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Genome and transcriptome 
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Preterm birth (PTB) occurs before 37 weeks of gestation. Risk factors include genetics and infection/
inflammation. Different mechanisms have been reported for spontaneous preterm birth (SPTB) 
and preterm birth following preterm premature rupture of membranes (PPROM). This study aimed 
to identify early pregnancy biomarkers of SPTB and PPROM from the maternal genome and 
transcriptome. Pregnant women were recruited at the Liverpool Women’s Hospital. Pregnancy 
outcomes were categorised as SPTB, PPROM (≤ 34 weeks gestation, n = 53), high-risk term 
(HTERM, ≥ 37 weeks, n = 126) or low-risk (no history of SPTB/PPROM) term (LTERM, ≥ 39 weeks, 
n = 188). Blood samples were collected at 16 and 20 weeks gestation from which, genome (UK Biobank 
Axiom array) and transcriptome (Clariom D Human assay) data were acquired. PLINK and R were used 
to perform genetic association and differential expression analyses and expression quantitative trait 
loci (eQTL) mapping. Several significant molecular signatures were identified across the analyses in 
preterm cases. Genome-wide significant SNP rs14675645 (ASTN1) was associated with SPTB whereas 
microRNA-142 transcript and PPARG1-FOXP3 gene set were associated with PPROM at week 20 of 
gestation and is related to inflammation and immune response. This study has determined genomic 
and transcriptomic candidate biomarkers of SPTB and PPROM that require validation in diverse 
populations.

Preterm birth (PTB) occurs when an infant is born prior to 37 completed weeks of gestation and is a major 
public health issue. PTB is a multifactorial condition and is associated with a number of poor health outcomes 
in infants including cerebral palsy, problems with vision and hearing, poor motor skills, asthma, autism and 
increased metabolic and cardiovascular risks to health1,2. Spontaneous PTB (sPTB) accounts for approximately 
two-thirds of all PTB and describes women that labour early, often for no clear reason. The other one-third are 
healthcare-provider initiated, usually in response to severe maternal or fetal disease (e.g. pre-eclampsia or severe 
intrauterine growth restriction) and will not be considered further in this study. A higher rate of infant morbidity 
is associated with ≤ 34 weeks of gestation and therefore this was applied as the threshold for sPTB in this study3.

Studies have shown that a familial hereditary element increases the risk of early labour. Women who were 
born preterm were more likely have a preterm delivery, and a women who had an obstetric history of sPTB is 
more likely to have a subsequent sPTB4–7. Both environmental factors (such as infection or lifestyle choices) and 
genetic factors are risks also associated with sPTB8,9. The role of infection pathway and associated genes, interleu-
kins or tumour necrosis factors (TNF) has been reported in many studies, suggesting that the maternal genome 
should be screened for potential genetic biomarkers10–14. A large PTB GWAS study by Zhang et al.15, consisting 
of over 43,000 women, identified EBF1 variant (Early B-cell factor 1, a transcription factor) associated with an 
increased risk of PTB further supporting a genetic cause involving immune response/inflammatory pathways.

Two clinical phenotypes of sPTB are (1) spontaneous preterm birth (SPTB) following the spontaneous onset 
of labour and (2) preterm premature rupture of membranes (PPROM) where the amniotic membrane spontane-
ously breaks and increases the risk of infection or preterm labour at a later date16. Despite obvious clinical differ-
ences, these two subgroups are often not differentiated in research studies when determining biomarkers for risk 
prediction, despite a universal acceptance that SPTB has multiple causes17. However, Capece et al.18 conducted 
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pathway analysis of PTB genetic studies and proposed the role of immune and hormonal regulation in SPTB, 
versus the role of hematologic disorder, collagen metabolism, matrix degradation and local inflammation in 
PPROM. Differences in response to PTB preventative treatments, of women with a history of either PPROM or 
SPTB, in a subsequent pregnancy was described by Care et al.19, suggesting these women are different, and may 
have unique genetics influencing their response to known clinical treatments.

Recent PTB studies have identified the association of PTB with maternal microRNAs20–24. Short, non-coding 
microRNAs are key post-transcriptional regulators, regulating gene expression by destabilising mRNA and 
thereby repressing protein production25,26. Exploring expression quantitative trait loci (eQTL) can determine 
associations between SNPs and transcripts to gain functional insights on candidate biomarkers using linear 
models27.

No study has attempted to link genetic inheritance with gene expression in women with SPTB and PPROM. 
We have acquired and analysed genome-wide SNP data and transcriptome gene expression data from the same 
cohort of women collected simultaneously from maternal blood during pregnancy to perform eQTL mapping 
to determine potential biomarkers of spontaneous preterm birth.

To our knowledge, this is the first investigation to explore both genome-wide and transcriptome-wide profiles 
in prospectively collected, mid-trimester maternal blood samples (from a well-defined cohort, using a PTB cut-off 
of ≤ 34 weeks gestation), to determine biomarkers of spontaneous preterm birth phenotypes PPROM and SPTB.

Results
Figure 1a summarises the number of women recruited to the study. A total of 310 DNA samples were included 
in GWAS analyses (Fig. 1b) and 114 RNA samples in gene expression analysis (Fig. 1c).

GWAS SNP associations.  GWAS analyses were conducted on the PTB phenotypes (cases), (1) SPTB and 
(2) PPROM against the term birth groups, (3) LTERM (recurrent term births only) and (4) HTERM (previous 
PTB with subsequent term birth).

PPROM versus LTERM.  PPROM versus LTERM analysis resulted in two genome-wide significant SNPs 
at chromosome 4, rs187066376 (p = 5.71e−09) and rs151199874 (p = 5.11e−08) both in non-coding region, 
LOC105377408 (Fig. 2a). SNP towers at chromosome 10 (rs34638554) and 12 (rs77423197) were further identi-
fied in non-coding regions (Fig. 2b).

SPTB versus HTERM.  SPTB versus HTERM association analysis yielded a genome-wide significant SNP 
on chromosome 1 (rs146756455, p = 3.18E−08) and a suggestive SNP signal, close to genome-wide significance 
threshold, on chromosome 4 (Fig. 3a). The genome-wide significant SNP, rs146756455, is an intronic variant of 

Figure 1.   Singleton pregnant participants recruited to the Liverpool preterm birth study cohort. (a) Final 
number of women included in the analyses. (b) DNA was extracted from whole blood collected from the 
participants and genomic profiling (GWAS) was conducted on the Biobank Axiom™ array. (c) RNA extracted 
from whole blood collected from participants at 16 and/or 20 weeks of gestation was processed on the Clariom 
D array. GWAS genome-wide association study, HTERM high-risk term births, LTERM low-risk term births, 
PPROM preterm premature rupture of membranes, PTB preterm birth, SPTB spontaneous preterm birth.
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Figure 2.   Genome-wide significant SNP identified from PPROM cases and LTERM controls GWAS analysis. 
(a) Manhattan plot of PPROM (n = 25) ≤ 34 weeks gestation and LTERM (n = 160) ≥ 39 weeks gestation 
GWAS analysis using Frequentist association test. Multi-dimensional scaling components 1 to 6 of the cohort 
were included as covariates. The upper red horizontal line displays the genome-wide significance threshold 
(p < 5 × 10–8) and the lower blue horizontal line represents an arbitrary suggestive threshold (p < 1 × 10–5). One 
SNP (rs187066376) exceeded genome-wide significance in this analysis on chromosome 4 (p = 5.71E−09). 
Figure generated using R package ‘qqman’28. (b) Regional plot of rs187066376 signal. Two SNPs are shown in 
linkage disequilibrium in red and blue. Figure produced using LocusZoom29.

Figure 3.   Manhattan plots of preterm versus term births GWAS analyses using Frequentist association 
test. (a) SPTB (n = 23) ≤ 34 weeks gestation and HTERM (n = 102) ≥ 37 weeks gestation and (b) PPROM 
(n = 25) ≤ 34 weeks gestation and HTERM (n = 102) ≥ 37 weeks gestation. Multi-dimensional scaling 
components 1 to 6 of the cohort were included as covariates. The upper red horizontal line displays the 
genome-wide significance threshold (p < 5 × 10–8) and the lower blue horizontal line represents an arbitrary 
suggestive threshold (p < 1 × 10–5). Manhattan plots were generated using R package ‘qqman’28. Regional plots: 
(c) genome-wide significant SNP (rs146756455) on chromosome 1 was identified as an intron variant in the 
gene, ASTN1 (p = 3.18E−08) (SPTB versus HTERM); (d) rs137993678 approaching genome-wide significance 
on chromosome 4 (p = 6.71E−08) (SPTB versus HTERM). Several SNPs are in linkage disequilibrium; (e) 
rs13406624 on chromosome 2 was identified as a non-coding region, LINC01931 (or MMADHC-DT) 
(p = 5.56E−08) (PPROM versus HTERM). Regional plots were produced using LocusZoom29.
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ASTN1 (p = 3.18E−08), which encodes astrotactin 1 (Fig. 3c). The association signal approaching genome-wide 
significance threshold at chromosome 4 (rs137993678) was not in a gene coding region (Fig. 3d).

PPROM versus HTERM.  No genome-significant SNPs resulted from the PPROM versus HTERM GWAS 
analysis. The SNP signal rs13406624 at chromosome 2 (p = 5.56E−08), approaching genome-wide significance, 
was in a non-coding region (Fig. 3b). Multiple SNPs were in the linkage disequilibrium (LD) with rs13406624 at 
chromosome 2 in non-coding RNA, LINC01931 (or MMADHC divergent transcript) (Fig. 3e).

SPTB versus LTERM.  Association analysis between SPTB and LTERM births yielded no genome-wide sig-
nificant SNPs, however multiple signals were obtained (Supplementary Fig. S1, see Supplementary File 1). An 
association signal at chromosome 10 (rs9424165) obtained the lowest p-value is an intronic variant in CAMK1D 
(calcium/calmodulin-dependent protein kinase ID). Chromosome 1 rs2092868 is an intron variant in NFIA 
(Nuclear Factor I A) region, chromosome 2 signal (rs78202288) is a MYO3B (myosin IIIB) intron variant, chro-
mosome 3 (rs61796814) signal is not in a coding region and chromosome 17 signal (rs150140114) is an intron 
variant in AKAP10 (A-kinase anchor protein 10) region.

LTERM versus sPTB cases.  Analysis of sPTB cases and LTERM highlighted a genome-wide significant 
SNP, rs188343966 (p = 1.69E−08, chr19:12973701), which is an intron variant in gene MAST1 (Microtubule 
Associated Serine/Threonine Kinase 1) (Fig.  4a,b). No SNPs were identified in linkage disequilibrium with 
MAST1 (rs188343966) (Fig. 4b).

HTERM versus sPTB cases.  No genome-wide significant SNPs were identified from the sPTB cases versus 
HTERM GWAS analysis (Supplementary Fig. S2). The lowest p-value signal on chromosome 16 (rs59159780, 
p = 4.14E−07) is not within a gene region (Supplementary Fig. S2).

Differential gene expression analysis at week 16 of gestation.  A total of 30,120 differentially 
expressed transcripts were identified at week 16 of gestation (p < 0.05), when analysing gene expression across 
SPTB versus HTERM, PPROM versus HTERM and SPTB versus PPROM. However none were significant at 
FDR p < 0.05 and did not reach log fold change threshold of < 1.5 or > 1.5.

Differential gene expression analysis at week 20 of gestation.  At week 20 of gestation, 147 dif-
ferentially expressed genes (DEGs) (49 upregulated and 98 downregulated) were significant at FDR p < 0.05 for 
the PPROM versus HTERM analysis (Fig. 5a). Of these significant DEGs, none reached > 1.5 or < − 1.5 log fold 
change (Fig. 5b; Supplementary File 2) (Fig. 5c). An unknown transcript (Probe ID: TC0300009931.hg.1), with 
no annotation available, yielded the lowest p-value (p = 1.19E−07, FDR p = 0.02). Of the transcripts with annota-
tions available, the top significant findings (FDR p < 0.03) are highlighted in Fig. 5c heatmap and summarised in 
Table 1. Full results from this analysis can be found in Supplementary File 2. No significant results were deter-
mined for SPTB versus HTERM or SPTB versus PPROM.

Figure 4.   Genome-wide significant SNP identified from PTB cases and LTERM controls GWAS analysis. 
(a) Manhattan plot of all PTB cases (n = 48) ≤ 34 weeks gestation and LTERM (n = 160) ≥ 39 weeks gestation 
GWAS analysis using Frequentist association test. Multi-dimensional scaling components 1 to 6 of the cohort 
were included as covariates. The upper red horizontal line displays the genome-wide significance threshold 
(p < 5 × 10–8) and the lower blue horizontal line represents an arbitrary suggestive threshold (p < 1 × 10–5). One 
SNP (rs188343966) exceeded genome-wide significance in this analysis on chromosome 19 (p = 1.69E−08). 
Figure generated using R package ‘qqman’28. (b) Regional plot of rs188343966 signal. Figure produced using 
LocusZoom29.
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Figure 5.   Significant DEGs identified from PPROM versus HTERM analysis at week 20 gestation of 57 
maternal samples. (a) Venn diagram of 147 DEGs (49 upregulated and 98 downregulated) were significant 
at FDR p < 0.05. (b) Volcano plot of DEGs based on nominal p < 0.05. (c) Heatmap outlining 24 DEGs (with 
annotations available) that reached FDR p < 0.03. These figures were produced suing ‘limma’ R package30.

Table 1.   Top 21 differentially expressed genes detected from PPROM versus HTERM expression analysis 
at week 20 of gestation. *logFC = log2 (fold change). † Significant at FDR p < 0.03, not including 3 unspliced 
transcripts.

ID Symbol Genename logFC* p FDR P†

NR_029683 MIR142 MicroRNA 142  − 0.513 6.79E−07 0.022

NM_001862 COX5B Cytochrome c oxidase subunit Vb  − 0.451 9.51E−07 0.022

ENST00000437410 HNRNPA3P12 Heterogeneous nuclear ribonucleoprotein A3 pseudo-
gene 12 0.518 1.16E−06 0.023

NM_194247 HNRNPA3 Heterogeneous nuclear ribonucleoprotein A3 0.458 1.79E−06 0.028

NM_003775 S1PR4 Sphingosine-1-phosphate receptor 4  − 0.513 2.28E−06 0.028

NM_004907 IER2 Immediate early response 2  − 0.453 2.73E−06 0.028

NM_001080791 C15orf57 Chromosome 15 open reading frame 57  − 0.867 2.87E−06 0.028

NM_001173514 TYROBP TYRO protein tyrosine kinase binding protein  − 0.466 3.40E−06 0.028

ENST00000411154 RNA5SP155 RNA, 5S ribosomal pseudogene 155  − 0.622 3.56E−06 0.028

NM_001282659 USP47 Ubiquitin specific peptidase 47 0.634 4.02E−06 0.028

NR_002786 CIDECP Cell death-inducing DFFA-like effector c pseudogene  − 0.583 4.78E−06 0.028

NM_020979 SH2B2 SH2B adaptor protein 2  − 0.613 4.85E−06 0.028

NM_022171 TCTA​ T-cell leukaemia translocation altered  − 0.305 4.93E−06 0.028

NM_006763 BTG2 BTG family, member 2  − 0.482 5.22E−06 0.028

NM_001145783 BORCS8 BLOC-1 related complex subunit 8  − 0.400 5.31E−06 0.028

OTTHUMT00000321237 APOBEC3A Apolipoprotein B mRNA editing enzyme, catalytic 
polypeptide-like 3A  − 0.807 5.33E−06 0.028

OTTHUMT00000380415 TAGLN2P1 Transgelin 2 pseudogene 1  − 0.623 5.90E−06 0.028

NM_001277163 CEACAM3 Carcinoembryonic antigen-related cell adhesion 
molecule 3  − 0.575 5.93E−06 0.028

NM_000577 IL1RN Interleukin 1 receptor antagonist  − 0.816 5.99E−06 0.028

NR_120420 LOC100507006 Uncharacterized LOC100507006  − 0.804 5.99E−06 0.028

OTTHUMT00000087130 HIST2H2BD Histone cluster 2, H2bd (pseudogene)  − 0.617 6.28E−06 0.028
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Lysophosphatidic acid receptor pathway identified.  Of the 147 significant DEGs detected for week 
20 PPROM versus HTERM comparison, 119 were associated with gene symbols and uploaded on Reactome 
for pathway analysis. Lysosphingolipid and Lysophosphatidic acid (LPA) receptors pathway was determined as 
significant at p < 0.05 (p = 0.0096), however this was not significant at FDR p < 0.05.

Gene set enrichment analysis at week 16 of gestation.  Several significant gene sets from FUMA 
(FDR p < 0.05) were obtained: SPTB versus HTERM (n = 1864), SPTB versus PPROM (n = 372) and PPROM 
versus HTERM (n = 3148). Many of these were reported as ‘chemical and genetic perturbations’.

Gene set enrichment analysis at week 20 of gestation.  Similar significant gene sets as week 16 of 
gestation were also identified at week 20 (FDR p < 0.05): SPTB versus HTERM (n = 3705), SPTB versus PPROM 
(n = 70) and PPROM versus HTERM (n = 8469). However, the lowest p-value was determined for the gene set 
GSE37533 PPARG1-FOXP3-VS-FOXP3-TRANSDUCED-CD4-TCELL-DN (an ‘immunologic signature’) from 
the SPTB versus HTERM analysis, whereby 57 input genes overlapped (FDR p = 1.57E−13) (see Supplementary 
File 3). Peroxisome proliferator-activated receptor, or PPAR-gamma, are nuclear receptors involved with regula-
tory T cells, and FOXP3 (forkhead box P3) is part of a transcriptional factor family.

Comparison of SPTB versus HTERM DEGs to Genotype-Tissue Expression (GTEx) database determined a 
gene set (including 332 genes) that was significantly upregulated in whole blood at week 20 of gestation (FDR 
p = 0.021) (Supplementary Fig. S3, see Supplementary File 4). This included: TNFRSF4, TNFRSF1B, IL1B, IL1RN, 
SLC11A1, HLA-V, HLA-G and MIR142. Gene sets were also enriched in cervix/endocervix, ovary and vagina 
(but not significant at FDR p < 0.05).

EQTL mapping at week 16 of gestation.  From the GWAS analyses of each phenotype, a total of 876 
SNPs reached suggestive threshold (p < 1 × 10–5) and were included for eQTL mapping. Of all three phenotype 
analyses, only the SPTB versus LTERM eQTL mapping resulted in 90 significant cis-eQTL transcript-SNP hits 
(p < 0.05) (Supplementary Fig. S4). One of these significant transcript-SNP pair, TC1100011170.hg.1-rs76196041, 
was significant at FDR p < 0.05 (FDR p = 0.019). Both the SNP and transcript were located in non-coding regions 
of chromosome 11 (see Supplementary File 5). Significant microRNA transcripts (p < 0.05) detected included 
microRNA 548L, microRNA 1343 and microRNA 139. A total of 219,593 trans-eQTL were highlighted for 
SPTB versus LTERM, of which 7 were significant at FDR p < 0.05, all of which were in either unknown regions 
or non-coding regions. Several trans-eQTLs were also significant at FDR p < 0.05 for the remaining phenotype 
comparisons: PPROM versus HTERM (n = 23), SPTB versus HTERM (n = 72), PPROM versus LTERM (n = 23) 
(see Supplementary File 6).

EQTL mapping at week 20 of gestation.  At week 20 of gestation only SPTB versus LTERM yielded 
significant cis-eQTLs. At p < 0.05, 91 significant cis-eQTLs were detected, however none of the were significant 
after FDR p < 0.05 (Supplementary Fig. S5). Of the 217,045 significant trans-eQTLs (p < 0.05), 43 were significant 
at FDR p < 0.05.

SPTB versus HTERM trans-eQTL mapping at week 20 of gestation highlighted one significant coding tran-
script TC1400008661.hg.1 (TRDV3, T cell receptor delta variable 3 on chromosome 14) in association with 
SNP chr1.177008414_C (rs146756455, an intron variant of ASTN1, Astrotactin 1, on chromosome 1) (FDR 
p = 0.04883). The remaining transcripts and SNPs were identified in non-coding regions. Trans-eQTLs that 
reached FDR p < 0.05 for the remaining phenotypes included: PPROM versus HTERM (n = 10), SPTB versus 
HTERM (n = 65), PPROM versus LTERM (n = 62) (see Supplementary File 6).

Discussion
The findings of this study strongly indicate different molecular attributes of PPROM and SPTB when compared 
with the term phenotypes, HTERM (women with a history of preterm birth and subsequent natural term birth) 
and LTERM (women with successive term births).

Two genome-wide significant SNPs were detected, ASTN1 (rs146756455, SPTB versus HTERM) (Fig. 3c) and 
MAST1 (rs188343966, sPTB cases versus LTERM) (Fig. 4b). Both genes are associated with neurodevelopment 
disorder in preterm infants31,32. ASTN1 was associated with prenatal development by Lionel et al.31, whereas 
MAST1 was reported in preterm infants, after birth, by Arpón et al.32. This correlates to our findings that (1) 
when all sPTB cases genotypes were compared to LTERM healthy pregnancies MAST1 was detected, (2) when the 
pregnancy outcomes were further stratified only SPTB genotypes were associated with ASTN1 when compared 
with term pregnancies that did not have a recurrent sPTB (HTERM). This suggests that ASTN1 is a candidate 
marker for the SPTB phenotype. These results also imply that perturbations in the process of neurodevelopment 
via various molecular pathways, which would lead to poor prognosis in preterm infants, could in fact be detected 
in early stages of pregnancy. Furthermore, it suggests a genetic difference between women who delivered term in 
all pregnancies (LTERM) and those who delivered sPTB followed by a term delivery (HTERM). This finding is 
novel in the obstetrics field of research. In terms of clinical management of patients, a genetic biomarker could 
aid risk stratification of high-risk women in a subsequent pregnancy.

The transcriptomics results suggest that local inflammation, potentially induced by TNF, occur in women who 
experienced PPROM, which is concordant with Capece et al.18 findings. The results further imply that RNA from 
maternal blood sampled at week 20 gestation could be utilised for predicting risk of early labour. Gene expres-
sion analysis highlighted microRNA 142 as significant in the PPROM versus HTERM outcome comparison at 
week 20 of gestation (FDR p = 0.02) (Table 1, Fig. 5). A PTB study of cervical cells by Sanders et al.23 reported 
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increased expression of microRNA 142 (and 5 other microRNAs) in preterm cases compared to term controls, 
thereby associating this transcript with shorter gestational length. Sanders et al.23 conducted network analysis 
of mRNA targets of the 6 upregulated microRNA (including microRNA 142) to identify molecules involved in 
DNA replication and inflammatory processes. This included a key role of tumour necrosis factor (TNF), which 
can induce inflammation resulting in preterm delivery33,34. IL1RN was also detected (Table 1) and is related to 
early onset of labour due to infection35–40.

Sanders et al.23 also determined DNA methyltransferases in the network analysis and DNA methylation is 
known to supress microRNA 142, which suggests a role of epigenetics in PPROM41. Future work would include 
collecting and investigating epigenetic data from this cohort of women and comparing back to these findings for 
further insight on the potential mechanism of microRNAs and inflammatory response in PPROM.

The role of inflammation and immune response is also likely for women experiencing SPTB, though the dif-
ferent molecular signatures suggest that different mechanisms are activated compared to PPROM. SPTB versus 
HTERM (at week 20 of gestation) gene set enrichment analysis highlighted the significant gene set GSE37533, 
an “immunologic signature”. This gene set consists of PPAR-gamma, which initiates adipocyte differentiation 
and has been suggested to combine with Foxp3 to regulate transcriptional signatures of regulatory T-cells42. 
In addition to this immunological finding, a significantly upregulated gene set in whole blood including many 
inflammation-associated genes was identified (Supplementary Fig. S3). Detection of such inflammation biomark-
ers in the blood could lead to the development of a non-invasive screening tool for clinical practice. Cis-eQTL 
mapping highlighted one significant transcript-gene pair (FDR p < 0.05) at week 16 of gestation. No biological 
plausibility was identified for rs76196041 or the transcript as they were both located in non-coding regions. 
Rs76196041 detected in the GWAS analysis of SPTB versus LTERM (p = 8.15e−06) did not meet genome-wide 
significance but reached above the arbitrary suggestive threshold of p < 1 × 10–5 (Fig. 3). This implies that the 
association of rs76196041 between SPTB and LTERM could distinguish between the two phenotypes. This is 
particularly of importance as the LTERM group were healthy controls who never experienced sPTB. Through 
many trans-eQTLs were significant at both timepoint analyses, gene expression is more likely to be affected by 
SNPs that are closer to the gene loci therefore cis-eQTLs are of interest43,44.

One of the major strengths of the study include the unique study cohort. Women were prospectively recruited 
in Liverpool and applied a threshold of ≤ 34 weeks of gestation to capture clinically well-defined sPTB pregnancy 
outcomes. In addition to this, two control groups, LTERM healthy controls and HTERM women who delivered 
term after a previous sPTB. Information on recurrent pregnancies does not exist in other biobanks. Another 
key strength was that both genomic and transcriptomic data were obtained from the same women (at two time-
points), and this was investigated using unbiased genome and transcriptome profiling technologies to detect 
molecular signatures. This provided an insight into the interactions between the omic layers and determine 
potential mechanistic pathways, which is a benefit of multi-omic studies.

Due to the clear definition of each sPTB group, the numbers of cases were low in this study. Therefore, dif-
ferences in gene expression between PPROM and SPTB could not be detected. However, when these cases were 
compared with term births, molecular signatures were detected, indicating that there are genetic differences 
between SPTB and PPROM when compared to term birth outcomes. This limitation was also present for the 
GWAS analyses; however, the detection of genome-wide significant SNPs warrants further investigation for 
instance with PCR methods. Furthermore, LTERM samples could not be processed on the Clariom D array, due 
to limited funds. An advantage of eQTL mapping was that it allowed for SNPs from LTERM GWAS analyses to 
be correlated to expression data of HTERM or sPTB births.

Conclusion
This study identified multiple inflammation biomarkers of sPTB in a unique, well-defined cohort of women who 
delivered ≤ 34 weeks of gestation. This study has also demonstrated the potential for multi-omics biomarkers as a 
diagnostic tool to detect if a woman is at risk of delivering preterm and thereby enabling early clinical interven-
tion. Future work involves validation of the genes and transcripts identified in our cohort samples. Integration 
of this data with other omics, such as metabolomics would direct this analysis towards identification of potential 
pathways involved with the initiation of PTB.

Methods
Study participants.  Women were recruited at 16 and 20 weeks of gestation in a subsequent singleton preg-
nancy at the Liverpool Women’s Hospital Preterm Birth Prevention Clinic, between April 2012 and Decem-
ber 2017. An additional singleton ‘low risk for PTB’ pregnancy population with a history of only term births 
(≥ 39 weeks of gestation) were also recruited at 16 and 20 weeks. Participants were included in the study if they 
were > 18 years old, willing to undergo transvaginal ultrasound scan and were able to provide written consent. 
For women ‘high-risk of PTB’, a further inclusion criterion of previous PPROM or SPTB (> 16 and ≤ 34 weeks of 
gestation). The exclusion criteria are reported in Fig. 1.

Study sample size and power calculations were conducted based on data obtained from the recruitment of 
a pilot cohort of women. Further details are provided in Supplementary Methods and Supplementary Fig. S6 
(see Supplementary File 1). All pregnancies were followed up and clinical data were collected. Informed consent 
was obtained from participants. Research ethics approval for this nested case–control study was obtained from 
the North West Liverpool Central Research Ethics Committee (REC reference: 11/NW/0720). This study was 
conducted in accordance with institutional and national ethical standards and complied with the 1964 Helsinki 
Declaration and its later amendments or comparable ethical standards.

Participants were categorised into mutually exclusive phenotypes based on their current pregnancy outcome. 
For women considered high risk of PTB (history of PTB < 34 weeks): HTERM (birth ≥ 37+0 weeks) or SPTB 
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(spontaneous preterm birth) or PPROM (preterm premature rupture of the membranes with > 12 h prior to 
labour onset) (PTB ≤ 34+0 weeks gestation). Low-risk women with a recurrent term pregnancy (≥ 39+0 weeks), 
were our control group, labelled LTERM and represented normality.

Preterm cases, SPTB and PPROM, were combined as a “PTB cases < 34 week” group and compared against 
both high risk (HTERM) and low risk controls (LTERM) to determine if statistical power in our GWAS was 
increased.

Sample preparation, quality checks and microarrays.  Whole blood samples were collected in BD 
vacutainer® K2EDTA tubes. DNA was extracted using the Chemagenic Magnetic Separation Module I (Auto 
Q Biosciences Ltd, UK) from maternal whole blood (N = 369). Oxford Genomics Centre at the Wellcome Cen-
tre for Human Genetics processed the DNA samples on the Applied Biosystems™ UK Biobank Axiom™ array 
(Thermo Fisher Scientific) for genome-wide screening.

Further whole blood samples were collected in PAXgene Blood RNA Tubes (PreAnalytiX, QIAGEN) and 
stored at − 80 °C. Total RNA (N = 115) was extracted using spin column PreAnalytix kit (PreAnalytiX, QIAGEN). 
Sample quality was measured using the RNA 6000 Nano and Pico Kit and Agilent 2100 BioAnalyzer (Agilent 
Technologies). Samples with RNA integrity number (RIN) of > 7 were hybridised to the GeneChip™ Clariom™ D 
Human assay (Thermo Fisher Scientific).

Data generated from the array platforms have been deposited at the European Genome-phenome Archive 
(EGA)45, which is hosted by the EBI and the CRG, under the study accession number EGAS00001005076.

GWAS data quality control.  Genotyping with the Axiom™ array was performed and Axiom™ Analysis 
Suite 2.0 was applied to identify samples that passed 97% genotype call rate by Oxford Centre for Genom-
ics (Wellcome Centre for Human Genetics, University of Oxford). GWAS standard quality control procedures 
reported by Anderson et al.46 and Marees et al.47 were followed using PLINK v1.9 software48.

Samples were excluded due to the following reasons: overall heterozygosity rate was ± 3 standard deviations 
from the cohort mean a high proportion of missing SNPs; heterozygosity on chromsome X resulting in gender 
discrepancy or indication of close relatedness (or ‘identical by descent’, IBD) with other samples. Samples were 
included if genetically assigned to European ancestry (CEU) population based on the HapMap data49,50 (Sup-
plementary Fig. S7).

SNPs were excluded if they had a low genotype call rate (< 95%); minor allele frequency (MAF) of < 1% and if 
SNPs deviated from Hardy–Weinberg Equilibrium (HWE) at p ≤ 1 × 10–647. Prior to imputation, HRC Perl script 
v4.2.7 by Will Rayner was executed to remove trialleic, biallelic and palindromic SNPs.

Phasing and imputation of 618,283 SNPs was completed using the Michigan Imputation Server, applying 
Eagle v2.3 to phase chromosome 1 to 22 and minimac3 algorithm with the HRC r1.1 2016 reference panel for 
imputation51,52. Variants with R2 < 0.353 and MAF = 0 (or < 1%) were excluded post-imputation to retain higher 
quality imputated SNPs.

GWAS analysis.  Frequentist association analysis between the four individual phenotypes was completed 
using SNPTEST v2.554–56. Multi-dimensional scaling components 1 to 6 were included as covariates to con-
trol for genetic variance observed in the cohort. Manhattan plots were generated using R package ‘qqman’28. 
Biomart Ensembl GRCh37 (release 97, EMBL-EBI), was applied for SNP annotation (SNPs reaching p < 1 × 10–5 
and genome-wide significance of p < 5 × 10–8)57. Regional plots were generated using LocusZoom (University of 
Michigan) web tool to explore SNPs in linkage disequilibrium29.

Differential gene expression analysis.  Array data was pre-processed by performing Robust Multichip/
multi-array Analysis (RMA) using the R Bioconductor package, ‘oligo’58. Annotation was completed with R 
package ‘affycoretools’59 and the Clariom D Human array database ‘pd.clariom.d.human’60. Differential gene 
expression analysis was conducted on SPTB, PPROM and HTERM outcome comparisons (at both week 16 and 
20 of gestation) using R package ‘limma’ with ANOVA and empirical Bayes30.

Pathway analysis.  Gene symbols of significant DEGs (FDR p < 0.05) from PPROM cases versus HTERM 
controls gene expression analysis were uploaded onto Reactome61,62 for pathway analysis. Missing gene symbols 
were excluded.

Gene set enrichment.  FUMA GWAS online software (Functional Mapping and Annotation of Genome-
Wide Association Studies) was applied for gene set enrichment analysis (GSEA, Broad Institute, US) of genes 
identified from expression analysis across all phenotypes (using p < 0.05 threshold)63. Genotype-Tissue Expres-
sion (GTEx) database was used to identify whether these transcripts could impact tissue-specific gene expres-
sion.

Matrix eQTL analysis.  R package ‘MatrixEQTL’43 was applied for eQTL mapping of the gene expres-
sion data and SNPs with p < 1 × 10–5 from GWAS analyses comparing PPROM versus HTERM, PPROM versus 
LTERM, SPTB versus HTERM, SPTB versus LTERM. Linear regression model was applied, with thresholds of 
p < 0.02 for cis-eQTLs (local) and p < 0.01 for trans-eQTLs (distant). The test statistics for every transcript-SNP 
pair exceeding the threshold were returned with the corresponding p-values.
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Ethics approval.  Research ethics approval was Granted by the North West Research Ethics Committee 
(REC reference: 11/NW/0720).

Consent to participate.  All participants provided informed consent for this study.

Data availability
The genomic and transcriptomic datasets generated and/or analysed during the current study are available in 
the European Genome-Phenome Archive (EGA) EBI repository (https://​ega-​archi​ve.​org/​studi​es/​EGAS0​00010​
05076).
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