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Flow shop scheduling problems are NP-hard problems. Heuristic algorithms and evolutionary 
metaheuristic algorithms are commonly used to solve this kind of problem. Although heuristic 
algorithms have high solving speed, the solution quality is not good. Evolutionary algorithms 
make up for this defect in small-scale problems, but the solution performance will deteriorate with 
the expansion of the problem scale and there will be premature problems. In order to improve the 
solving accuracy of flow shop scheduling problems, a computational efficient optimization approach 
combining NEH and niche genetic algorithm (NEH-NGA) is developed. It is strengthened in the 
following three aspects: NEH algorithm is used to optimize the initial population, three crossover 
operators are used to enhance the genetic efficiency, and the niche mechanism is used to control the 
population distribution. A concrete application scheme of the proposed method is introduced. The 
results of compared with NEH heuristic algorithm and standard genetic algorithm (SGA) evolutionary 
metaheuristic algorithm after testing on 101 FSP benchmark instances show that the solution 
accuracy has been significantly improved.

Scheduling is a decision-making process in which re-sources are allocated to different tasks under certain con-
straints. Early work in the field of scheduling was driven by manufacturing, and although considerable progress 
has been made on scheduling problems in many non-manufacturing fields, manufacturing terminology is still 
use. Resources are usually called machines, and tasks are called jobs, and sometimes jobs may be composed of 
several basic tasks linked by sequence constraints, called operations. The terms “machine”, “job” and “operation” 
in scheduling problems are abstract concepts that can represent a wide range of real objects.

Flow shop scheduling problem (FSP), which is a typical combinatorial optimization problem and exists widely 
in production system and service system. It belongs to NP-hard problem category1. Therefore, the study of this 
problem has important theoretical significance and engineering value, and it is also the most widely studied type 
of typical scheduling problem. Most of the early researches on scheduling problems use mathematical methods 
such as integer programming, branch and bound, etc., focusing on theory and trying to get the exact optimal 
solution.

The flow manufacturing model rises and the process of products becomes more complicated in sync with 
the wide application of automation in industry. e.g., a FSP with 20 jobs, its solution space is 20!, i.e., 2.4 × 1018. 
Due to the limitation of precise methods in such large-scale problems, a large number of heuristic methods 
have been widely used, e.g., Gupta, Johnson, Palmer, NEH, RA. These algorithms generate solution based on 
problem-specific experience and construction rules, which may not get the optimal operation sequence, but can 
guarantee the local optimality of the processing sequence to a certain extent. Studies show that NEH2 proposed 
by Nawaz, Enscore and Ham in 1983 is the best heuristic algorithm to solve this problem3–5. In view of the supe-
riority of NEH algorithm in solving FSP and the deficiency of heuristic algorithm, researchers proposed many 
extensions of the NEH. Pawel et al.3 proposed a new priority order combined with a simple tie-breaking method 
named NEHNM. Victor Fernandez et al.6 proposed a new tie-breaking mechanism based on an estimation of 
the idle times of the different subsequence with the same best partial makespan to so remedy defects in NEH. 
LR-NEH(x) method proposed by Pan et al.6 represents a good trade-off between CPU time and quality. Fernando 
et al.7 improved the algorithm based on LR-NEH(x) and the new method provided high-quality solutions with 
computational efficiency, significantly outperforming the best simple heuristics. Through statistics, we find that 
these variations focus on construction criteria of input sequences for construction phase and the tie-breaking 
mechanisms of candidate sequences.
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The emergence of metaheuristic algorithms has provided more efficient solutions to NP-hard problems. In 
particular, population evolution intelligence algorithms excel in solving black-box problems, non-integrable and 
non-differentiable problems. Such as genetic algorithm (GA)8, particle swarm optimization (PSO)9, ant colony 
optimization (ACO)10, differential evolution algorithm (DE)11, etc. Then algorithms based on the characteristics 
of biological populations such as artificial bee colony (ABC)12, firefly algorithm (FA)13, cuckoo search (CS)14, 
grey wolf optimizer (GWO)15, etc. emerged one after another. Abdel-Basset et al.16 proposed a new algorithm 
that integrates the whale optimization algorithm (WOA) with a local search strategy for tackling the permutation 
flow shop scheduling problem. Marichelvam et al.17,18 proposed a sub-population based hybrid monkey search 
algorithm and an improved hybrid cuckoo search algorithm to solve the flow shop scheduling problem. The two 
algorithms have been implemented for some benchmark problems in the literature and the results outperform 
many other heuristics. Li et al.19 analysed the properties of flow shop scheduling problems to minimise maxi-
mum completion time, and generate a new dominance rule that is complementary to Szwarc’s rule. In addition, 
Li et al.20 also considered the cost of total time occupied by machines in flow shop scheduling and took it as the 
optimization objective, proposed a balance method with the optimization objective of makespan, and applied this 
model to the actual situation of doctors’ treatment, and achieved good results. Considering cost active adoption 
of dynamic scheduling and predictive scheduling is also an extension of FSP when machine is failure and main-
tenance during the production, and some achievements have been made in the related literature21–23 research.

The commonality of these algorithms is that they all require individual encoding and decoding processes, and 
the difference is the rules for updating the population. These algorithms were initially tested on mathematical 
functions rather than combinatorial optimization problems. Reeves24 firstly showed the feasibility of using GA 
for such problems by producing a working algorithm. From then on, GA has become one of the most popular 
algorithms for job shop scheduling problems because of its simplicity, versatility and good robustness. Çalis 
et al.25 statistically shows the algorithms adopted by researchers for job shop scheduling solutions in the period 
1997–2012, where GA ranked first with 26.4% of the total. Salido et al.26 developed GA to solve an extended 
version of the job shop scheduling problem in which machines can consume different amounts of energy to 
process tasks at different rates. Azadeh et al.27 presented an integrated simulation and GA for optimum operator 
allocation in a large multi-product assembly shop. Liang et al.28 studied a hybrid algorithm based on GA and 
SA to solve complex multiproduct scheduling problem with 0-wait constraint. Costa et al.29 proposed a hybrid 
metaheuristic procedure integrating features from genetic algorithm and random sampling search method to 
effectively cope with FSP. Hamdi et al.30 proposed 6 versions of the genetic algorithms based on different genetic 
operators to minimize the makespan in a two-machine cross-docking FSP. Praveen et al.31 proposed a GA 
approach to minimize the makespan for two batch processing machines in a flow shop and experimental study 
indicated that the GA approach outperforms the other approaches by reporting better solution. Pavol et al.32 pro-
posed a hybrid improvement heuristic for FSP based on the idea of GA and heuristic method. Through statistics, 
we find that these variations focus on operator adaptation for special scheduling problems, optimization of initial 
populations and updating criteria of genetic operators. GA applied to job shop scheduling problem follows the 
standard process of GA for solving general problems, i.e., designing the chromosome encoding and decoding 
method and forming the initial population, and then evolving the population by selection crossover variants.

Due to the importance and representativeness of FSP in the scheduling field, researchers designed several 
benchmarks to test and compare the optimization performance of different methods. Carlier33 designed 8 bench-
marks of different scales, named Car01–Car08. Heller34 gave 2 benchmarks named Hel01 and Hel02. Reeves24 
gave 21 benchmarks named Rec01(odd-numbered)-Rec41. Taillard35 proposed 120 benchmarks named Ta001-
Ta120 and divided them into 12 groups based on their sizes. The sizes of these problems were greater than that 
of the rare examples published and correspond to real dimensions of industrial problems. Eva et al.36 developed 
a website for researchers to share a series of examples, which is really a boon in combinatorial optimization and 
the above benchmarks all can be found on it.

Synthesize the above analysis, heuristic algorithms have high solving speed, the solution quality is not good. 
Evolutionary algorithms make up for this defect in small-scale problems, but the solution performance will 
deteriorate with the expansion of the problem scale and there will be premature problems. In order to improve 
the solving accuracy of FSP problems, a computational efficient optimization approach combining NEH and 
niche genetic algorithm (NEH-NGA) is developed after we studied the solution space distribution of FSPs. It 
is strengthened in the following three aspects: NEH algorithm is used to optimize the initial population, three 
crossover operators are used to enhance the genetic efficiency, and the niche mechanism is used to control the 
population distribution.

FSP description and related basic research
FSP description.  There are n jobs {J1, J2, …, Jn} that have to processed in the same sequence on m unrelated 
machines {M1, M2, …, Mm}. Typically, job Ji contains m operations {Oi1, Oi2, …, Oim} in a fixed sequence. The 
processing time of Ji on machine is given by {pi1, pi2, …, pim}. The FSP has the following constraints:

(1)	 Every job has to be processed on the fixed machine order.
(2)	 Each operation cannot be repeated processing.
(3)	 Each operation can only be processed by one machine at a time and each machine can only process one 

operation at a time.
(4)	 All machines are idle at time 0.
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It is clear that each operation may wait before being processed if the machine is in processing. The problem 
consists of minimizing the time between the beginning of the execution of the first job on the first machine and 
the completion of the execution of the last job on the last machine, and this time is called makespan5.

Analysis of FSP solution space.  According to the above statement of FSP, we know that the number 
of solutions for any problem with scale nxm is n!. In order to study the distribution of FSP solutions, we enu-
merated all the solutions of “Car05” and “Car07”. They’re on the scale of 10 × 6 and 7 × 7 with 3,628,800 and 
5040 different job sequences respectively. Figure 1 shows the makespan distribution of “Car05” and “Car07”. 
For “Car05”, specifically, the number of individuals in [9500, 10500] is 1,751,048, the number of optimal job 
sequences (job sequences are J5-J4-J2-J1-J3-J8-J6-J10-J9-J7, J5-J2-J4-J1-J3-J8-J6-J10-J9-J7, J4-J5-J2-J1-J3-J8-J6-J10-J9-J7 and 
their makespan = 7720) is 3 and the worst (job sequence are J10-J8-J7-J1-J9-J5-J3 -J4-J2-J6, J10-J8-J7-J1-J9-J3-J5-J4-J2-J6, 
J10-J7-J8-J1-J9-J5-J3-J4-J2-J6, J10-J7-J8-J1-J9-J3-J5-J4-J2-J6 and the makespan = 12,152) is 4. It took 5277 s to evaluate all 
the solutions on computer. This indicates that enumerations for larger FSP problems will take more time, even 
if the scale changes from 10 to 11 jobs, the time will increase by 11 times. For “Car07, specifically, the number 
of individuals in [7500, 9000] is 4145, the number of optimal job sequences (job sequences are J5-J4-J2-J6-J7-
J3-J1 and the makespan = 6590) is 1 and the worst (job sequence are J1-J7-J5-J3-J6-J2-J4, J1-J5-J7-J3-J6-J2-J4 and the 
makespan = 9872) is 2.

Figure 2 shows the relative makespan probability distribution of “Car05” and “Car07”. The relative makespan 
is makespan divided by optimal makespan, which means 1 represent the optimal solution. According to the dis-
tribution, it can be seen that the number of 1% higher than the optimal solution is very small, and it is difficult to 
find this region by pure random search. The average solution of these two cases is 25.2% and 23.25% higher than 
the optimal solution respectively. It can also be seen from Fig. 2 that their solutions are more concentrated near 
this position. This means that the random initial population of the general population evolutionary algorithm 
is highly likely to be distributed in this interval.

Methods
Through our preliminary study, it is found that the advantage of heuristic algorithm is the speed of constructing 
scheduling solutions, but the scheduling quality is not special, among which NEH method has the best perfor-
mance. Theoretically, the global convergence performance of standard genetic algorithm (SGA) can guarantee 
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the robustness to the initial value in the search process, but it is difficult in the actual time. Sometimes, the effect 
of large-scale FSP solution is worse than that of NEH, which due to the dependence of the optimization per-
formance and efficiency of the algorithm on the initial population. Therefore, optimizing the initial population 
through NEH may be a good choice.

In the process of SGA, the structure of crossover operators is always unchanged, which easily leads to the loss 
of effective features of parents. Therefore, splitting the population into several sub-populations with different 
crossover operators for evolution may make the algorithm perform well in terms of population diversity and 
search performance.

In SGA, mating is completely random. In the later stage of evolution, large numbers of individuals concentrate 
on a local optimum. Without knowing the spatial distribution of solution, we cannot intervene to get rid of local 
optimum. Niche genetic algorithm is an effective method to solve multimodal optimization. Perhaps we can find 
the global optimal solution by using the niche formation idea.

Based on the above analysis, we developed a niche genetic algorithm based on NEH to search for the global 
optimum of FSP, which is called NEH-NGA for short. The structural framework of NEH-NGA conforms to 
the general process of SGA. Figure 3 shows the general steps of the proposed algorithm. The following parts of 
this section will briefly review the basic methods and specific operational details in NEH-NGA. Let’s use the 
benchmark “Car5” as an example to introduce.

Encoding and decoding.  Encoding is the primary problem to be solved in the application of GA, and also 
a key step in the design of GA. In FSP, due to the same order of all jobs, it is possible to simplify the operations 
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Figure 3.   Flow chart for NEH-NGA.
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within the same job into a whole, that is, encoding based on the job. The serial number of the job is the value of 
chromosome gene, and the sequence of genes is the processing order of the jobs. This means that in a feasible 
scheduling solution, the values of all genes are different. E.g., a chromosome “2-1-4-5-7-3-8-10-9-6” is a feasible 
scheduling solution represents the processing order “J2-J1-J4-J5-J7-J3-J8-J10-J9-J6”. In essence, decoding is the pro-
cess of converting chromosomes into scheduling schemes, as well as the process of calculating the start time and 
end time of each operation. And then the Gantt chart can be got. Whether the target function is makespan or 
anything else such as machine load, device idle rate, etc., is expanded on this basis. When decoding, our decod-
ing method is shown in Algorithm 1. Decoding follows the principle that no operation can be advanced without 
changing the processing order on the machine. Figure 4 illustrates the decoding principle.

Algorithm 1 Decoding method
Input: Opera�on chromosome, 

M – scheduling data matrix,
n – length of opera�on chromosome,
m – number of machines.

Output: Makespan,
 s_�me – start �me of opera�ons,

e_�me – end �me of opera�ons.
1: for ( i←1; i≤n; i++ )
2:     for ( j←1; j≤m; j++ )
3:        if ( i==1 ) 
4:          if ( j==1 ) 
5:             s_�meij=0; 
6:           else
7:           s_�meij= s_�meij-1;
8:         end if
9:       else
10:         if ( j==1 )
11:           s_�meij= e_�mei-1j;
12:          else
13:           s_�meij=max(e_�mei-1j, e_�meij-1);  
14:          end if     
15:       end if
16:       e_�meij=s_�meij+p_�meij;
17:     end for
18:  end for
19:  Makespan= e_�menm;

(a)

i=1
j=1

Current operation
Decoded operation

(b)

i=1
j≥2

(c)

i≥2
j=1

(d)

i≥2
j≥2

maximal

Figure 4.   Decoding principle.
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NEH optimizes the initial population.  In SGA, the initial population can be obtained by random sort-
ing of sequence 1 to n. On this basis, the quality of the population can be improved by putting the individual 
obtained by NEH into the initial population. In Introduction, we find that the variations of NEH focus on 
construction criteria of input sequences for construction phase and the tie-breaking mechanisms of candidate 
sequences. However, in the proposed algorithm of this paper, population evolution makes the above improved 
heuristic mechanism irrelevant. Let’s recall NEH method:

Step 1 Sort the n jobs in descending order of the sums of processing times on the machines.
Step 2 Take the first 2 jobs of the sequences and sort in all possible ways, then the one with a better makespan 
is selected as the fixed sequence.
Step 3 Starting with the 3rd job of the job sequence got in Step 1, insert it into all positions of the fixed 
sequence, and select the sequence with the best fitness as the new fixed sequence, until all the jobs have been 
scheduled.
Step 4 Output the latest fixed sequence as the best scheduling scheme.

Selection, crossover and mutation.  In GA, the commonly used selection operators are: rotating selec-
tion operator, rotating selection operator with ranking, random consistent selection operator and tournament 
selection operator. In this paper, the tournament selection operator is used. During the selection of the tourna-
ment selection operator, k individuals are randomly selected from the population, and the one with the best 
fitness among the k individuals is identified as the optimal individual. This optimal individual is an individual in 
the next generation population, and the process repeats several times to produce a new population.

In GA, crossover refers to the process in which two mutually paired chromosomes exchange some of their 
genes with each other in some way, thus forming two new individuals. Crossover operator is the main operator 
for global search of updating population. Numerical function optimization usually adopts binary encoding, and 
the parent characteristics can be preserved through single point crossing or multi-point crossing. In combinato-
rial optimization, the above crossover operator is no longer applicable, and the single crossover operator causes 
serious loss of effective information of the parent generation, so we adopt three crossover operators to cross.

Reeves24 proposed two crossover operators “C1” and “C2” when he first used GA to solve FSP and “C2” was 
expected that it would disrupt the chromosome much more than “C1”. As shown in Fig. 5, this crossover operator 
is similar to one-point crossover operator. A random crossover site is generated and the gene fragments preceding 
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Figure 5.   Crossover operators.
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the crossover site are preserved in situ. Genes identical to the above gene fragments are deleted from both pater-
nal chromosomes, and the remaining genes are sequentially passed on to the other offspring chromosomes.

Falkenauer et al.37 proposed a linear order crossover (LOX) operator and it can be thought of as a variation 
of two-point crossover operator. Specifically, as shown in Fig. 5, two random crossover sites are determined, 
and the gene fragments between the two sites are preserved in situ. Genes identical to the above gene fragments 
are deleted from both paternal chromosomes, and the remaining genes are sequentially passed on to the other 
offspring chromosomes.

Kacem38 proposed a position-based crossover (POX) operator and it can be thought of as a variation of multi-
point crossover operator. This paper is no longer crossing based on position but on the job numbers. Specifically, 
as shown in Fig. 5, a random set of job numbers is generated, and the genes represented by the job numbers in the 
above set are preserved in situ. Genes identical to the above genes are deleted from both paternal chromosomes, 
and the remaining genes are sequentially passed on to the other offspring chromosomes.

Wang39 compared the effects of the above three crossover operators in SGA and the results show that there 
is no significant difference in search quality among them. Considering that the reservation of valid genes by a 
single crossover operator is one-sided, this paper uses the above three operators randomly.

When individual fitness no longer evolves and does not reach global optimum, it means that the algorithm 
enters prematurity. The phenomenon is attributed to the defect of the effective gene, and mutation can increase 
the population diversity to overcome this condition. The common mutation methods are basically based on 
two-point mutation. By the random two points, genes in chromosomes can perform swapping mutation, inverse 
mutation and inserting mutation.

Figure 6 shows the principle of the above 3 mutation operators. Swapping mutation is swapping genes at the 
two points. Inverse mutation is sort genes between the two points in reverse order. Inserting mutation is inserting 
a gene from one point into the other. A similar integrated approach is to resort the genes between the two points 
randomly and the above 3 methods are all belong to the integrated method. There are {k − (i − 1)}! Variation 
solutions that can be produced by the integrated method, where i, k are the random mutation points. Since the 
neighborhood solution space will increase sharply with the increase of the distance between mutation points, the 
random mixing of the above three mutation operators will be the simplest and most effective mutation means.

Niche evolution mechanism.  “Niche” is a concept derived from biology and it refers to a specific living 
environment. In the course of their evolution, creatures generally live together with their own species and repro-
duce together. Refine this idea and applied it to optimization: when the Hamming distance of two individuals is 
less than a predetermined value (or called niche distance), the individual with the smaller fitness will be penalized.

The idea of niche genetic algorithm (NGA) proposed in this paper is: firstly, the Hamming distance between 
individuals in the population is compared in pairs. If the Hamming distance is less than the pre-set distance L, 
then compare the fitness, and the individual with lower fitness will be imposed a strong penalty function to greatly 
reduce its fitness. In this way, for the two individuals in a single peak range, the poor one’s fitness becomes worse 
after processing, and the probability of its being eliminated in the subsequent evolutionary process increases. 
In other words, there will be only one good individual in one single peak range, which not only maintains the 
diversity of the population, but also keeps a certain distance between individuals. In addition, individuals can 
be dispersed in the whole solution space, and a niche genetic algorithm is realized. The steps are as follows:

2 1 4 5 7 3 8 10 9 2 1 3 5 7 4 8 10 9

Random points, e.g., 3, 6

6 6

2 1 4 5 7 3 8 10 9 2 1 3 7 5 4 8 10 96 6

2 1 4 5 7 3 8 10 9 2 1 3 4 7 3 8 10 96 6

Swapping mutation operator (SWAP)

Inverse mutation operator (INV)

Inserting mutation operator (INS)

Original chromosome Mutated chromosome

Mutated genes

Figure 6.   Mutation operators.
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Step 1: Generated u individuals {× 1, × 2,…, × u} randomly to form the initial population P, and calculate the 
fitness F(x) of each individual.
Step 2 Sort individuals in descending order according to their fitness, and record the first v (v < u) individuals 
in filial-population Q.
Step 3 Perform selection, crossover and mutation to population P according to rules and get the updated P.
Step 4 Merge P and Q, and then calculate the Hamming distance H(xi, xj) between these u + v individuals. If 
H(xi, xj) < L, then min(F(xi), F(xj)) = Penalty, where Penalty = Avg(P).
Step 5 Update the fitness of these u + v individuals and sort them in descending order. Then select the first u 
individuals to form new P.
Step 6 If the termination condition is not met, then turn Step 2. Otherwise, end loop.

Results and discussion
Parameters setting and experimentation.  In order to examine the effectiveness of the proposed NEH-
NGA, this paper compared NEH-NGA with the NEH Algorithm which is the most popular heuristic in refer-
ences and SGA which is widely used in combinatorial optimization. In this section, we tested 101 benchmark 
instances of FSP and the tested sets of benchmarks have been introduced in “Introduction” section. The relevant 
data and the known optimal solutions are available on the website developed by Eva et al.36.

MATLAB 21(a) was used to test benchmark instances of FSP. The CPU frequency of the computer (Intel 
i5-4460) is 3.20 GHz and the memory is 8 GB. Makespan was regarded as the evaluation index of computational 
efficient, while in evolutionary algorithms, the number of iterations of the first occurrence of the optimal solution 
was recorded to regard as the convergence efficiency.

Different setting parameters for different sizes problems. For the reason of optimization is a complex process, 
parameters need to be obtained through continuous simulation tests. Table 1 shows the specific parameter set-
tings in the proposed algorithm. The classification is based on the results of our many experiments and theoretical 
support. E.g., for the instance “Car07” with scale “7 × 7”, its solution space is 7! = 5040. We start with a population 
of 50, and after 50 iterations, we can theoretically search for 2500 different solutions. This coverage is already 
quite high, and SGA actually finds the optimal solution on average in the fifth generation. For large-scale FSPs, 
the algorithm can ensure the validity of the parameters we set in the actual solving experiences, although the 
gap between the total number of searches and the solution space is large.

The parameters in Table 1 are described below:

PcProbability of crossover, Pm Probability of mutation, U Number of individuals per generation, V Number 
of individuals of parent population in niche evolution mechanism, L Pre-set Hamming distance, Gen Number 
of evolutionary iterations.

For each benchmark instance, it was solved for 20 times to obtain the average result. However, the heuristic 
NEH algorithm is different from evolutionary algorithms and it can be calculated once. As “Car” series, “Rec” 
series and “Hel” series contain part of the scale of “Taillard” series, we selected parts of different scales in “Tail-
lard” series for testing.

Results and discussion.  The post-test statistics are shown in Tables 2 and 3. In Table 2, the solution results 
of benchmark series “Car”, “Rec” and “Hel” are compared in detail with those of classical algorithms and the 
solutions on benchmark series “Taillard” are shown in Table 3.*C is the best solution we know40. The values of 
“gap ratio” show the percentage of difference between known optimum and obtained optimum in experience. 
To facilitate observation, we averaged the data in Tables 2 and 3 according to different problem series and scales, 
and the results are shown in Figs. 7 and 8.

On some small-scale FSPs such as series “Car”, “Rec”, “Hel” the solution accuracy of SGA is better than that of 
NEH, and the best value for multiple times can reach the known optimal. However, solution accuracy of SGA has 
no obvious advantage over NEH heuristic algorithm. Both the performance of the best optimum and the average 

Table 1.   Parameters setting.

Parameters Common problem scales

Pc 0.8 0.8 0.8 0.8

Pm 0.1 0.1 0.1 0.1

Parameters

Problem scale with classification 1

n < 10 10 ≤ n < 20 20 ≤ n < 50 n ≥ 50

u 50 100 150 200

v 10 20 40 100

L 3 5 8 10

Parameters

Problem scale with classification 2

n × m < 100 100 ≤ n × m < 500 500 ≤ n × m < 2000 n × m ≥ 2000

gen 50 100 150 200
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optimum on large-scale FSPs are not good. Except for a few series of problems, the gap ratio of solutions obtained 
by NEH is less than 5%. Either the average solution gap ratio or the optimal gap ratio, NEH-SGA performs best.

As Table 3 and Fig. 8 demonstrate, the solving deviation of NEH heuristic algorithm is relatively stable, which 
fluctuates around 2% for most instances, except for individual instances (Taillard 50 × 20), which are higher, 
reaching 6%. The accuracy of SGA is not much different from that of NEH on small-scale instances, or even better 
than that of NEH on individual instances, but it is the worst on large-scale instances. Compared with the previ-
ous two algorithms, HMSA17 has a large improvement in accuracy and is relatively stable. The solving deviation 
of HMSA can be controlled below 1% on average. In general, the proposed NEH-NGA has some improvements 
compared with HMSA. The known optimal solution can be reached on some instances, which may be due to 
the lucky commonality of population evolution algorithms.

In view of the appropriateness of Gantt chart color expression and operation number expression, we selected 
“Rec11” with 20 × 10 scale and “Ta31” with 50 × 5 scale as demonstration instances.

Figure 9 shows the population evolutionary process of “Rec11”. As shown in Fig. 9a, in iteration 0, the opti-
mum of SGA is 1669 and NEH-SGA is 1550. At the 53th iteration, SGA get the optimal solution 1482 and at the 
17th iteration, NEH-SGA get the optimal solution 1431. We can see from Table 2 that 1431 is the known best 
solution to this instance. The above differences suggest that, using NEH to optimize the initial population and 
applying three crossover operators to enhance the genetic efficiency are resultful. The number of solutions to 
“Rec11” is 20! ≈ 2.43 × 1018 and it’s really a quite lager number. However, NEH-NGA can find the optimal one 
precisely that proves the search ability of the algorithm. While Fig. 10 shows the Gantt charts of different solu-
tions to “Rec11” obtained by NEH(Makespan = 1550), SGA(Makespan = 1482) and NEH-SGA(Makespan = 1431). 
Obviously, NEH-SGA has the highest solution accuracy.

As shown in Fig. 9b, at the beginning of iteration, especially in the first five iterations, the population indi-
vidual variance generated by SGA and NEH-NGA algorithms is basically the same, which reflects the absolute 
randomness of meta-heuristic algorithm. As the iteration progresses, selection mechanism makes individuals 

Table 2.   Solutions on Car, Rec and Hel benchmarks.

Order Instance Scale (nxm) *C

NEH SGA NEH-NGA

Optimul
Gap ratio 
(%) Optimul

Gap ratio 
(%)

Average 
optimum

Average 
Gap ratio 
(%) Optimul

Gap ratio 
(%)

Average 
optimum

Average gap 
ratio (%)

1 Car01 11 × 5 7038 7038 0.00 7038 0.00 7038.00 0.00 7038 0.00 7038.00 0.00

2 Car02 13 × 4 7166 7376 2.93 7166 0.00 7235.20 0.97 7166 0.00 7166.00 0.00

3 Car03 12 × 5 7312 7399 1.19 7312 0.00 7396.85 1.16 7312 0.00 7332.25 0.28

4 Car04 14 × 4 8003 8129 1.57 8003 0.00 8068.10 0.81 8003 0.00 8003.00 0.00

5 Car05 10 × 6 7720 7835 1.49 7720 0.00 7797.35 1.00 7720 0.00 7735.50 0.20

6 Car06 8 × 9 8505 8773 3.15 8505 0.00 8560.40 0.65 8505 0.00 8505.00 0.00

7 Car07 7 × 7 6590 6590 0.00 6590 0.00 6631.65 0.63 6590 0.00 6590.00 0.00

8 Car08 8 × 8 8366 8564 2.37 8366 0.00 8398.50 0.39 8366 0.00 8366.00 0.00

9 Rec01 20 × 5 1247 1320 5.85 1249 0.16 1291.95 3.60 1247 0.00 1254.25 0.58

10 Rec03 20 × 5 1109 1116 0.63 1111 0.18 1130.35 1.93 1109 0.00 1112.88 0.35

11 Rec05 20 × 5 1242 1296 4.35 1245 0.24 1261.05 1.53 1242 0.00 1244.63 0.21

12 Rec07 20 × 10 1566 1626 3.83 1584 1.15 1616.95 3.25 1566 0.00 1581.00 0.96

13 Rec09 20 × 10 1537 1583 2.99 1561 1.56 1594.10 3.72 1537 0.00 1562.13 1.63

14 Rec11 20 × 10 1431 1550 8.32 1473 2.94 1500.00 4.82 1438 0.49 1464.00 2.31

15 Rec13 20 × 15 1930 2002 3.73 1956 1.3 2002.40 3.75 1935 0.26 1963.75 1.75

16 Rec15 20 × 15 1950 2025 3.85 1982 1.64 2016.00 3.38 1950 0.00 1976.38 1.35

17 Rec17 20 × 15 1902 2019 6.15 1959 3.00 1994.80 4.88 1907 0.26 1947.50 2.39

18 Rec19 30 × 10 2093 2185 4.40 2175 3.92 2211.15 5.65 2098 0.24 2154.13 2.92

19 Rec21 30 × 10 2017 2131 5.65 2076 2.93 2130.45 5.62 2022 0.25 2070.25 2.64

20 Rec23 30 × 10 2011 2110 4.92 2070 2.93 2124.25 5.63 2016 0.25 2066.25 2.75

21 Rec25 30 × 15 2513 2644 5.21 2636 4.89 2681.20 6.69 2518 0.20 2605.13 3.67

22 Rec27 30 × 15 2373 2505 5.56 2470 4.09 2522.55 6.30 2378 0.21 2445.50 3.06

23 Rec29 30 × 15 2287 2391 4.55 2415 5.60 2493.65 9.04 2292 0.22 2397.00 4.81

24 Rec31 50 × 10 3045 3171 4.14 3249 6.70 3292.30 8.12 3150 3.45 3225.88 5.94

25 Rec33 50 × 10 3114 3241 4.08 3189 2.41 3265.35 4.86 3149 1.12 3197.38 2.68

26 Rec35 50 × 10 3277 3313 1.10 3327 1.53 3381.15 3.18 3282 0.15 3315.75 1.18

27 Rec37 75 × 20 4951 5284 6.73 5401 9.09 5476.40 10.61 5233 5.70 5282.13 6.69

28 Rec39 75 × 20 5087 5299 4.17 5469 7.51 5549.50 9.09 5299 4.17 5359.88 5.36

29 Rec41 75 × 20 4960 5242 5.69 5436 9.60 5514.80 11.19 5153 3.89 5197.50 4.79

30 Hel01 100 × 10 513 523 1.95 527 2.73 531.90 3.68 513 0.00 522.38 1.83

31 Hel02 20 × 10 135 141 4.44 137 1.48 141.30 4.67 135 0.00 137.25 1.67
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Order Instance Scale (nxm) *C

NEH SGA HMSA17 NEH-NGA

Optimul Gap ratio (%) Optimul Gap ratio (%) Optimul Gap ratio (%) Optimul Gap ratio (%)

1 Ta021 20 × 20 2297 2410 4.92 2336 1.70 2324 1.18 2297 0.00

2 Ta022 20 × 20 2100 2150 2.38 2144 2.10 2112 0.57 2112 0.57

3 Ta023 20 × 20 2326 2411 3.65 2364 1.63 2348 0.95 2326 0.00

4 Ta024 20 × 20 2223 2264 1.84 2264 1.84 2242 0.85 2264 1.84

5 Ta025 20 × 20 2291 2397 4.63 2330 1.70 2320 1.27 2305 0.61

6 Ta026 20 × 20 2226 2349 5.53 2255 1.30 2249 1.03 2245 0.85

7 Ta027 20 × 20 2273 2383 4.84 2303 1.32 2290 0.75 2290 0.75

8 Ta028 20 × 20 2200 2249 2.23 2249 2.23 2224 1.09 2215 0.68

9 Ta029 20 × 20 2237 2313 3.40 2279 1.88 2246 0.40 2248 0.49

10 Ta030 20 × 20 2178 2277 4.55 2234 2.57 2192 0.64 2178 0.00

11 Ta031 50 × 5 2724 2733 0.33 2735 0.40 2728 0.15 2724 0.00

12 Ta032 50 × 5 2834 2882 1.69 2864 1.06 2846 0.42 2834 0.00

13 Ta033 50 × 5 2621 2640 0.72 2650 1.11 2642 0.80 2630 0.34

14 Ta034 50 × 5 2751 2787 1.31 2778 0.98 2762 0.40 2755 0.15

15 Ta035 50 × 5 2863 2868 0.17 2887 0.84 2866 0.10 2866 0.10

16 Ta036 50 × 5 2829 2840 0.39 2852 0.81 2832 0.11 2829 0.00

17 Ta037 50 × 5 2725 2769 1.61 2746 0.77 2748 0.84 2736 0.40

18 Ta038 50 × 5 2683 2707 0.89 2704 0.78 2690 0.26 2694 0.41

19 Ta039 50 × 5 2552 2617 2.55 2586 1.33 2564 0.47 2558 0.24

20 Ta040 50 × 5 2782 2786 0.14 2782 0.00 2796 0.50 2794 0.43

21 Ta051 50 × 20 3875 4082 5.34 4093 5.63 3896 0.54 3880 0.13

22 Ta052 50 × 20 3715 3921 5.55 3983 7.21 3746 0.83 3738 0.62

23 Ta053 50 × 20 3668 3888 6.00 3911 6.62 3694 0.71 3690 0.60

24 Ta054 50 × 20 3752 3993 6.42 3966 5.70 3814 1.65 3776 0.64

25 Ta055 50 × 20 3635 3835 5.50 3911 7.59 3686 1.40 3673 1.05

26 Ta056 50 × 20 3698 3914 5.84 3896 5.35 3722 0.65 3713 0.41

27 Ta057 50 × 20 3716 3952 6.35 3998 7.59 3766 1.35 3754 1.02

28 Ta058 50 × 20 3709 3938 6.17 3979 7.28 3768 1.59 3709 0.00

29 Ta059 50 × 20 3765 3952 4.97 4000 6.24 3812 1.25 3781 0.42

30 Ta060 50 × 20 3777 4079 8.00 4020 6.43 3826 1.30 3795 0.48

31 Ta061 100 × 5 5493 5519 0.47 5505 0.22 5502 0.16 5505 0.22

32 Ta062 100 × 5 5268 5284 0.30 5290 0.42 5272 0.08 5268 0.00

33 Ta063 100 × 5 5175 5219 0.85 5221 0.89 5192 0.33 5219 0.85

34 Ta064 100 × 5 5014 5037 0.46 5035 0.42 5020 0.12 5014 0.00

35 Ta065 100 × 5 5250 5261 0.21 5280 0.57 5254 0.08 5261 0.21

36 Ta066 100 × 5 5135 5141 0.12 5164 0.56 5144 0.18 5141 0.12

37 Ta067 100 × 5 5246 5266 0.38 5292 0.88 5264 0.34 5252 0.11

38 Ta068 100 × 5 5106 5107 0.02 5137 0.61 5114 0.16 5106 0.00

39 Ta069 100 × 5 5454 5500 0.84 5506 0.95 5466 0.22 5474 0.37

40 Ta070 100 × 5 5328 5346 0.34 5353 0.47 5332 0.08 5346 0.34

41 Ta071 100 × 10 5770 5846 1.32 5955 3.21 5792 0.38 5780 0.17

42 Ta072 100 × 10 5349 5453 1.94 5543 3.63 5368 0.36 5358 0.17

43 Ta073 100 × 10 5677 5781 1.83 5823 2.57 5694 0.30 5700 0.41

44 Ta074 100 × 10 5791 5942 2.61 6056 4.58 5826 0.60 5833 0.73

45 Ta075 100 × 10 5468 5679 3.86 5750 5.16 5514 0.84 5509 0.75

46 Ta076 100 × 10 5303 5375 1.36 5447 2.72 5324 0.40 5319 0.30

47 Ta077 100 × 10 5599 5723 2.21 5747 2.64 5628 0.52 5644 0.80

48 Ta078 100 × 10 5623 5737 2.03 5816 3.43 5664 0.73 5668 0.80

49 Ta079 100 × 10 5875 5983 1.84 6053 3.03 5912 0.63 5896 0.36

50 Ta080 100 × 10 5845 5903 0.99 5978 2.28 5892 0.80 5890 0.77

51 Ta091 200 × 10 10,868 10,942 0.68 11,066 1.82 10,932 0.59 10,968 0.92

52 Ta092 200 × 10 10,494 10,735 2.30 10,885 3.73 10,624 1.24 10,594 0.95

53 Ta093 200 × 10 10,922 11,027 0.96 11,203 2.57 11,006 0.77 10,992 0.64

54 Ta094 200 × 10 10,889 11,057 1.54 11,036 1.35 11,024 1.24 10,984 0.87

55 Ta095 200 × 10 10,524 10,684 1.52 10,846 3.06 10,574 0.48 10,565 0.39

Continued
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gather and population diversity decrease, resulting in smaller variance. From the 5th iteration to the 10th itera-
tion, the variance difference between the two algorithms appeared. The rapid decline of SGA indicates that 
individual aggregation may tend to prematurity obviously, which can also be seen in Fig. 9a, that is, the differ-
ence between the average value and the optimal value is not large. At the same stage, the variance of NEH-SGA 
is still at a high level, and the difference between average value and the optimal value is also large. At the end 
of iteration, both the algorithms converge, and the variance of NEH-SGA is still larger than that of SGA. The 
above differences suggest that, applying niche mechanism to control the population distribution and maintain 
population diversity is resultful.

Figure 11 shows the Gantt charts of different solutions to “Ta31” obtained by NEH(Makespan = 2733), 
SGA(Makespan = 2735), HMSA(Makespan = 2728) and NEH-SGA(Makespan = 2724). Obviously, NEH-SGA 
has the highest solution accuracy. The job sequence of the solution are as follows:

NEH	� 10-36-30-24-38-50-39-40-46-17-31-41-12-18-6-26-32-49-13-8-5-44-22-43-4-2-34-42-21-25-27-
45-16-28-29-9-14-15-47-1-11-33-7-48-23-20-35-19-37-3.

Order Instance Scale (nxm) *C

NEH SGA HMSA17 NEH-NGA

Optimul Gap ratio (%) Optimul Gap ratio (%) Optimul Gap ratio (%) Optimul Gap ratio (%)

56 Ta096 200 × 10 10,331 10,445 1.10 10,720 3.77 10,369 0.37 10,354 0.22

57 Ta097 200 × 10 10,857 10,966 1.00 11,188 3.05 10,907 0.46 10,876 0.18

58 Ta098 200 × 10 10,731 10,811 0.75 11,032 2.80 10,794 0.59 10,784 0.49

59 Ta099 200 × 10 10,438 10,579 1.35 10,746 2.95 10,482 0.42 10,497 0.57

60 Ta100 200 × 10 10,676 10,844 1.57 11,011 3.14 10,720 0.41 10,676 0.00

61 Ta101 200 × 20 11,294 11,653 3.18 12,119 7.30 11,342 0.43 11,342 0.43

62 Ta102 200 × 20 11,420 11,692 2.38 12,275 7.49 11,584 1.44 11,575 1.36

63 Ta103 200 × 20 11,446 11,852 3.55 12,282 7.30 11,568 1.07 11,461 0.13

64 Ta104 200 × 20 11,347 11,782 3.83 12,222 7.71 11,480 1.17 11,465 1.04

65 Ta105 200 × 20 11,311 11,685 3.31 12,153 7.44 11,452 1.25 11,469 1.40

66 Ta106 200 × 20 11,282 11,629 3.08 12,196 8.10 11,378 0.85 11,386 0.92

67 Ta107 200 × 20 11,456 11,832 3.28 12,332 7.65 11,624 1.47 11,534 0.68

68 Ta108 200 × 20 11,415 11,913 4.36 12,271 7.50 11,613 1.73 11,548 1.17

69 Ta109 200 × 20 11,343 11,698 3.13 12,265 8.13 11,524 1.60 11,511 1.48

70 Ta110 200 × 20 11,422 11,785 3.18 12,385 8.43 11,574 1.33 11,480 0.51

Table 3.   Solutions on taillard benchmarks.
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Figure 7.   Comparison on Car, Rec and Hel benchmarks.
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SGA	� 31-17-18-34-11-4-6-26-13-29-45-39-37-36-27-50-28-19-1-25-30-44-42-12-41-40-32–38-10-43-
7-48-5-21-22-24-15-47-46-9-8-49-3-2-16-23-20-14-33-35.

HMSA	� 31-40-18-27-26-32-13-49-10-34-22-12-39-50-6-41-45-5-2-17-28-25-1-29-47-3-48-4-11-14-38-
43-35-33-42-46-8-30-16-24-9-23-7-21-44-15-20-19-37-36.

NEH-SGA	� 31-40-41-39-17-6-5-32-34-10-21-11-45-29-9-26-4-1-22-50-47-7-12-30-27-13-19-14-18-25-24-
28-8-49-46-3-2-15-43-20-35-16-38-42-33-44-48-23-37-36.

Figure 12 shows the individual distribution map of NEH-SGA on “Ta31″. As can be seen from the figure, 
the optimal solution appears for the first time in the 30th generation and then the population tends to converge. 
Since the mutation probability (Pm) is set at 0.1, this means that about 10% of individuals in per generation will 
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Figure 8.   Comparison on Taillard benchmarks.
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have the mutation, and the reaction shown in distribution map as the jumping point. The mutation rule is not 
as random as the initial population, that is, the jumping point is not too far away from the optimal solution.

Conclusion
In this paper, the flow shop scheduling problem was studied. In the aspect of basic research, the spatial distribu-
tion of FSP solutions is studied, and common methods for solving NP-hard problems such as FSPs are under-
stood. Aiming at the defects of current methods in solving FSPs, a NEH-NGA algorithm with higher solving 
accuracy is proposed.

(1)	 NEH is the most effective heuristic algorithm in solving FSP. This paper uses the approach of taking NEH 
optimized individual as the initial solution of the evolutionary algorithm to improve the search perfor-
mance of the evolutionary algorithm.

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600
Time

1

2

3

4

5

6

7

8

9

10

Ma
ch
ine

J16J4 J2 J14 J19J10 J15 J11 J20 J5 J3 J9 J8 J7 J1 J12 J13J18 J6 J17

J16 J4 J2 J14J19 J10 J15 J11J20 J5 J3 J9 J8 J7 J1 J12 J13 J18J6 J17

J16 J4 J2J14 J19 J10 J15 J11 J20 J5 J3 J9 J8 J7 J1 J12 J13 J18 J6 J17

J16J4 J2 J14 J19 J10 J15 J11 J20 J5 J3 J9 J8J7 J1 J12 J13 J18J6 J17

J16 J4 J2 J14 J19 J10 J15 J11 J20J5 J3 J9 J8 J7 J1 J12 J13J18 J6 J17

J16 J4 J2 J14 J19 J10 J15 J11 J20J5 J3 J9 J8 J7 J1 J12 J13 J18 J6 J17

J16 J4 J2 J14 J19 J10 J15 J11 J20 J5 J3 J9 J8 J7 J1 J12 J13 J18J6 J17

J16 J4 J2 J14 J19 J10 J15 J11 J20 J5 J3 J9 J8 J7J1 J12 J13 J18 J6J17

J16 J4 J2 J14 J19 J10 J15 J11 J20 J5 J3 J9 J8 J7 J1 J12 J13 J18 J6 J17

J16 J4 J2 J14 J19 J10 J15 J11 J20 J5 J3 J9 J8 J7 J1 J12 J13 J18J6 J17

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600
Time

1

2

3

4

5

6

7

8

9

10

Ma
ch
ine

J2 J4 J14 J19J11 J9 J16J12 J20 J13J10 J8 J5 J3 J1 J17 J7 J15 J18 J6

J2 J4 J14J19 J11J9 J16J12 J20J13 J10 J8 J5 J3 J1 J17 J7J15 J18 J6

J2J4 J14 J19 J11 J9 J16 J12 J20 J13 J10 J8 J5 J3 J1 J17 J7 J15 J18 J6

J2 J4 J14 J19 J11 J9 J16J12 J20 J13 J10J8 J5 J3 J1 J17 J7 J15 J18 J6

J2 J4 J14 J19 J11 J9 J16J12 J20 J13J10 J8 J5 J3 J1 J17 J7 J15 J18 J6

J2 J4 J14 J19 J11 J9J16 J12 J20J13 J10 J8 J5 J3 J1 J17J7 J15 J18 J6

J2 J4 J14 J19 J11 J9 J16 J12 J20 J13 J10 J8 J5 J3 J1 J17 J7 J15 J18J6

J2 J4 J14 J19 J11 J9 J16 J12 J20 J13 J10 J8 J5J3 J1J17 J7J15 J18 J6

J2 J4 J14 J19 J11 J9 J16 J12 J20 J13 J10 J8 J5 J3 J1 J17J7 J15 J18 J6

J2 J4 J14 J19 J11 J9 J16 J12 J20 J13J10 J8 J5 J3 J1 J17J7J15 J18J6

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600
Time

1

2

3

4

5

6

7

8

9

10

Ma
ch
ine

J16J14 J9 J10 J2 J4 J20 J13J8 J12 J19J11 J17 J5 J15 J3 J1 J18 J7 J6

J16 J14 J9 J10 J2 J4J20J13 J8 J12 J19 J11J17 J5 J15 J3 J1 J18J7 J6

J16 J14 J9 J10 J2J4J20 J13 J8 J12 J19 J11 J17 J5 J15 J3 J1 J18 J7 J6

J16 J14 J9 J10J2 J4 J20 J13 J8J12 J19 J11 J17 J5 J15 J3 J1 J18J7 J6

J16 J14 J9 J10 J2 J4 J20 J13J8 J12 J19 J11 J17J5 J15 J3 J1J18 J7 J6

J16 J14 J9 J10 J2 J4 J20 J13 J8 J12 J19 J11 J17J5 J15 J3 J1 J18 J7 J6

J16 J14J9 J10 J2 J4 J20 J13 J8 J12 J19 J11 J17 J5 J15 J3 J1 J18 J7 J6

J16 J14 J9 J10 J2 J4 J20 J13 J8 J12 J19J11 J17 J5J15 J3 J1 J18 J7 J6

J16 J14 J9 J10 J2 J4 J20 J13 J8 J12J19 J11 J17J5 J15 J3 J1 J18 J7 J6

J16 J14 J9 J10 J2 J4 J20 J13 J8 J12 J19 J11J17J5 J15 J3 J1 J18J7J6

Figure 10.   Gantt charts of different solutions to “Rec11” obtained by NEH, SGA and NEH-SGA.
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(2)	 In order to ensure that the effective features in the genetic algorithm can be better inherited to the next 
generation, a single genetic operator is abandoned, and three genetic operators with different performance 
characteristics are mixed to use.

(3)	 In view of the advantages of niche in solving multi-peak function optimization problems, a niche idea was pro-
posed and introduce it into GA to slow down the premature phenomenon of GA in solving large-scale FSPs.

The results of compared with NEH heuristic algorithm and SGA evolutionary metaheuristic algorithm after 
testing on 101 FSP benchmark instances show that the solution accuracy has been significantly improved.

Future works:

(1)	 Considering that there is still a gap between the current optimum and the known optimal solution, an inter-
esting subject for future researches will be the investigation of this problem by the idle time of machine to 
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Figure 11.   Gantt charts of different solutions to “Ta31” obtained by NEH, SGA, HMSA and NEH-SGA.

Figure 12.   Individual distribution map of NEH-SGA on “Ta31”.
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develop a heuristic local search algorithm and combined with the present global search to further improve 
the solution accuracy.

(2)	 Considering the machine failure and maintenance during the production, how to deal with the post prog-
nostic decision making in order to improve system safety and avoid downtime and inopportune mainte-
nance spending will be another working topic.
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