In this study, the authors proposed a 
time-series WIO-SVR model to predict energy consumption in non-residential buildings. This proposed model 
takes advantage of a metaheuristic optimization algorithm (i.e., the GWO) and a machine learning model (i.e., 
SVR). The GWO is used to optimize the hyperparameters of the SVR model during the learning process. Thus, 
the integration of GWO and SVR in the proposed hybrid model can enhance the predictive performance in 
predicting energy use consumption in non-residential buildings. The contributions of this study are: (1) a time-
series wolf-inspired optimized support vector regression (WIO-SVR) model for energy consumption prediction 
in non-residential buildings; (2) investigate the capacity of the WIO-SVR in electricity consumption forecasting 
in non-residential buildings.

Methods
Support vector regression for time‑series data analytics.  The support vector regression (SVR)8 is a 
supervised learning model belong to machine learning, that is used for regression problems. It has been used for 
capturing the non-linear relationship between the predictors and dependent variables. Figure 1 demonstrates a 
framework of the SVR model. Inputs for training the SVR model in this study are historical energy data, tem-
poral data, and weather data. Future energy consumption in buildings is a prediction output of the SVR model.

The SVR model uses a kernel function to maps predictors to high-dimension feature space. A least-squares 
cost function is applied to train an SVR model to yield linear equations in a dual space that reduces computing 
time. Particularly, SVR models are taught by solving Eq. (1).

where J(ω,b,e) is an objective function; ω is a linear approximator’s parameter; ek is errors; C ≥ 0 is a regulariza-
tion parameter; xk is predictors (i.e., historical energy data, temporal data, and weather data); yk is dependent 
variables (i.e., energy consumption in buildings); b is bias; and n is the dataset size.

(1)min
ω,b,e

J(ω, b, e) =
1

2
�ω�2 +

1

2
C

n
∑

k=1

e2k; subject to yk = �ω,ϕ(xk)� + b+ ek , k = 1, . . . n,

Figure 1.   Training support vector regression model using energy data.
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Lagrange multipliers (αk) is utilized for dealing with this problem that results in Eq. (2). A kernel function 
is described in Eq. (3) in which the Gaussian radial basis functions (RBF) kernel as Eq. (4) was used. The RBF 
kernel was adopted as the kernel function because it has low mathematical complexity and effectively solves a 
highly nonlinear problem29.

where αk are Lagrange multipliers; K(x,xk) is the kernel function; σ is the RBF width.
Performance of SVR models is affected by the value settings of its hyperparameters that consists of the RBF 

width (σ) and the regularization parameter (C). In this study, the optimal settings of these two hyperparameters 
were considered comprehensively. Particularly, a recently developed metaheuristic grey wolf optimization (GWO) 
algorithm15 was integrated to optimize the performance of the proposed WIO-SVR model. The mathematical 
theory of GWO was presented in the next section.

Wolf‑inspired optimization for enhancing machine learning model.  The GWO is a metaheuris-
tic optimization algorithm15 that inspires the natural behaviors of grey wolves. The GWO follows the power 
hierarchy and hunting activities of wolves. Particularly, a swarm of grey wolfs is split hierarchically into four 
subswarms of alphas (α), beta (β), delta (δ), and omega (ω) in which power and responsibility of each group are 
different. Figure 2 shows the dominant structure in a grey wolf swarm.

•	 Alpha is a leader.
•	 Beta is subordinate wolves that consult the alpha and manage the pack.
•	 Delta is wolves that need to report to the alpha and betas.
•	 Omega plays as a scapegoat and reports to the alpha, beta, and delta.

For modeling the social power of wolves, the α is considered as the fittest solution; β and δ are considered 
as the 2-nd and 3-rd third best solutions, respectively15. The optimization by the GWO includes searching, 
encircling, and attacking prey. Figure 3 illustrates of positions of grey wolves and prey. The hunting process is 
led by α, β, and δ. Encircling prey was performed by updating the wolf position by using by Eqs. (5) and (6). 
Three of them were used to predict the location of the grey while the location of omegas was updated randomly 
surrounding the three best wolves as shown in Eqs. (7)–(10) 15.

(2)f (x) =

n
∑

k=1

αkK(x, xk)+ b,

(3)K(x, xk) =

n
∑

k=1

gk(x)gk(xk),

(4)K(x, xk) = exp(−�x − xk�
2/2σ 2),

(5)�X(t + 1) = �Xp(t)− �A ·
∣

∣�C · �Xp(t)− �X(t)
∣

∣,

(6)�A = 2�a · �r1 − �a and �C = 2 · �r2,

(7)�X1 = �Xα − �A1 ·
−→
D α ,

−→
D α =

∣

∣�C1 · �Xα − �X
∣

∣,

(8)�X2 = �Xβ − �A2 ·
−→
D β ,

−→
D β =

∣

∣�C2 · �Xβ − �X
∣

∣,

(9)�X3 = �Xδ − �A3 ·
−→
D δ ,

−→
D δ =

∣

∣�C3 · �Xδ − �X
∣

∣,

Figure 2.   Dominant structure in a grey wolf swarm.
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where �X(t + 1) is a location vector of wolves at iteration (t + 1); �Xp(t) is a location vector of prey at iteration t; �A 
and �C are coefficient vectors; �a are reduced from 2 to 0 through iterations; �r1 and �r2 are random vectors of [0, 1].

Figure 4 shows a pseudo-code of the GWO. The diversity of exploitation and exploration in the GWO was 
controlled by the vector �A . During the optimization process, when |A|< 1, the wolves tend to approach the prey 
because the next location of wolves is in the area between their current locations and the prey’s position15. This 
conforms the exploitation of the GWO. In contrast, as |A|> 1, wolves tend to diverge from the prey that con-
firms the global exploration. Besides, the vector �C influences on the exploration and exploitation of the GWO 
because it is a random weight that affects the update of wolf location as shown in Eq. (5). This helps the GWO 
to overcome local optima.

(10)�X(t + 1) =
�X1 + �X2 + �X3

3
,

Figure 3.   Illustration of positions of grey wolves and prey.

Figure 4.   The flowchart of the grey wolf optimization algorithm.
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Wolf‑inspired optimization and support vector regression for electricity use prediction..  Fig-
ure 5 presents the implementation of proposed WIO-SVR model that is an integration of the SVR model and the 
GWO algorithm. Energy data, weather data, and temporal data were collected. Particularly, energy consump-
tion data in hundreds of buildings were collected using the data metering and recording network by the power 
company. Temporal data consists of day of the week and hour of the day that were extracted by the datetime in 
database.

These data were pre-processed before using for developing the prediction model. To improve performance of 
the model, the GWO optimized the model configuration by adjusting the SVR hyperparameters. The search space 
of the WIO-SVR model is set from 10–3 to 103. The RBF was used as the kernel function in the SVR model. The 
population is 100 and the maximum iteration is 10. The optimization engine generated initially the population of 
the GWO in which their locations represent the C and σ values of the SVR in the search space. The optimal model 
is obtained as stopping criteria are reached. The proposed model was developed in the MATLAB environment 
which is a programming and numeric computing platform. The running environment is in the 64-bit operation 
system, the processor of Intel (R), core i7-8559U CPU @ 1.8 GHz 1.99 GHz, 8.00 GB RAM.

Criteria of evaluating the forecast performance were root-mean-square error (RMSE), mean absolute error 
(MAE), mean absolute percentage error (MAPE), and correlation coefficient (R). The RMSE measures the differ-
ences between predicted values and measured values. The MAE presents absolute errors between the predicted 
values and measured values. The MAPE shows accuracy in a percentage manner. The lower values of RMSE, 
MAE and MAPE indicate the better forecast accuracy. The R is used to measure the relationship between actual 
data and predicted data. The higher the absolute value of the R, the stronger the relationship. These measures 
are often used to assess the predictive performance of machine learning models30. Their corresponding equa-
tions are as follows.

Figure 5.   Implementation of wolf-inspired optimization and support vector regression.
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where y is the actual energy consumption, y′ is predicted energy consumption, and n is size of the data sample.

Results
Dataset.  Datasets in the 30-min interval in Danang city were collected to validate the proposed WIO-SVR 
model. Danang city was chosen as a case study in this study because Danang city is one of the biggest cities in 
Vietnam and Danang’s government has a policy to develop a smart city in near future. 12 buildings are used as 
case studies which include one commercial building, one hospital building, three authority buildings, three uni-
versity buildings, and four office buildings (Table 1). The electrical usage patterns of 12 buildings are presented 
in Fig. 6. Figure 7 graphically depicts electrical consumption profiles using Box and Whisker method. Scatter 
plots of energy data and temperature data in Fig. 8 depict a positive correlation of energy and temperature data 
in all buildings. The WIO-SVR model aimed to predict 48-step-ahead energy consumption data which is a one-
day-ahead prediction.

The WIO-SVR model was evaluated multiple times using multiple datasets. Particularly, 12 datasets from 
12 buildings were used and 14 evaluations were performed for each dataset. The original dataset is divided into 
learning data and test data. Learning data include 6856 observations in 4 months ranging from August 1st, 
2019 to November 30th, 2019. Training data which accounted for 70% of learning data is used to train the SVR 
model. The rest of the learning data (i.e., validation data) are used to optimize the trained model. Test data that 
are utilized to test the prediction ability of the optimized WIO-SVR model include 672 observations in 14 days 
ranging from December 1st to 14th, 2019. Summation of model evaluation was as below:

•	 Prediction model: Wolf-inspired optimization support vector regression (WIO-SVR)
•	 Forecast period or model output: 1-day-ahead prediction or 48-step-ahead prediction (30-min interval data)
•	 Input: historical energy consumption data, outdoor temperature data, day of the week (i.e., Monday, Tuesday, 

Wednesday, Thursday, Friday, Saturday, Sunday) and hour of the day (i.e., 0, 1, 2, …, 21, 22, 23). These inputs 
have been recognized as model inputs for predicting energy consumption.

•	 Learning data: 4-month data, 01/8/2019–30/11/2019, size is 6856 data points.
•	 Test data: 01/12/2019–14/12/2019, size is 672 data points.

Results and discussion.  Learning data are divided into training data and validation data. Training data are 
used to train the WIO-SVR model while validation data are used to optimize the trained model. The forecast 
accuracy of the optimized WIO-SVR is evaluated by test data which ranges from December 1st to December 
14th, 2019.

Table 2 presents performance measures of the proposed WIO-SVR model for case study 1 in terms of RMSE, 
MAE, MAPE, and R. The high values of R in both learning phase and test phase indicated a good agreement 
between observed and predicted data. The highest value of R in the learning phase and the test phase was 0.97 and 
0.99, respectively. For the learning phase, the WIO-SVR obtained the best performance measures on December 
14th with the RMSE value of 3.36 kWh. In the test phase, the proposed model presented a good prediction ability. 

(11)RMSE =

√

√

√

√

1

n

n
∑

i=1

(y − y′)2,

(12)MAE =
1

n

n
∑

i=1

∣

∣y − y′
∣

∣,

(13)MAPE =
1

n
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∣

∣
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∣

∣

,

(14)R =
n
∑

y.y′ − (
∑

y)(
∑

y′)
√

n(
∑

y2)− (
∑

y)2
√

n(
∑

y′2)− (
∑

y′)2
,

Table 1.   Case studies.

Case Building ID Building type Case Building ID Building type

1 41 Commercial building 7 419 Authority building

2 81 Office building 8 642 University building

3 87 Authority building 9 124 University building

4 79 Office building 10 136 Authority building

5 109 Office building 11 135 Hospital building

6 379 Office building 12 194 University building
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The RMSE and MAE obtained smallest values on December 8th with 2.11 kWh and 4.44 kWh, respectively. 
Figure 9 displays actual and predicted values of electrical consumption in the test phase.

Table 3 shows the evaluation results of the WIO-SVR model for case study 2. This case study utilizes 30-min 
resolution data collected from the office building. The predictive accuracy of the proposed model in the test 
phase was much better than that in the learning phase. Three measures of RMSE, MAE, and MAPE in the test 
phase had smaller average values than those had in the learning phase. The proposed WIO-SVR model obtained 
an average of MAPE with 64.32% in the learning phase comparing to only 6.89% in the test phase. Figure 10 
compares actual observations and predicted observations of the WIO-SVR using test data. Figure 10 reveals 
that predicted values well captured with actual values. Generally, the WIO-SVR model exhibited high forecast 
accuracy and the good agreement between actual data and predicted values.

Table 4 reported the predictive accuracy and standard deviation of the proposed WIO-SVR model in all cases. 
The smaller values of RMSE, MAE, and MAPE indicate the better predictive accuracy of the proposed model. 
The WIO-SVR yielded the smallest values of RMSE and MAE for the test data of the authority building in case 
3. The values of RMSE and MAE were 0.31 kWh and 0.1 kWh, respectively. The smallest value of MAPE (6.96%) 
was obtained by the proposed model when using data collected from the commercial building (case 1). Among 
12 cases, the WIO-SVR showed a lower predictive accuracy for case 11 with 3.63 kWh and 13.20 kWh in terms 
of RMSE and MAE, respectively. Particularly, the values of R in all cases are high which range from 0.78 to 0.98. 
This indicated that the proposed model is in good agreement with experimental datasets (Fig. 11).

To confirm the effectiveness of the proposed WIO-SVR model, its predictive accuracy was compared with 
those of machine learning models including the SVR, random forest (RF), M5P, and REPTree. These models are 
popular machine learning models and they were often used in building energy consumption prediction. Table 5 
indicates that the predictive ability of the WIO-SVR was superior to that of baseline models in all cases. The R 
values of the proposed model in all cases were high indicating a good agreement between real data and predicted 
data. For the dataset collected from the commercial building (case 1), all performance measures of the WIO-SVR 
outperformed those of SVR, RF, M5P, and REPTree. For example, the WIO-SVR yielded the smallest values of 
RMSE with 2.49 kWh, followed by 9.52 kWh and 21.02 kWh of SVR and RF, respectively.

Figure 6.   Electricity use profiles in 30-min resolution in 12 case studies.

Figure 7.   Box and Whisker plot of electrical use in 12 cases.
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With regard to the dataset collected from office buildings (cases 2, 4, 5, and 6), the proposed model showed its 
outperformance in predicting electrical consumption. Notably, the RMSE and the MAE of the WIO-SVR model 
in case 5 were only 2.18 kWh and 4.85 kWh, respectively. These measures were significantly lower than those 
of other models. In case 6, although the WIO-SVR had a higher value of MAE than other models, the RMSE, 
MAE, and MAPE of this model were much lower than baseline models.

Similarly, the evaluation results of the WIO-SVR model for datasets collected from educational buildings 
(cases 8, 9, and 12) were significantly better than those of other ML models. Table 5 showed that the RMSE 
obtained by the proposed model in case 8 and case 9 was 3.14 kWh and 3.52 kWh, respectively. These measures 
were lowest among RMSE’s values obtained by SVR, RF, M5P, and REPTree. Notably, all models in case 8 exhib-
ited higher MAPE values than in the remaining cases. With the hospital building, the proposed model confirmed 
its capacity in forecasting electricity usage.

For authority buildings (cases 3, 7, and 10), the proposed model still maintained lower prediction errors than 
comparative models. In particular, the MAPE obtained by the five models was higher than that obtained by them 
in cases where data collected from commercial, hospital, and office buildings. Figure 12 compares measures of 
RMSE, MAE, and MAPE obtained by the proposed model and other ML models. The actual values and predicted 
values obtained by all models for case 1 and case 2 were presented in Fig. 13. The predicted values yielded by the 
WIO-SVR model were well captured with the actual ones.

The outstanding efficiency of the proposed model was confirmed in Table 6. Among the models, the proposed 
WIO-SVR model obtained the highest value of R with 0.90. The average value of the RMSE of the WIO-SVR was 
2.02 kWh which was much lower than that of the SVR with 10.95 kWh, the RF with 16.27 kWh, the M5P with 
17.73 kWh, and the REPTree with 26.44 kWh. The proposed model improved 442.0–1207.9% and 43.7–238.3% 

Figure 8.   Scatter plots of energy data and temperature data.
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Figure 9.   Actual and predicted data for case 1.

Table 2.   Case study 1—evaluation results.

Test data for case 1

Learning WIO-SVR Testing WIO-SVR

RMSE (kWh) MAE (kWh) MAPE (%) R RMSE (kWh) MAE (kWh) MAPE (%) R

01/12/2019 3.46 11.95 10.17 0.97 2.78 7.75 8.53 0.97

02/12/2019 3.45 11.89 10.14 0.97 2.61 6.81 6.68 0.99

03/12/2019 3.44 11.83 10.09 0.97 2.41 5.83 6.53 0.98

04/12/2019 3.42 11.72 10.01 0.97 2.28 5.20 6.18 0.98

05/12/2019 3.40 11.53 9.86 0.97 2.32 5.38 6.36 0.98

06/12/2019 3.38 11.43 9.76 0.97 2.43 5.91 6.69 0.98

07/12/2019 3.37 11.34 9.69 0.97 2.15 4.63 6.64 0.97

08/12/2019 3.35 11.24 9.63 0.97 2.11 4.44 6.41 0.97

09/12/2019 3.33 11.10 9.59 0.97 2.63 6.93 7.34 0.98

10/12/2019 3.32 11.02 9.54 0.97 2.58 6.67 6.97 0.99

11/12/2019 3.31 10.95 9.51 0.97 2.81 7.88 7.76 0.98

12/12/2019 3.31 10.93 9.50 0.97 2.38 5.67 6.26 0.99

13/12/2019 3.29 10.84 9.46 0.97 2.87 8.23 8.10 0.99

14/12/2019 3.28 10.77 9.41 0.97 2.48 6.16 7.01 0.97

Average 3.36 11.32 9.74 0.97 2.49 6.25 6.96 0.98

Std. dev 0.06 0.41 0.27 0.00 0.24 1.18 0.72 0.01

Min 3.28 10.77 9.41 0.97 2.11 4.44 6.18 0.97

Max 3.46 11.95 10.17 0.97 2.87 8.23 8.53 0.99

the predictive accuracy in terms of the RMSE and the MAE, respectively. Overall, the error rates of the WIO-
SVR model are 43.7–1027.9% better than those of baseline models. Thus, the proposed WIO-SVR model was 
suggested as an effective model for forecasting energy consumption in non-residential buildings.

This study proposed the hybrid machine learning model that integrates the GWO and SVR model to enhance 
the predictive performance of energy use prediction in non-residential buildings. Evaluation results revealed 
that the performance of the proposed WIO-SVR model was better than those of investigated machine learning 
model. This is because the hyperparameters of the SVR model were optimized by an optimization algorithm 
(i.e., GWO) during the learning process. Therefore, the WIO-SVR can be used as a tool for time-series energy 
consumption prediction in non-residential buildings.

Conclusions
The building sector has considered the largest consumer of energy that accounts for nearly 40% of global energy 
usage and 33% of greenhouse gas emissions. Electricity demand forecasting is an essential task since it supports 
making important decisions in power system planning and operation. An accurate energy demand forecast 
model supports the decision-makers to carry out short-term management of the electric utility. Meanwhile, 
machine learning models have become a mainstream of modeling building energy. This study develops a hybrid 
model of wolf-inspired optimized support vector regression (WIO-SVR) for energy demand forecasting in 
non-residential buildings.



11

Vol.:(0123456789)

Scientific Reports |         (2022) 12:1065  | https://doi.org/10.1038/s41598-022-04923-7

www.nature.com/scientificreports/

Table 3.   Case study 2—evaluation results.

Test data for case 2

Learning WIO-SVR Testing WIO-SVR

RMSE (kWh) MAE (kWh) MAPE (%) R RMSE (kWh) MAE (kWh) MAPE (%) R

01/12/2019 1.82 3.33 63.48 0.97 1.04 1.07 4.66 0.89

02/12/2019 1.82 3.30 63.45 0.97 1.64 2.68 7.37 0.95

03/12/2019 1.81 3.29 63.42 0.97 1.58 2.49 9.23 0.96

04/12/2019 1.81 3.28 63.49 0.97 1.63 2.66 10.06 0.95

05/12/2019 1.81 3.28 63.68 0.97 1.40 1.95 7.81 0.97

06/12/2019 1.80 3.25 64.08 0.97 1.33 1.77 6.92 0.96

07/12/2019 1.80 3.22 64.21 0.97 1.27 1.61 6.42 0.95

08/12/2019 1.79 3.20 64.29 0.97 1.01 1.01 6.20 0.87

09/12/2019 1.78 3.17 64.33 0.97 1.31 1.72 6.16 0.95

10/12/2019 1.78 3.18 64.74 0.96 1.22 1.50 5.51 0.97

11/12/2019 1.79 3.20 65.17 0.96 1.42 2.00 6.82 0.95

12/12/2019 1.79 3.22 65.50 0.96 1.21 1.46 5.55 0.96

13/12/2019 1.78 3.18 65.37 0.96 1.31 1.71 5.99 0.96

14/12/2019 1.77 3.15 65.26 0.96 1.51 2.29 7.78 0.94

Average 1.80 3.23 64.32 0.97 1.35 1.85 6.89 0.95

Std. dev 0.02 0.05 0.77 0.00 0.20 0.53 1.47 0.03

Min 1.77 3.15 63.42 0.96 1.01 1.01 4.66 0.87

Max 1.82 3.33 0.65 0.97 1.64 2.68 10.06 0.97
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Figure 10.   Actual and predicted data for case 2.

Table 4.   Accuracy of the WIO-SVR model for the test data.

Case Building type

RMSE (kWh) MAE (kWh) MAPE (%) R

Average Std. dev Average Std. dev Average Std. dev Average Std. dev

1 Commercial building 2.49 0.24 6.25 1.18 6.96 0.72 0.98 0.01

2 Office building 1.35 0.20 1.85 0.53 6.89 1.47 0.95 0.03

3 Authority building 0.31 0.06 0.10 0.04 28.70 13.03 0.78 0.09

4 Office building 1.05 0.15 1.13 0.30 16.86 3.08 0.91 0.10

5 Office building 2.18 0.35 4.85 1.48 10.87 1.74 0.89 0.20

6 Office building 2.06 0.40 4.41 1.57 12.04 5.45 0.85 0.24

7 Authority building 1.00 0.11 1.00 0.19 20.40 2.50 0.90 0.03

8 University building 3.14 0.18 9.91 1.15 32.10 8.64 0.92 0.02

9 University building 3.52 0.25 12.44 1.81 13.26 1.59 0.91 0.02

10 Authority building 0.90 0.29 0.89 0.45 15.18 6.03 0.83 0.14

11 Hospital building 3.63 0.18 13.20 1.33 9.77 0.95 0.92 0.02

12 University building 2.63 0.35 7.01 1.81 12.88 2.91 0.92 0.06
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Figure 11.   Scatter plots between recorded data and forecasted data by WIO-SVR in 12 cases.
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Electrical consumption data in 30-min interval collected in Danang city, the largest city in the central land 
of Vietnam, were adopted to validate the performance of the WIO-SVR. Twelve buildings are used as case stud-
ies which include one commercial building, one hospital building, three authority buildings, three university 
buildings, and four office buildings. The WIO-SVR model aimed to predict 48-step-ahead energy consumption 
data which is a one-day-ahead prediction. The performance of the proposed model is compared with those of 
benchmark models.

The original dataset is divided into learning data and test data. Learning data include 6856 observations 
in 4 months ranging from August 1st, 2019 to November 30th, 2019. Training data which accounted for 70% 
of learning data is used to train the SVR model. The rest of the learning data (i.e., validation data) are used to 
optimize the trained model. Test data that are utilized to test the prediction ability of the optimized WIO-SVR 
model include 672 observations in 14 days ranging from December 1st to 14th, 2019. The WIO-SVR model was 

Figure 11.   (continued)
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evaluated multiple times using multiple datasets. Particularly, 12 datasets from 12 buildings were used and 14 
evaluations were performed for each dataset.

Root-mean-square error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), 
and correlation coefficient (R) were adopted as evaluation criteria of model performance. The smaller values of 
RMSE, MAE, and MAPE indicate the better predictive accuracy of prediction models. The WIO-SVR yielded 
the smallest values of RMSE and MAE for the test data of the authority building in case 3. The values of RMSE 

Table 5.   Performance comparison among prediction models.

Case Accuracy WIO-SVR SVR RF M5P REPTree

Case 1

RMSE (kWh) 2.49 9.52 21.02 33.51 52.35

MAE (kWh) 6.25 7.36 14.83 23.76 37.35

MAPE (%) 6.96 9.99 14.46 24.19 33.21

R 0.98 0.99 0.97 0.76 0.91

Case 2

RMSE (kWh) 1.35 5.57 8.36 11.05 28.43

MAE (kWh) 1.85 3.98 6.50 8.49 8.60

MAPE (%) 6.89 16.57 25.78 33.19 12.46

R 0.95 0.88 0.91 0.62 0.38

Case 3

RMSE (kWh) 0.31 0.31 0.36 0.46 1.21

MAE (kWh) 0.10 0.19 0.25 0.36 0.70

MAPE (%) 28.70 57.98 143.96 127.82 304.43

R 0.78 0.56 0.40 0.36 0.16

Case 4

RMSE (kWh) 1.05 2.08 3.10 3.51 6.72

MAE (kWh) 1.13 1.47 2.04 2.58 4.23

MAPE (%) 16.86 21.83 25.75 40.25 46.63

R 0.91 0.90 0.92 0.77 0.88

Case 5

RMSE (kWh) 2.18 18.85 50.47 47.57 31.32

MAE (kWh) 4.85 12.02 31.77 27.18 20.31

MAPE (%) 10.87 24.83 67.22 58.59 49.00

R 0.89 0.84 0.84 0.67 0.78

Case 6

RMSE (kWh) 2.06 2.42 4.65 4.18 5.89

MAE (kWh) 4.41 1.65 3.01 2.59 3.96

MAPE (%) 12.04 28.28 59.01 48.95 83.55

R 0.85 0.74 0.66 0.62 0.59

Case 7

RMSE (kWh) 1.00 1.59 1.47 1.77 3.63

MAE (kWh) 1.00 1.28 1.06 1.35 2.98

MAPE (%) 20.40 40.10 25.42 39.90 143.88

R 0.90 0.91 0.92 0.89 0.55

Case 8

RMSE (kWh) 3.14 24.99 35.52 24.48 47.49

MAE (kWh) 9.91 17.53 25.89 17.21 33.82

MAPE (%) 32.10 48.01 67.35 51.23 80.77

R 0.92 0.94 0.92 0.87 0.92

Case 9

RMSE (kWh) 3.52 28.87 28.24 35.95 43.18

MAE (kWh) 12.44 17.66 18.15 24.32 27.99

MAPE (%) 13.26 17.68 18.84 25.37 35.26

R 0.91 0.80 0.84 0.68 0.71

Case 10

RMSE (kWh) 0.90 1.48 5.53 3.83 7.03

MAE (kWh) 0.89 0.95 3.91 2.65 4.42

MAPE (%) 15.18 18.43 71.49 43.76 62.80

R 0.83 0.91 0.88 0.88 0.94

Case 11

RMSE (kWh) 3.63 19.36 17.43 21.78 36.77

MAE (kWh) 13.20 14.38 14.40 17.13 30.68

MAPE (%) 9.77 9.55 11.89 12.88 27.07

R 0.92 0.92 0.95 0.88 0.68

Case 12

RMSE (kWh) 2.63 16.42 19.12 24.73 53.22

MAE (kWh) 7.01 12.13 14.12 19.89 38.21

MAPE (%) 12.88 21.04 25.22 37.36 64.93

R 0.92 0.91 0.91 0.88 0.80



15

Vol.:(0123456789)

Scientific Reports |         (2022) 12:1065  | https://doi.org/10.1038/s41598-022-04923-7

www.nature.com/scientificreports/

and MAE were 0.31 kWh and 0.1 kWh, respectively. The smallest value of MAPE (6.96%) was obtained by the 
proposed model when using data collected from the commercial building (case 1). Among 12 cases, the WIO-
SVR showed a lower predictive accuracy for case 11 with 3.63 kWh and 13.20 kWh in terms of RMSE and MAE, 
respectively. Particularly, the values of R in all cases are high which range from 0.78 to 0.98. This indicated that 
the proposed model is in good agreement with experimental datasets.

To confirm the effectiveness of the proposed WIO-SVR model, its predictive accuracy was compared with 
those of machine learning models including the SVR, random forest (RF), M5P, and REPTree. The predictive 
ability of the WIO-SVR was superior to that of baseline models in all cases. The R values of the proposed model 
in all cases were high indicating a good agreement between real data and predicted data. For the dataset collected 
from the commercial building (case 1), all performance measures of the WIO-SVR outperformed those of SVR, 
RF, M5P, and REPTree. For example, the WIO-SVR yielded the smallest values of RMSE with 2.49 kWh, followed 
by 9.52 kWh and 21.02 kWh of SVR and RF, respectively.

Among the models, the proposed WIO-SVR model obtained the highest value of R with 0.90. The average 
value of the RMSE of the WIO-SVR was 2.02 kWh which was much lower than that of the SVR with 10.95 
kWh, the RF with 16.27 kWh, the M5P with 17.73 kWh, and the REPTree with 26.44 kWh. The proposed model 
improved 442.0–1207.9% and 43.7–238.3% the predictive accuracy in terms of the RMSE and the MAE, respec-
tively. Overall, the error rates of the WIO-SVR model are 43.7–1027.9% better than those of baseline models. 
As the study`s contribution, an effective and reliable WIO-SVR model provides building managers with useful 
references in proactively efficient energy management.

This study contributes to (i) the state of the knowledge by examining the performance of WIO-SVR model 
in predicting time-series energy data; and (ii) the state of practice by proposing an effective tool to help building 
owners and facility managers in understanding building energy performance for enhancing the energy efficiency 
in buildings.

As a limitation, the proposed method requires users with basic programming skills and machine learning 
knowledge. In this study, the GWO was used as an optimization engine in the proposed model. Future studies 

Figure 12.   Performance comparison of all models.
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may investigate other optimization algorithms such as monarch butterfly optimization, earthworm optimization 
algorithm, elephant herding optimization, moth search algorithm, Slime mould algorithm, and Harris hawks 
optimization to improve performance of the prediction model.
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